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ABSTRACT. Using real-variable methods, we characterise multipliers for gen-
eral classes of Hardy—Orlicz spaces, unifying and extending several classical
results due to Hardy and Littlewood; Duren and Shields; Paley; and others.
Applications of our results include inequalities involving Fourier coefficients
and Fourier transforms of elements of Hardy—Orlicz spaces and their duals,
as well as embeddings into spaces of generalised smoothness, Sobolev type-
embeddings and Paley-Wiener type theorems.

1. INTRODUCTION

Many, if not most, classical spaces of functions that arise in harmonic analysis
and operator theory admit membership conditions that can be expressed in terms
of growth conditions on Fourier coefficients or Fourier transforms of elements in the
space, or, when the space consists of analytic functions, Taylor coefficients. Many
operators acting on such spaces can either be defined in terms of their actions on the
Fourier or Taylor side, or admit useful descriptions in these terms. This leads to the
study of multiplier operators, or in brief, multipliers, and their mapping properties.
The simplest case is that of L?(T), the square integrable periodic functions: a
function is in L?(T) if, and only if, its Fourier coefficients are in the sequence space
¢2, and so a multiplier is bounded if, and only if, it maps ¢? to ¢2. Similarly,
there are many classical results characterising when a multiplier is bounded from a
given Banach space, or scale of Banach spaces, to £? for some suitable range of q.
When dealing with less classical spaces, such as endpoint substitutes for L' spaces,
one is naturally led to consider function spaces not of Banach type, and multiplier
operators acting on such spaces.

This paper is devoted to a study of multipliers in the setting of Hardy—Orlicz
spaces, which generalise HP spaces on the circle or on Euclidean space, and their
duals. Our goal is to both unify and generalise well-known results in the H? theory,
and to exploit such results to give new descriptions of the elements of these spaces
and how they embed into other naturally occurring spaces in complex and harmonic
analysis.
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Let us set the scene for this paper by letting X (D) be a space of holomorphic
functions on the unit disc D := {z € C : |z| < 1}, equipped with a norm, or quasi-
norm, |- [ x(p) so that |F[yp, < oo if, and only if, F' € X(D). For instance, X (D)
could be a classical Hardy space HP(D) with p > 1.

For ¢ € (0,], we say that a sequence A = {\,}*_, of complex numbers is a
multiplier from X (D) to ¢?(Np) if there exists a constant C x > 0 such that

(1.1) ”{)‘nfn}%)onZQ(No) < Cix HF”X(D)

forall F(z) =3 fn2™ in X(D). The class of all multipliers from X (D) to £4(Np)
is denoted by M x (p)—ra(n,)- For A € Mx(py—pa(n,), we write

H)\HMX(DHM(NO) :=1inf {Cy x > 0: (1.1) holds for all F'e X(D)}.

In this paper we establish characterisations of multipliers from a broad class of
Hardy—Orlicz spaces to 7 for g € [1,2]. Our characterisations include in a unified
way known results for classical Hardy spaces as well as new multiplier results for
Hardy—-Orlicz spaces that arise in the study of products between Hardy spaces and
their duals. Of particular interest to us is the space H'°8(DD) that naturally arises in
the study of products between functions in H!(D) and BMO(D) (see |7]) and whose
dual space LMO(D) =~ (H'°#(D))* appears in a number of problems in complex
and harmonic analysis, including that of the characterisation of boundedness of
Hankel operators on H*(D) (see [26]).

Multiplier theorems. Let us now recall some well-known multiplier theorems on
classical Hardy spaces that our present work generalises. If p € (0,1) then it was
shown by P. L. Duren and A. L. Shields in [12,[13] that for ¢ € [p, ) a sequence
A = { . }° is a multiplier from HP(D) to £7(Np) if, and only if,

1 N 1/q
1.2 sup — nd/P|\, | < 0.
i 3 (2]
In the case p = 1 it was shown by G. H. Hardy and J. E. Littlewood [20,/21] and
E. M. Stein and A. Zygmund [34] that a sequence A = {\,,}°_ is a multiplier from
H(D) to ¢?(Np) if, and only if,
om+l_q

1.3 sup A |? < 0.
(1.3) sup n;:m [An]
For an introduction to classical Hardy spaces and for proofs of the aforementioned
multiplier results, we refer the reader to Duren’s book [11].
In the p = ¢ = 1 case, a theorem attributed to C. Fefferman (see [14] and [31])
asserts that a sequence A\ = {\,}%_, is a multiplier from H'(D) to ¢!(Np) if, and
only if,

0 (k+1)N—-1

(1.4) sup ) Dl <o

NeN g n=kN

In this paper we extend the aforementioned results to a broad class of Hardy—
Orlicz spaces. To state our results, recall that given a growth function ¥ (see
Definition [8 below), the corresponding Hardy—Orlicz space HY (D) is defined as the
class of functions F' that are holomorphic in D and satisfy

sup / v (‘F (rei2”9)|) df < oo.
[0,1)

o<r<l1
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If Ge HY(D), we set

|G v () := inf {a >0: sup / ¥ (o tG (rei2”0)|) do < 1} .
[0,1)

o<r<l1

Note that if U(¢) = P then (HY (D), ||- HH\IJ(D)) coincides with the usual Hardy space
(HPD), | - e o))-

In what follows, if ¥ is a growth function then ' denotes its inverse, i.e.
U1 [0,00) — [0,00) is such that U—1(W¥(t)) = ¢ for all t > 0.

Our first result is a characterisation of the class M g py_ gy, for q € [1,00)
and for growth functions of order p € (1/2,1).

Theorem 1. Let U be a growth function of order p e (1/2,1) and let g € [1,0).
Let A = {\,};*_ be a sequence of complex numbers. The following are equivalent:

(1) X is a multiplier from HY (D) to £9(Ny);
(2) X satisfies the condition

1 N 1/q
o - -1 q q .
ANw pq = Jsvlé% N (;1\11 (n) | Anl ) < 05

(8) X satisfies the condition

1
N \I}*l(zm) om+1l_q /q
Ay wpq = sup — E [An|9 < 0.
meNg 2 n=2m

If \e MH\I/(D)_,gq(NO) then

|‘>\HMH‘I’(W)~>[‘1(NO) ~ A\ wpa x A pg

where the implied constants depend only on V¥, p, q¢ and not on A.

Theorem [1| includes Hardy—Orlicz spaces with growth functions of the form

P
(1.5) U, ,(t) := og (i 1 ¢)’
for p e (1/2,1) and 7 € [0,00). In the Hardy space case, i.e. for r = 0; HYo» (D) =
HP(D), Theorem [1| recovers the characterisation of Duren and Shields for the class
M v ()—ra(n,) When p € (1/2,1) and q € [1,00).

Our next result extends Theorem [I] to growth functions of order p = 1 in the
case where ¢ € [1,2]. More specifically, the following result holds true.

t>0,

Theorem 2. Let U be a growth function of order p € (1/2,1].
Let A = {\,}_, be a sequence of complex numbers and let q € [1,2].
(a) If q € [1,2), then the following are equivalent:
(i) X is a multiplier from HY (D) to £¢(Np);
(i) A satisfies the condition

(ki) . (2—q)/2

\If_l N 0 k+1)N—1

Crw,pq = sup ﬁ Z Z | An |? < o0.
Nen N k=1 n=kN

If A€ MH\II (D)—£4(Np) then

|‘AHMH‘[’(]1})~>M(NO) ~ CA,\I/,p,qa

where the implied constants depend only on ¥, p, q and not on .
(b) If g = 2, the following are equivalent:
(i) X is a multiplier from HY(D) to £*(Ny);
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(i) A satisfies the condition

1/2
_ k+1)N—1
(N (
By w p2 = sup Jé ) sup Z BSE < o0
NeN keN nekN
(iii) X\ satisfies the condition
1/2
~ oi(2m) Y 2 /
B = _— A < 0.
S T HE;L'"

If A e MH‘I’(D)—>Z2(N0) then

N Ay o)y = BATp2 > Bawp2,

where the implied constants depend only on VU and p, but not on .

Theorem [2] includes Hardy-Orlicz spaces with U, , as in (LB, with r € [0, o0)
and p € (1/2,1], endpoint included. Note that if » = 0 and p = 1, then HY0*(D) =
H'(D), and condition (3) in part (b) of Theorembecomes that is, Theorem
recovers the aforementioned characterisation of Hardy-Littlewood and Stein—
Zygmund for the class M g1 (p)—e2(n,)-

Note that if ¢ € [1,2) and ¥ is a growth function of order p € (1/2,1), then
conditions (2) and (3) in Theorem |1] and condition (ii) in part (a) of Theorem
are all equivalent. Similarly, for ¢ = 2, conditions (2) and (3) in Theorem [1| and
conditions (ii) and (iii) in part (b) of Theorem [2] are all equivalent.

To prove Theorems [I] and [2] we use a real-variable approach that is based on

duality. An important ingredient in our proofs is an unconditionality result; see
Lemma [[1] below.

Hardy-Littlewood and Paley-type inequalities. If U is a growth function of
order p € (1/2,1] then the sequence A = {\,}>_, given by

- 1/¥~Y(n), ifneN;
"o, if =0

satisfies condition (2) in Theorem [2l We thus obtain the following corollary.

Corollary 3. Let ¥ be a growth function of order p € (1/2,1]. Then there exists a
constant Mg , > 0 such that

|l
pREre

Jor all F(z) =Y, 2o fnz™ in HY (D).

Corollary [3| implies a classical inequality due to Hardy and Littlewood [19]:

< My,

‘FHH‘P(ID))

ol
(1.6) Z Tn S ) g1y

n=1

as well as its ‘ H'°8’_variant

[o0]
| fnl
1. E ————— < ||F| 10
( 7) nlog(n+1) ~ ” Hng(D)

n=1
that the present authors had obtained in [4].

In the ¢ = 2 case, Theorem [2| has the following corollary which may be of
independent interest.
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Corollary 4. Let ¥ be a growth function of order p € (1/2,1]. Then there exists a
constant By > 0 such that

0 2] 2 1/2
12
(2 () wr) <o

for all functions F(z) = > fnz™ in HY(D).

1F [ g py -

Let us examine what Corollary E| implies in some special cases. If ¥, ; is as in
(1.5)), then its inverse function satisfies

(1.8) UoH(t) ~p tlog' (t+e), >0,

where the implied constants depend only on r. Hence, when r = 0, then Corollary
recovers a classical inequality due to R. E. A. C. Paley [29]:

- 1/2
(1.9) <Z |f2j|2> S Fl gy
j=0

for all functions F(z) = > fn2™ in H'(D). The choice r = 1 corresponds to the
Hardy—-Orlicz space

H“¢(D) := H" (D).
In view of , Corollary {| implies that

| foi |2 v
1.1 E = S E o
( 0) ( (] 1)2> = H HH g (D)

Jj=0

for all functions F(z) = Y, f»2" in H'°8(D), which can be regarded as a natural
variant of Paley’s inequality (1.9) for functions in H'°8(D).

Dual spaces. It follows from the work of S. Janson [25] that the spaces HY (D)
and BMO(py)(D) can be put in duality. Recall that if
pult) == 1), >0,

then BMO(py)(D) is the space of holomorphic functions on D whose boundary
values belong to

BMO(py)(T) := { ue L*(T) : sup ;2 / [u(e®™ ) — <u>1|2 df <
18 ou (DT 11 s

Here, if g € LY(T) and J < T is an arc, {g); denotes the average of g over J. The
class of functions on T that are boundary values of functions in BMO(py)(D) is
denoted by BMOA(pg)(T).

If ®o1(t) = ¢, then one recovers the usual BMO-type spaces, whereas the case
Uy 1(t) = t/log(t + e) corresponds to LMO-type spaces.

Note that by appealing to Corollary and duality, it follows that if {a;}72, is a
sequence of complex numbers with

(1.11) i (‘P;@]))Z la;|? < oo

Jj=0

then the lacunary trigonometric series

m .

; J
Z aj6127r2 0
j=0

is the Fourier series of a function in BMOA(pg)(T). In the case where U(t) =
@ 1(t) = t, condition ([1.11)) characterises lacunary Fourier series in BMOA(T); see
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§6.3 (iii) in Chapter IV in [33]. One might ask whether condition (1.11)) actually
characterises lacunary Fourier series in BMOA(pg)(T) in general. As we will see
below, it does not.

Littlewood—Paley characterisations. If the growth function is of the form ¥ =
U, (ie. asin for p = 1), implication (3) = (1) in part (b) of Theorem
can also be deduced from a Littlewood-Paley characterisation of BMO(py, ,)(T)
that is of independent interest.

To state this characterisation of BMO(py, ,)(T), we need to introduce some
notation first. For n € Ny, define

5 Vi, if n =0;
" Van — Vauer,  ifneN,

where V,,, denotes the de la Vallée Poussin kernel of order m; see §2.4] below. For
f € LY(T) and n € Ny, define the corresponding Littlewood-Paley projection by

Ap(f) :=0n = f.

Theorem 5. Let r = 0 be a given exponent and let U,.1 be as in (L.5) (forp=1).
If u is a function in L?(T), then the following are equivalent:

(1) w belongs to BMO(py, ,)(T);

(2) one has
; 2
(112) sup ———5— / Z |An(u)(612ﬂ'9)| do < oo.
{C;E [p‘llrl |I‘ |I| neNy:

2n > |1t

Moreover, one has

1) Wlgop, e > | w208+ luly,
where
1/2
ey, i | 300 e [ 3 A a0
" }[ga’gc [p‘l/rl |I| |I| neNy:

2n > |11

Theorem [5| generalises a well-known Littlewood—Paley characterisation of func-
tions in BMO(T) due to M. Frazier and B. Jawerth |16] and appears to be, to the
best of our knowledge, new. As we will see below, if u belongs to BMO(pg)(T)
then holds for more general Littlewood—Paley-type partitions; see Theorem
for a precise statement of this fact. For the BMO-case this is implicit in the
works of J. Bourgain (8] and J. L. Rubio de Francia [30], see also M. T. Lacey [27].

Moreover, Theorem [5| can be to used to improve condition . More specif-
ically, Theorem [f] implies the following characterisation of lacunary Fourier series
in BMOA(pg)(T) in terms of the growth of their Fourier coefficients.

Corollary 6. Let r = 0 be a given exponent.
Let {a; }]:0 be a sequence of complex numbers. The following are equivalent:

(1) The lacunary trigonometric series

w . .
N a0 e o,1),
i=0

is the Fourier series of a function in BMOA(py, ,)(T);



MULTIPLIERS FOR HARDY-ORLICZ SPACES AND APPLICATIONS 7

(2) one has

(1.14) sup (qu_]}V(N)> 2 la;|? + < 0.

NeN j=log N

Note that if ¥ is not the identity map, then (1.11]) is strictly stronger than (1.14).
To illustrate Corollary [6] consider the case of LMOA(T) ie. take W(t) =
Uy1(t) = t/log(t + e). Then the lacunary trigonometric series

0 ) .
2 a;e®?  gelo,1),
i=0

with {a;}72, being a sequence of complex numbers, is the Fourier series of a function
in LMOA(T) if, and only if,

sup {log? N > [a;f* b < 0.
NeN jzlog N
For instance, the function v whose Fourier series is given by

127 2727
(1.15) u(e??™0) ~ Z j376 w20 pelo,1),

j=0

belongs to LMOA(T). Note that the lacunary sequence in ([1.15)) does not satisfy
" (fOI‘ U = \Ifl’l).

Euclidean counterparts and applications. Corollary [3] and our other results,
have natural counterparts in the Euclidean setting. To formulate them we need to
recall the definition of Hardy-Orlicz spaces on R?. Following [38], if ¥ is a growth
function, let F,,, denote the family of Schwartz functions on R? given by

Fmg =L peSMRY) :sup  sup (1+ |x|)(m‘1’+2)(d+1) |(9B¢>(I)‘ <13,
zeR? ﬁGN‘Oi:
|B|l<mw+1
where my is an appropriate non-negative integer depending on ¥; see p. 16 in [38].
For t > 0, we use the notation ¢;(x) := t~9¢(t"'z), x € RL If f is a tempered
distribution on R?, define the corresponding non-tangential grand maximal function
of f by

Mz, [f1(z) := sup sup  [fxdu(y)|, zeR”
$eFmy (y,t)eR? x[0,00):
lz—y|<t

The Hardy-Orlicz space HY (R?) is defined as the class of all tempered distribu-
tions on R? satisfying

/ v (M;W [f](x)) da < .
Rd
If fe HY(RY), we set
”f”H\II(]Rd) = inf {)\ >0: /Rd g </\71M]*:—m\p [f](x)) dxr < 1} .

The local Hardy-Orlicz space h¥(R?) is defined as the class of all tempered
distributions f on R? that are such that W(M% | [f]) € L'(R?), where
g

loclf1(@) := sup sup  |frdi(y)l, zeR
¢E]:m\p (y,t)ERdX[O,l):
|lz—y|<t

M

my oy
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Note the restriction to R? x [0, 1) in the first supremum on the right in the definition
of M% [f]. For f e h¥(R%), one sets

Fvn\l, ,loc

my o

I fllpw ey := inf {)\ >0: /Rd v ()flM]*} 10C[f](x)) dz < 1} .

Our next result implies a Euclidean analogue of Corollary

Theorem 7. Let d € N be a given dimension and let U be a growth function of
order p with p € (d/(d + 1),1].
Then there exists a constant Cqw p, > 0 such that

s
/Rd ‘I’(EV@Ddé < Caup /R v (Mf* L ](m)) o

‘€|2d my

for all f e HY(R?).

As a consequence of this result, we obtain in Corollary a Euclidean counter-
part of Corollary [3]

Notice that if f is a tempered distribution, then its Fourier transform does not
necessarily coincide with a function. However (see e.g. |33} §5.4 (a) Chapter III]), if
f € HP(R?) with p € (0, 1], its Fourier transform agrees with a continuous function
and

7] Sap 16177 1y gy, €€ RY

In Proposition [24 we give an extension of this result for distributions in H'¥ (R?),
and an analogous result for h'¥ (R™) is obtained in Proposition

The Littlewood-Paley description of the Hardy space h?(R9) can be stated in
terms of the validity of the functional inequality (see for the notation)

" N
(1.16) <Z ‘Agf) ) < 1 e ray »
Ly

(R)

and its reversed counterpart. The expression in the left-hand side can be identified
as the norm of f in the inhomogeneous Triebel-Lizorkin space ngQ(Rd), allowing
the inequality to be interpreted as saying that h?(R?) is embedded in F,(R?).

In Theorem we give an extension of for p = 1, obtaining that the space
h¥r1(R?) can be embedded in the Triebel-Lizorkin space of generalised smoothness
FR’Q_T(Rd) (see .

The classical Sobolev embedding yields that, given p € (0,1], if a distribution f
satisfies (1 — A)%f e h?(R%), then f is a continuous and bounded function (see
e.g. [15, Theorem 2]). Informally, this can be rephrased as saying that if f has
its derivatives of order smaller or equal to dp in hP(Rd), then f is a continuous
and bounded function. As a direct consequence of Corollary we obtain an
extension of this result for distributions in A¥ (R), and in particular in h¥r»(R?),
(see Corollaries [31] and , involving derivatives of logarithmic order.

In the direction of obtaining an extension of for W,.,, for p < 1, in Corollary
we establish a Sobolev-type embedding of h¥~»(R?) into spaces of generalised
smoothness. We later apply this to establish an embedding of those distributions
in h¥~»(R), p € (1/2,1], whose Fourier transforms are supported in [0,o0), into
certain spaces of analytic functions in a halfplane (see Corollary .
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Organisation of the paper. In Section 2] we set down basic notation and pro-
vide some background on growth functions, Hardy—Orlicz spaces and their atomic
decomposition, as well as HY-BMO(py) duality.

Section [3] contains the proofs of Theorems [I] and [2] spread over several subsec-
tions, as well as several auxiliary results.

In Section [@ we prove Theorem [5] and discuss some of its consequences.

Section [5| is devoted to the Euclidean setting and in particular to the proof
of Theorem [7] and a counterpart of Corollary [3] More specifically, in Subsection
we make some introductory remarks concerning the behaviour of the Fourier
transform on Hardy—Orlicz spaces and then in Subsection [5.4) we prove Theorem [7}
In subsection [5.5| we present some applications of the Euclidean results to Sobolev-
type embeddings and spaces of analytic functions in a half-plane.

2. NOTATION AND BACKGROUND

The set of natural numbers is denoted by N, the set of non-negative integers is
denoted by Ny, and the set of integers is denoted by Z.

In what follows, we identify functions on T with 1-periodic functions in the usual
way.

We denote the class of Schwartz functions by S(R?) and we denote by Co(R?)
the class of all continuous functions f on R¢ such that f(x) — 0 as |z| — . The
class of distributions on T is denoted by D'(T).

2.1. Growth functions. We now give a formal definition of the growth functions
used to define HY spaces.

Definition 8. Let 0 < p < 1. A function U : [0,00) — [0,00) is called a growth
function of order p if it has the following properties:

e U s continuous and increasing, with W(0) = 0 and lim;_,o, V() = o0;
e the function t — t~1U(t) is non-increasing on (0, 0);
o VU is of lower type p, namely, there exists a constant cy , > 0 such that

U(s-t) <cwp-sP-U(t)

for allt =0 and s € (0,1).

If W is a growth function of order p for some p € (0,1], we say that ¥ is a growth
function.

As noted in [6], see also [37], given a growth function ¥ of order p, then W(t) :=
fg s71W(s)ds is also a growth function of order p that is concave and point-wise
equivalent to W. Hence, in what follows, we may assume that the growth functions
considered are always concave and hence, sub-additive.

In several parts of this paper we shall use the following standard fact: if ¥ is a
growth function of order p then t +— ¢t~!W¥(¢) is quasi-increasing with constant cy ,
for all [ € (0, p]. Namely,

(s) W(t)
oSG T

(2.1) .

for all 0 < s <t. See [37, Proposition 3.1] for further details.

2.2. Hardy—Orlicz spaces. If ¥ is a growth function, then the ‘real-variable’
Hardy-Orlicz space HY(T) consists of all distributions f on T satisfying

/ T (f*(e™m)) do < oo.
[0.1)
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Here f* denotes the non-tangential maximal function of f € D'(T) given by

7ﬂ\n|J’r\(n)ei?n'nqﬁ

neZ

f*(€i27r9) = » sup
rei27¢el’(6)

b

where ‘
L) :={zeD:|z—e?m <2(1—|2|)}

and f(n) := {f,en), n € Z, with e, () := 2™ 6 € [0,1).
If fe HY(T), we set

|l g zy == inf {/\ >0: /[ )\If (ATLF*(e2m)) do < 1} .
0,1
The analytic Hardy—Orlicz space H (T) is defined as

HY(T) := {f e HY(T) : supp (f) c NO}.
Recall that the Riesz projection P is the multiplier operator with symbol xn,. By
arguing as in [38, Chapter 4], one can show that P is bounded on HY(T) and
moreover, one can show that if f € HY(T) then for f, := P(f) and fo := f — f1
one has that f = f1 + f2, f1, fo € H3(T), and
(2.2) 1 lzvry =~ il ey + [Tl sy -

It is well-known that HY (D) can be identified with H% (T) in the following way:
if F e HY(D) then it converges in the sense of distributions to an f € D'(T) that
belongs to H3 (T) with |F| gvp) < [ £l e r) and conversely, if f € H(T) then

0
F(TeiZﬂ'e) — Z Tn]’c\(n)ei%rne’ 2 = pei2mt ¢ D,
n=0
is a well-defined function that belongs to HY (D) and satisfies Lf 1w my < 1F [ oy
see, e.g., [6].

2.3. Duality and atomic decompositions. Let ¥ be a growth function and let
pw be as above, i.e.,

(2.3) py(t) ==ttt Y), t>o0.
Let q € [1,00). It follows from the work of Viviani [37] that v € BMO(py)(T) if,

and only if,
1 / 270 q }
sup { ————— [ |u(e —{uyr| dfy < o
Iacrgz{[pmm]w AR

and moreover, one has

(2.4) HUHBMOWN)(T) Nq

/ u(ei27r0)d0
[0,1)

su - w(e270) _ (| Ya
ﬂ;@([p@(un]ﬂﬂ/,“ )~ Gnf'an)

In particular,

(25)  Julgpmo+ (pg)m) *

/ u<ei27r9)d9
[0,1)

As was shown by Janson [25], for a given growth function ¥, the dual of HY
can be identified with BMO(pg)(T); the choice of py in (2.3)) is made precisely so

sup {72010 [ e — o an).
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as to make this duality hold. Note that py is a positive non-decreasing function
[37, Proposition 3.10]. In [37], B. Viviani proved the very useful result that the
Hardy-Orlicz space HY(R?) admits an atomic decomposition. As a consequence,
she gave another proof of Janson’s result on duality.

Let us first recall the definition of atoms in the Euclidean setting.

Definition 9. Let ¥ be a growth function. A locally integrable function ag is said
to be an atom in HY (R?) associated to a cube Q < RY if

i) supp(aq) < Q;
i) lag(z)| < ™H(1/|Q|) for a.e. x € Q;
iii) fQ ag(z)dzr = 0.

Note here that
el e = inf {2 = 0 [ v < 1= 1asiQ)

and so, the second property in the definition of atoms can be rewritten as
-1
HG'QHLOO(Rd) < HXQ”L\IJ(]Rd)-

A tempered distribution f belongs to HY(RY) if, and only if, there exists a
sequence {bg, }reny of multiples of H'Y (R%)-atoms such that

= 2 bQ,
keN
in the sense of distributions, and
31k (Il o gy ) < -
keN
Moreover, we have
HfHH‘I’(Rd) ~ Ao ({bQy Yher)

where

A ({ka}kEN) ;= inf {/\ >0: Z |Qk| )\ ()\71 Hka HLOO(Rd)) < 1} .

keN

An analogous characterisation holds in the periodic setting.

As for HY (R%), the local Hardy—Orlicz space h¥ (R%) admits an atomic decom-
position (see for instance 38| §8.3]). Let us recall that a locally integrable function
ag is an atom in h'¥ (RY) associated to a cube @ if it satisfies i), ii) from Definition
[0 above, and

iii)’ fQ ag(z)dzr = 0, when |Q] < 1.

Similarly as for H¥(R?), a tempered distribution f belongs to h¥(R?) if, and
only if, there exist a sequence {8¢, }xen of multiples of atoms in h¥ (R?), such that

f=>Baq
keN
in the sense of distributions and
2 1Qel ¥ (I8l or ) < -
keN

Moreover,
HthW(le) ~ Mo ({BQu Y ren) -
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2.4. Well-distributed intervals and Littlewood—Paley-type projections.
In this paper, we shall consider ‘frequency’ intervals that arise from Whitney-
type decompositions of arbitrary intervals. To be more specific, following [30],
it K =[ck —|K|/2,cx + |K|/2] is a non-empty interval, then its Whitney decom-
position W (I) consists of the families of intervals

K| 270+ K| 2!
Kleft = ‘ K K
{ [CK 2 3 | |’ o 2 3 | ‘ leZ ’

K K
chntrc = {[CK _ %’CK + |6|]}7

-l —(+1)
right o @ _ L @ _ 2
K : {<0K+ 5 3 |K|,cx + 5 3 | K| .

Note that for any given non-empty interval K interval, the intervals in W (K) are
mutually disjoint and satisfy the properties

and

D1 X <5 and  2JC K forall Je W(K).

JeW (K) Lo ®)

For n € N, let K,, denote the usual Fejér kernel of order n, namely,

K, (€)= )] <1 - n|i|1) e2m%  pel0,1).

j=—n
Then the de la Vallée Poussin kernel of order m € N is given by
Vin == 2Kom1 — Ky

and satisfies X//;(j) =1 for all j € Z with |j| < m + 1, and ‘//,\n(j) =0forall jeZ
with |j] = 2m + 1. Moreover, ¥V, is even and ‘affine’ on [m+1,2m+ 1] nZ.

For m e N, we set

Om = Vo — Vi

Note that 7,,(j) = 0 for all j € Z with |j| < m + 1 or |j| = 4m + 1. Moreover, oy,
is even and ‘affine’ on [m + 1,2m + 1] nZ and on [2m + 1,4m + 1] n Z.

Suppose now that K is an interval with |K| = 3 - 2!*! for some | € Ny and
moreover, its endpoints Ik = cx — |K|/2 and ri := cx + |K|/2 are integers. Let
W (K) denote the Whitney decomposition of K. If J € K'*®* and |J| € N, define

5y (eiZﬂQ) — ei27rrJ0€—i27r(2m)90_u| (ei27r0), 0 e [O, 1)7

where r; denotes the right endpoint of .J. Similarly, if J € K"8" and |J| € N,
define

5](61'2#9) = ei27rlJ061'271'(2771)90_‘JI(ei2Tr9)7 0 e [07 ]_)7

where [; is the left endpoint of .J.
For J e K'*f* U K"#M and f e LY(T), we set Ay(f) := 67 * f.

3. PROOFS OF THEOREMS [I] AND

In this section we prove Theorems [I] and [2| To this end, we shall first establish
the following characterisation of M ge (p)_ e (n)-

Proposition 10. Let U be a growth function of order p € (1/2,1].
Let A = {An}nen, be a sequence of complex numbers. The following are equiva-
lent:

(1) X is a multiplier from HY (D) to £*(Np);
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(2) There exists a constant Ay w,p > 0 such that

M
Fg\[)(z) = Z enrnz”, zeD,
n=0

belongs to BMO(py)(D) with

F(M)H <A
X prmoeym P

for every choice of € = {€, }nen, with |e,| <1, n € Ny, and for all M € Ny.

Proof. To prove (2) = (1), fix a function
a0
F(z) = Z fnz", zeD,
n=0

in HY(D). We shall prove that there exists a constant C) y , > 0, depending only
on A\, ¥, and p, such that
M
(3.1) Z Tn|>‘n.fn| < OA,‘RP HFHH‘I’(D)
n=0
for all r € (0,1) and for all M € Ny. The desired inequality then follows from
and a limiting argument.
In order to establish (3.1), fix an 7 € (0,1) and define F, by

a0

F.(z):=F(rz) = Z " fn2", zeD.
n=0
Note that
(3-2) 1Erl ey < 1E ] o oy -

Indeed, by the definition of the norm and a change of variables,

HF,.HH\p(m = inf {a >0: sup /[0 ) R (of1 }F (rpei2”6)|) di < 1}

0<p<l1

< inf {a >0: sup v (oz_1 |F (oeiQwe)D df < 1} = HFHH‘I’(]D)) .
O0<o<1J[0,1)
Fix an € = {€y, }nen, With |e,| < 1 for all n € Ny and an M € Ny. We may write

< M

(3.3) Z enT" Anfn| = ’<FT?F£,)\,)O )
n=0

where FS\){)O denotes the analytic trigonometric polynomial, which is the boundary

value of I‘g\”. By our assumption

g)\,\ll,p 1a

where the implied constant is independent of the choice of € = {e,, }nen, and M € Ny.
Hence, it follows from ([3.3) that
M

2 €n”" A fn

n=0

which, combined with (3.2]), yields

M
v
BMO(pw)(D)

SAp HFT”H‘I’(D) )

(3.4) <Crup

M
Z en”" Anfn |F||H‘I’(]D))7
n=0
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where C v, > 0 is independent of € = {€, }nen, and M € Ng. Therefore, if we take

o Xn : .
€p = |f"| |>‘n‘7 lf fn ?é 0’
0, otherwise

in (3.4), we deduce that (3.1)) holds.

To prove the reverse implication, suppose that A = {\,, }nen, satisfies (1), i.e. A
is a multiplier from HY (D) to ¢!(Np).

For € = {€n }nen, With |e,]| < 1 for all n € Ny and M € Ny, consider the trigono-
metric polynomial bg\//\” with Fourier coefficients given by

D €EnAn, if n € Ny with n < M,
(M) o
by (n) = )

’ 0 otherwise.

To prove (2), it suffices, in view of (2.5)), to show that

55 sw {w*(m—l) /

bi’]\;\[)(eﬁﬂe) _ <b£f\f)>1‘ d@} < Ay wps

our arguments are in part inspired by a trick in [26], p. 946]. To establish (3.5)), fix
an arc I in T and define

=171 . (M) _ (M) . (M) _ (M)
o ¥ (£1| ) (emg{b;g O} _ oo -0 >I}>I) .

Then, supp(as) € I, [;ar =0, lar] ze(ry < U—L(|I|71) and so, ay is an HY-atom.

Moreover,
v |
I

=2 \ / (6 (%) = 6N ) Mda’ :
I

Hence, Parseval’s identity yields

v [

and so, our assumption on A = {A, }nen, implies that
o) g [
I

Since ay is an HY-atom, (3.5)) follows from (3.6)). O

3.1. Proof of Theorem [1} The equivalence of (2) and (3) follows immediately
from a geometric summation and the properties of U=!. Indeed, since ¥ is a
growth function of order p, it follows that ¥=! grows at most polynomially and is
thus quasi-constant on intervals of the form [2VV,2N*1] that is, U~!(¢t) ~ U—1(2V)
for all t € [2V,2N+1] with the implied constants being independent of .

As to the equivalence of (1) and (2), we start by observing that it suffices to
prove the case ¢ = 1. Indeed, to see this, notice that, for ¢ € (1,0), a sequence
A = {An}nen, is a multiplier from HY (D) to ¢4(Np) if, and only if, for every a =
{an }nen, the sequence Ao = {ay Ay bnen, is a multiplier from HY (D) to ¢*(Ny) with

bg\f)(emwe) _ <b£f\;f)>1’ 46

M
bg\;{)(e’ﬂﬂﬂ) _ <b£,1\,/\[)>1‘ do <2 Z |Anar(n)]
n=0

b0 (27) = 1|0 < 20 w,p s o ) -

65

[Aerl ag < lledlgar (g A 04

HY (D)1 (Ng) HY (D)—ed (Ng)

Hence, if (1) < (2) holds for ¢ = 1 then (1) < (2) holds for g € (1,00) as well.
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We will now turn to the proof of the case ¢ = 1. Suppose that {\,}nen, is an

HY(D)-¢*(No) multiplier of norm 1, hence also {|An|}nen, € Mpv m)—er(ng) With
the same norm. Let N € N. By Proposition [I0] the function

1271-9 Z |/\n| 227rm9 0 e [0, 1)7

is in BMO(pg)(T), with norm bound independent of N.
Letting I := [0, (4N)~!], note that since

(3.7) {sin(2mn-)yr — sin(27mnh) ~ {sin(2wn-))r ~

=2l=

for 0 € [0, (16N)~!], we have

N
> Il < |

N

Z [An| (sin(27nd) — (sin(27n-)>r)| db

n=1

< [ 1bw () ~ oyl a0
1

and hence,

N 1
(35) 2, ST

Now, since ¢ — t~1W(t) is non-increasing on (0, 0), the map t — t~1/¥~1(t) is
non-decreasing on (0, 00) and hence,

N
_ n
PEROIME 2@ )Tl < N

where the implied constant in the second inequality does not depend on N.
Conversely, suppose that (2) holds for ¢ = 1. By Proposition we have to
check that the function

M
F(M) Z e D,

belongs to BMO(py)(ID), uniformly for every choice of € = {€p }nen, With |e,| <1
n € Ny, and for all M € Ny. To this end, fix an interval I in T and let N € N be
such that

1 2
NS ] < N
We write
(3.9) T = Koy + Ne,
where
K.\ (2) := 2 enAnz"  and  Nga(z) = Z enAn2", zeD.

n<|I|—1 Mzn>|I|~1t
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We consider first

) 1 . .
/}KE7A(612”9)7<K5A>11d9< m//yKE,A(eZM)KE,A(e”w)} do d¢
I IJI

1
< X il [ 1=l aas

n<|I]7t

< D bl

n<|I|—1

o0
<in Y e > Al
k=1

2—k+1|]|—1>n>2—ku|—1

< 1] i gk 2T
S TR
P B A P Pl

0 —k —1

_ |I|1+1/p Z 2—k(2—1/p) 2 - /p|{€| /pl
= U-L(2-F]1]-1)

I|=/p 1
< e M7

ST T eIy

where we used that, since ¥ is a growth function of order p > 1/2, t > t'/?/U~1(¢)
is quasi-increasing on (0, o).
To show that

) 1
(310) / ’NE’)\(eﬂﬂ—e) - <NE’)\>[| dé <
I

LIk

we shall estimate

/ [N A7) — (N2 \)i|” df < / [N A(e2™)[* do
I I

o0
SDY > Al

k=0 \2k+1|I|~1>n>2k|T|-1

i 22km—2
SHI ), e
= [t =12%)]
ee]
t
< 1] dt

1 e 1
S U= 51 U < rgmimne
(WL I[71)]2 Jypp-n t2/P [w—L([1]71)]

where we have used orthogonality in the first inequality and Lemma Part
below in the second inequality, and finally the fact that W is of upper type p €
(1/2,1). Hence, follows from the Cauchy—Schwarz inequality and the last
estimate. O

In this last part of the proof of Theorem [If we used Lemma [11]| below, which can
be understood as an unconditionality estimate.

At this point, we would like to mention that, even though the statement of
Lemmamight seem classical, we have not found Part , which will be required
for the proof of Theorem [2 below, in the existing literature or been able to directly
extract it from known results. The proof of Lemma Part that we present here
is elementary, if somewhat technical, and uses the £>-boundedness of the discrete
Hilbert transform. We deduce Part from Part here, but it can also be proved
with a simpler direct estimate.
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Lemma 11. If n € Ny, then for every interval I with |I| = 27" and for every
analytic trigonometric polynomial f,

(1)

2" —1 o f2ktitan_1 2
[ 15 e<z(zm)+uz > i)

k=0 j:2k2n

(2)
0 (k+1)2™—1

[y (% ).

k=0 \ j=k2n
where f; 1= f(j), j € Ng.

Proof. Let |I| = 27™. We remark that Part of the lemma follows from Part
by a simple ¢! — ¢? estimate, so it suffices to prove Part .
Note that

0 (k141)2"—1 (ka+1)2"—1

0
/f 1271'9 612#6 Z Z Z fjﬁ/[ei%r(jfl)& 4o

k1=0ko=0 j=k12" I=ko2m
=T1+1I,
where
(k1+1)2" =1 (ka+1)2"—1
P D YD Y7y et
k1,k2=0: j=ki2" l=ko2m
|k1—k2|<1
and

(k1+1)2" =1 (kg +1)2"—1

M= ) > M hif /I e2m3=00 g9

k1,k2=0: j=ki2™ l=ko2m
|k1—k‘2‘22

Term I may easily be estimated by

(k1+1)2"—1 (ka+1)2"—1 (k+1)2"—1 2
< > > Do fl a2 <32 )] >l
k1 ka=0:  jeki2n I=kg2n k>0 \ j—kon

lky —kz| <1
For term II, consider first the case I = [0,27"]. Then

(k14+1)2" =1 (ka+1)2"—1

SN s [

k1,k2=0: Jj=k12" I=ko2m
Ikl_k2‘>2
(k}1+1)2n71 (k)2+1)2n71 . 1 _ e’L‘QTr(j*l)Qin
DI D S R P
kika=0:  j=ki2n  I=ky2n i2m(j = 1)
[k1—k2|>2
111 + 1V,

where
o (k1+1)27—1 (ka+1)2"—1

I := Z 2 2 fjflm

k1,k2>=0: j=k127 l=ko2m
k1#ko
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and
o (k1+1)2" =1 (k2+1)2" -1 ei2m(i-027"
IV := — 2 Z Z Iy A—
k1,k2=0:  j=k 27 l=ko2m 1271-(] - l)
k1#ka
Moreover,
0 2m—12"—1 .

M= > Dy D fuenwinfarnis; —
ki ka=0: 120 jo=0 21 (2" (k1 — k2) + (j1 — j2))
|[k1—ko|>2

=V -+ VI
where
Z 2"2—:1 2"2—:1 - 1
V= fk12"+j1f/€22"+.7'2.—
ki,k2=0: j1=0 jo=0 Z?’/’T?n(kl — kg)
|k1—k2a|=2
and
VI .=

2" —12"—1

SN G it
k1,k2=0: j1=0 j2=0 ' S 2 227('(2”(]{1 - k2) + (]1 _jQ))2n(k1 - kQ)
|k1—ko|>2
Term V can be estimated by

2" —12"—1

— 1
o> fk12"+j1fk22”+j2m -

|k1—k2|>2 j1=0 j2=0

g-n 2n 1 2n 1 1
o Z <Z fk12"+j1> (Z fk22"+j2) T S

|[k1—k2]=2 \Jj1=0 j2=0
2
(k+1)2"—1
-n
27" X Al
k=1 \  j—k2n

where we use the boundedness of the discrete Hilbert transform on 2.

For term VI, we observe that
,j2 B jl <92.9™ M 1
i27T(2n(]€1 - ]{2) + (]1 —jz))2n(1€1 — kg) 27T(/€1 — k2)2

for |k1 — k2| = 2 and j1,j2 € {0,1,- -+ ,2™ — 1}, which yields

w  2"—127—1 o
DIRED D NPT erwen oy
PRILIRRR 2 0 (9 (ky — ko) + (J1 — j2))27 (k1 — ka)

k1,k2=0: j1=0 j2=0

|k1—ko|>2

oy <2n21|f . -|> <2§1|f -|>1<

= e k12™+j1 = k22™+j2o (k‘1-k‘2)2 ~
(k+1)2"—1 2

27" ) >oIsl

k=0 j=kan
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where we use the the boundedness of the linear operator on ¢? induced by the
matrix

o)
<(k1 - k2)2 k1,k2=0,|k1—k2|>2 ,

as can be verified e.g. by appealing to the Schur test.
Note that we have yet to estimate term IV. Instead of doing this directly, we
observe that for I = [a,a + 27"], term IT becomes

(k1+1)2" 1 (k2 +1)2" -1 ei2r(i—la _ gi2n(j—1)(a+27")
> D D s — VII 4 VIII,
1, ka=0:  j=k 27 |=ko2n i2m(j = 1)
|k}17k}2‘>2
where

(k14+1)2"—1 (kg +1)2" —1

i2wja £ _i27la £, 1
LT Y S N e

Ei,ka20:  j=ki2" I=ky2n
|k1—Fka|>2
and
(k14+1)2" =1 (ky+1)2" —1
VIII := i2mj(a+2"") £ Si2rwl(a+2—T) 1
= ¢ fie I

k1,ka>0:  j=ki2n I=ky2m J
|k1—ka|>2

To handle these last expressions, note that VII and VIII have exactly the same
form as term III, just with unimodular factors on the Fourier coefficients f;. This
observation combined with our previous estimates finishes the proof of the lemma.

O

3.2. Proof of Theorem [2 We begin with the implication (i) = (i) in Part
(a). Proceeding along the same lines as in the proof of Theorem (1, we perform
the splitting (3.9)) into high and low frequencies. A simple duality argument again
shows that it suffices to prove the case ¢ = 1. Note that in this case condition (i7)
in Theorem [2| Part (a), implies in particular condition (i7) in Theorem [1} so the
low frequency estimate for K. x goes through without change (the upper type of ¥
is not required here). As to the high frequency estimate for N. x, we write

/ [N (€270) — (N )| df < / N A (e270)* df
I I

a0
<y, > Al

k=1 \ (k+1)|I|-1=n>k|T| 1
_
T(e(mh)?
by condition (i), where we have now used the full power of Lemma namely

Part .

For the reverse estimate, note that by Proposition [10| the function

' M (k+1)N-1 ' M '
bs(ez%re) _ Z €k Z 6127rm9|)\n‘ _ Z Ekbk(eﬂwe)
k=1 n=kN k=1

is in BMO(py)(D), uniformly for every choice of € = {€x}reny with |ex| < 1 and for
all M € N, so in particular for e € {—1,1}. As above, we choose I = [0, (4N)71].

Here,
(k+1)N—1

b(e?™) = YT €™, 0e]0,1).
n=kN
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An integration over the standard product probability space Q = {—1, 1}N and an
application of Khintchine’s Theorem (see, e.g., |18, Appendix C]) thus yields

; €i27r9 i
\P—1<|1|—1>2/Q/Ilbs< ) = (beyi| dOdP(e)

o\ 1/2
M (k+1)N—1
N / S 20| (b do
k=1 \'1| n=kN
o\ 1/2
M (k+1)N—-1 4 '
_ Z / Z ezQw(n—kN)0|/\n| _6—7,27rkN9<bk>I do
k=1 \"!{| n=kN
o\ 1/2
M [(k+1)N-1 1
k=1 n=kN

where we used a similar argument as in the proof of (3.8]) for the last inequality.
To make this precise, we note that for any k,

(k+1)N—1 (k+1)N—1 1 (k+1)N—1
ei27rn9 Anll = ez’Qﬂ'(n—kN)G Ml = — An
n:ZkN | ‘ n:Zk:N | | \/i n:zlc:N | |
forall0el. If
| (HDN-1
(3.11) [l < § > Il
n=kN

this implies

(k+1)N—1 1 (k+1)N—1

276
N A Y O U F R Y
n=kN n=kN

Inequality (3.11), and therefore (3.12)), hold in particular for k > 4.
If

(k+1)N—1

1
[brpel > 5 DUl

n=kN

then k < 3. Choosing
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we note that on I, all terms in by, only take values in the first quadrant of C and
hence

(k+1)N—1
Z ei27rn0|)\n‘ _ <bk>i d6

n=kN

S~

(k+1)N—1
Z sin(27nf)| A, | — (sin(27nb)) ;|\, || dO

n=kN

WV
S

(k+1)N—1
Z ((sin(27n)); — sin(27nd)) |\, || dO

n=kN

WV
S

1 (k+1)N—1 n
N n=kN N
(k+1)N—-1

Y Ml

n=kN

where we apply the estimate (3.7 in the penultimate inequality. O

4. THEOREM [5] AND ITS CONSEQUENCES

The proof of Theorem [5] can be obtained by suitably adapting known proofs in
the literature for the BMO-case, i.e. for the case r = 0; for instance, one can adapt
the corresponding arguments in the papers of S. V. Bochkarev [5] and I. Vasilyev
and A. Tselishchev [36]. Regarding the implication (1) == (2), by adapting
an argument due to Bourgain [8] one can actually show that a stronger version of
(1) = (2) holds true; see Theorem [12| below). Note that in the statement of
Theorem . if K is a non-empty interval then W( ) and K" are as in §2.4]

Theorem 12. Let r = 0 be a given exponent.
Let K be an arbitrary collection of mutually disjoint intervals on the real line
such that |K| = 3- 25+ for some I € Ng and 0 ¢ K for all K € K. Then

1/2

276y |2
sup —— 55— /2 ‘AJ(U)(GZ 0)’ 46 <.
ICT [p‘l/rl |I| |I| Kek JeW (K \Kcentre

|J|>\I|_1

lulBaroges, )

for allw e BMO(py, ,)(T), where the implied constant depends only on r and not
on K and u.

As mentioned above, Theorems [5] and [I2] can be obtained by modifying known
arguments in the literature. We shall briefly present how this can be done for the
convenience of the reader. More specifically, in we outline how one can adapt
an argument in [§] to establish Theorem and in we briefly present how a
modification of the argument in [36] for the corresponding BMO-case can be used
to establish the implication (2) == (1) in Theorem [5| Apart from the reason
of making the presentation to a certain extent self-contained, we also include §4.1]
and in order to make transparent in which parts of the proofs one uses the
assumption that the growth function is of the form ¥ = ¥, ;.

In we present some consequences of Theorem
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4.1. Proof of Theorem By translation invariance, to prove Theorem [12] it
suffices to show that

(41) /Z ‘AJ(U)(62271'0)|2 d6 gr
[p‘I’r1 |I| |I| KeK jew (K \Kcen“e
\J|>|I|

2
llBrop, ) -

for any fixed interval of the form I = [—§/2,4/2), 6 € (0,1]. Since any de la Vall’ee
Poussin-type kernel can be written as a linear combination of two modulated Fejér-
type kernels (see §2.4)), is a direct consequence of the following lemma, which
is a variant of (8] lemma 2].

Lemma 13. Let r = 0 be a given exponent. For ¢ € (0,1], consider the interval

Is = [~0/2,8/2).

Let {Fy}ea be a finite collection of trigonometric polynomials of the form
Fa (ei27r0) _ eiQT(CaaKNO‘ (ei27r9), 0e [_1/27 1/2)7

where Ny > 6~ for all« € A and moreover, the frequency supports of Fy and Fy

are dzsyomt fora#a and0¢ Supp( w) for all a e A.
Then

1 / 270y |2 2
p Z |(Fo +w)(€®™)]” d0 <, [ulparogp, ym
I:p\I’r,l(|Ié|):| ‘15‘ Is qea Pra

for allwe BMO(py, ,)(T), where the implied constant depends only on r and not
on d, A, and u.

Proof. Let u be a given function in BMO(py, ,)(T). If
52
62 + sin?(n0)’

then [8, (6)] (in the proof of |8, lemma 2]) applied to ¢ = u — {uys, asserts that
there exists an absolute constant C' > 0 such that

) (2 | w
(4.2 AV%M(%N& X M)A@M

<c/ [u(€27) — (uy, [Pws (6) A6,
[—1/2,1/2)

ws(0) = e[-1/2,1/2),

where we also used the assumption that 0 ¢ supp( w) for all @ € A. Notice that
[8, (6)] is a consequence of 8, Lemma 1], which is a Cotlar-type almost orthogonality
result.

To prove the desired estimate, note that since ws(0) = 1/(272) for all 0 € I,

(4.2)) yields

(4.3)

(Fo #u) 12”9 do <
[p@r1|15| |16|/15§4| )

u(ei%e) —{uwyy |2w5(0) de.
[pwm,l(llal)]2 || /[1/271/2> ’

Hence, in view of (4.3)), it suffices to show that
1

(4.4) / w(€27) — (udy. 2wy (0) 6 < [ul? .
[pq:m (|L;|)]2 A Lo2) | )15 "ws ( BMO(py,. , )(T)
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As ws(f) < 1 for all € [—-1/2,1/2), we have
1 ; 2
(15) — [ Il — i Pus )6 % lulbasog,
[pw, (IZsD]" 15| /15 P
To handle the contribution of the term involving the part of the integral on
the left-hand side of (4.4) over [—1/2,1/2)\Is, note that as sin(t)/t = 2/m for
€ [—m/2,7/2]\{0} we have

1 .
5 / \u(eﬂ”e) — <u>15|2w5(9) do <
[P, 1(|15|)] 15| J1-1/2,-8/2)016/2.1/2)
IOg 1 27
> g () — e, 2
keNg: k=15<|0|<2k6
2’“<5 1

Since 2% < 67!, we have
log (67') < klog ((2F716)™)

and so,

log? 1 1 )
g ©7) > Tk/ |u(e™) — (uyr,[* B <

keNo: 2k-16<|0|<2k6

ok <51

k2 (log® ((2%6)~1) .

> o e ()~ Gy [0 )
keNp: 2k—15<|0]|<2k6
2k<(5_1

A standard argument now yields

1/2
log?" ((2k6)~1 .
o) (P50 [ )~ im0 <
2 5 2k—15s|9|s2k6

klulgaope, ) -

Indeed, it follows from the triangle inequality that

1/2
log™ ((2%6)~! .
= ((k ))/ |u(e™) — (uypy|* A6 <r
284 2k—15<|0| <25

k 2r ksy—1 1/2
Z 1 274 .
< og ((l ) ) / |u(6127r9) . <u>2z+1]5 ‘2 d@)
2L 205

=0
where 215 = [-2!716,2!716). Using (4.6) we get
1 ,
— [u(e) = Gy Paos(6) 40 5
[pw,  (IIs)]" |Is| J1-1/2.~6/2)006/2.1/2)
k2r+2
HUHBMO(pq, (M 2 92k
GNO
and so,
1 ,
(4.7 — | u(e7) = Gy s (6) 40 5
[pw,.. (IIs)]” 1Is] J1-1/2.~5/2)006/2.1/2)

2
HUHBMO(p\phl )(T) »

as desired.
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It thus follows from (4.5)) and (4.7) that (4.4) holds true and hence, the proof of
the lemma is complete. O

4.2. Proof of that (2) implies (1) in Theorem [5| The proof that we present
below is an adaptation of the corresponding argument in [36] for the BMO-case.

Let u € L*(T) be such that (2) in Theorem |5 holds. It suffices to prove that for
any fixed arc I in T one has

1/2
. 2
(18) M ( [ lutem) — cun de) < lulg,

where M := |I|7'/?1log" (]I|~') and HuH\I,T1
Note that for any ¢ € C one has

< /1 lu(e?™) — (uy, | d0> v <2 < /I lu(e2™) — ¢ de) 1/2.

Hence, if we choose

is as in the statement of Theorem

*

ci= Z A, (u) (e,

2ng|I|-1

with ¢; being the centre of I, then it suffices to prove that

(4.9) Usluly,,, forU=AandU =B,
where
9 1/2
A= My / Z A, (u)(e )| do
ons -1
and

9 1/2

B := M; / /u(em’m) [5n (ei%(e*")) — 0, (eizw(cl*a)) da] do
I T

Note that if, for n € N, we define 5~n ‘= 0p—1+0,+6pt1, then A, = AnAn. Here,
for f € LY(T), An(f) := 0y = f. In what follows, we shall use several times that
I |An ()2 < 27"n—2r |lulg, , 4 for any arc K with |[K[ ~ 27" (cf. [36, Lemma
3.1)). ’

We may assume, without loss of generality, that I is of the form [—|I]/2,|I]/2).

2n<‘[‘71

4.2.1. Proof of (4.9) for U = A. By the triangle inequality, we have A < A; + Ao,

where

9 1/2
A1 = M] /
I

/ &n(u)(eﬂmr)én (6i27r(970)) dol| do
I

2n>|1‘71

and
9 1/2

/&n(u)(eﬁwo)dn (eiQﬂ-(O—a)) dol do

2n>|I|—1 I

Ag = M[ /
I
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Estimate for A;. For n € N, let I, denote the interval that is concentric with I
and has length |I,;| = |I| —27™. We then have A; < Ay + A2, where

5 1/2
Aqq =My 2"§1 /In (/11‘\1 ’ﬁn(u)(eﬂﬂa) 15, (ei27r(0—0)>‘ da) 40
and
9 1/2
A= My 2n>z|;1 /I\In (/[\1 ‘ﬁn(u) (ei27ro) . ‘571 (ei27r(070))‘ da) do

The terms A; ; and A; o will be estimated separately.

Estimate for A; 1. Without loss of generality we may assume that |[I| = 27 for
some (y € Ng. Hence, we may write I, = UQEQn Q and T\I = (Jp.p, P, where Q,
and P,, are families of mutually disjoint arcs of length 27"~2. Using the Cauchy—
Schwarz inequality, we have

N 1/2
’L ixes
)

do | d6
/p sin?(7(0 — o)) 7 ’

A < My 2 /

2n> 7|1 QeQ PeP,

where
K, = P;)n /P sin?(7(0 — o)) ‘5n (ei%(e*")) ‘2 do.

As ¢ — sin?(m¢) is 1-periodic and |sin(t)| <t for all t € R, we have K,, < a,, + by,
where

o= [ @) s and b= 0210, (¢2)[* do.
jpl<z-n 2-n<Igl<1/2

Since ||0p o0 (py < 2", we have a, < 27". To estimate by, note that by the prop-
erties of the Fejér kernel we have |8, (e™?)| < 27"¢~2 for all 27" < |¢| < 1/2,
which readily implies that b, < 27". We thus have

1/2
227rcr

)
A<M / 2_"/ do | df
1,1 I Z P » sin?((0 — )

2">\I| QEQn

and so,

1/2
A S M / /A ') d)d@)
o Izn>u| (QEZQ] (P;; dist(p, 9)* ’ ’
1/2
(Z /P;D dlst (p,q >

< Miuly,, . 2

on>|I|-1 Qe
1/2
27n/2 1
< M; Jully i (/ (/ do) d0> .
" 2n§|—1 n" \Jprjz-2--1 \ iz 10— ol

It can easily be seen that the sum in the last expression is bounded by CM 1 with
C being a constant independent of I. Hence, A1 < |uly

1%
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FEstimate for Ay 2. To estimate A; 2, we have A1 9 < Ay2,4 + A1,2,4, Wwhere

) 1/2
Ay 2.4 = M 2n§|_1 /I\In </T\ITT A (u) ()| - ‘5n (em”((’—”))‘ da> de
and

) 1/2
Aoy = My 2n>ZI|1 /I\In (/1;\1 ‘An(u)(emm) . ‘571 (ew”(e—"))’ da> dé

Here, for n € N, I " denotes the interval that is concentric with I and has length
[If] = [I| +27". Arguing as in the case of A, one has A1, < |uly, , - To
estimate A; 25, we use the Cauchy-Schwarz inequality, as well as that ||Jy, 7 7y <
2" and |I\I; | = |I,;\I| = 27"~ to deduce that

Ay 2.0 S M;p 27 </I+\I )An(u)(eiéﬂ-g) 2

2n>|I|

2—n/2

T

2n>|1\71

1/2
da) < My ||ulg
So, A12p < |uly, , 4 Hence, combining the estimates for Ay 2, and Aj 24, to-
gether with the estimate for Ay 1, we conclude that A1 < [ully, | -
Estimate for Ay. Since the maps
0 — / A, (W) (€?™)5,, (€*™=9))do and 6 — / A, (W) (€278, (€270=9)) do
I I

are orthogonal in L*(T) for ny,ne € N with |ng —na| > 2, we have Ay < Ao 1 + A o,

where
A2,1 = M; / /A 7,27rc7 (; (6i27r(070)) do
T\

2n>|I|—1

1/2
) /

dé

and
1/2

Ag o= My ™), (eﬂ’r(‘g"’)) do : dé

2n>|I|—1

Arguing as in the case of Ay, one shows that Az 1 < [ully, | -
We shall now focus on Aj o; by the triangle inequality, we have Ao <Az o+
A2727b, where

1/2

A2727a = MI deo

2
n 7,271'(7 5n <6i27r(070)) do

2n>|I|—1

Agop = My Z /I

27> ]|

and
1/2

2
An(u) (ei27ro)5n (6i27r(97o)) do!| do

™I

Arguing as in the case of Aj, one proves that Az2p < |uly, | - The desired
estimate for As o, ie. Aza, < HuH\PM’*, follows directly from the definition of
|ullg, , - It thus follows that Ay < |uly, , , which, together with the corresponding
estimate for Ay, obtained above, completes the proof of for U = A.
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4.2.2. Proof of (4.9) for U = B. If G,, denotes a decomposition of T into mutually
disjoint arcs of length 27"~! then, by using the Cauchy—Schwarz inequality and the
definition of [uly | ., we have

2" i —0o 2m(cr—o
B Mi|1|"? uly, . Y, > Iglgx‘an (em(e )) _s, (e 2m(cr ))‘

nr
2ng |-t GeGrn e

Using the mean value theorem and the definition of ¢,,, we have

2n

5, s (¢00) (o) < 5 i,
Geg, Sk deg,, [1+2ndist(1, G)]
where

22n‘[‘ 22n|I|
Sy 1= Z - 5 and T, := Z - 5.
Geo,. [1+2ndist(,G)] @, [L+2ndist(1,G)]
dist(G,I)<2™" dist(G,I)=2""

Since 2" < |I|7!, there are O(1) intervals G € G,, with dist(G,I) < 27" and so,
S, ~ 22*|I|. To handle T},, we have

on

1

T, ~ 22"|1 — <2 Y — <22

n | | ng: [2"dist([, G)]2 | |k§1 k2 | |
dist(G,I)=2""

Hence, (4.9) for U = B holds, as

17!

2n
B MiIPP uly, , o« D] RS M2 ully, Tog ([T ~ lullg, -

ang|I|-1

4.3. Consequences of Theorem[5} For r > 0, consider the Triebel-Lizorkin-type
space

Sy(T) := { feD'(T): sup i/ D+ DT AL ()P d < o
II%EF:: ‘I‘ I n€eNg:
2" (1|t
Note that if f € S&’TQ(T) then it follows from the definition of S&’;(T) that its
classical Littlewood-Paley square function is in L?(T) and hence, f can be identified
with an L2-function.
Theorem [5| immediately implies the following inclusion.

Theorem 14. Let r = 0 be a given exponent.
One has the inclusion

(4.10) S%(T) € BMO(py, , )(T).

Remark 15. Ifr = 0, then holds as an equality; see 5], |16], [36]. If r > 0,

the inclusion is proper. To see this, consider the function u whose Fourier

series is given by

. o 1

(4.11) u(e™) ~ Z jer+i2
§=0

270 g eo,1).

Then
ue BMO(pw,,)(T)\S%5(T).
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Note that
(4.12) S (T) = (S777(T))*.

For a proof of a Euclidean analogue of (4.12]) see below. The Triebel-Lizorkin-
type space S?:; "(T) appearing in (4.12)) can be defined as the class of all f € D'(T)

such that
AP
EN: )T e LY(T).

By combining Theorem [14] and (4.12)) we obtain the following inclusion.

Theorem 16. Let r = 0 be a given exponent.
There exists a constant C,. > 0 such that

aunr)”
(4.13) Z W <C, HfHH‘I’M(’JI‘)

neNg |5 (,]1,)

Theorem [16| can also be proved directly by using the atomic decomposition of
HY1(T). We present such an approach in the corresponding Euclidean case; see

below.

For r > 0, in view of Remark the inclusion
(4.14) HY(T) < 875 "(T)

is proper. However, for r = 0, we have HY01(T) = S?:S(T), which is Stein’s
classical square function characterisation of the Hardy space H*(T); see [32]. See
also |18, Theorem 2.2.9] for the corresponding Euclidean case.

Using Theorem [L6| one can obtain a direct proof of implication (3) = (1) of
part (b) of Theore i.e. for ¢ = 2, and for growth functions of the form ¥ = ¥, ;,
r > 0. Indeed, suppose that A = {\,;}nen, IS a sequence of complex numbers
satisfying condition (#i7) in part (b) of Theorem Then take an f € HY1(T) and
observe that, by using (#i7), one has

1/2
|Akf(k)|2>
neNp 2n— 1<k<2“

g
keNg

R 1/2

( pomax (fEP ) |)\k|>

A

neNg 2n—lgk<2n
1/2
main 1<k<2n \f( )|
(n+1)2r

neNo

A

o\ 1/2
|AL(f)]
n%() (n+ 1)2T>

Hence, by using Minkowski’s inequality and then Theorem one deduces that

1/2
(Z |>\nf(n)|2> S 1l gwes my

neNy

L(T)

i.e. that (¢) holds.
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5. RESULTS IN THE EUCLIDEAN SETTING

5.1. Spaces of logarithmic smoothness. Let ¢y be a Schwartz function, radial,
positive and supported in {|¢| < 1}, which is equal to 1 in {|¢] < 1/2}. Let 1(€) :=
©0(§/2) = wo(§), and ‘

@;j(€) ==p1(277¢),  j=2
For each j > 1, the function ¢; is supported in the annulus {27! < |£] < 27F1},
and for all £ € R? we have

(5.1) 1=00(&) + D #e(€)-
=1

Such a family {p;}72 is referred to as a non-homogeneous resolution of unity. For
f e S'(RY) we set

Aj(f) = (%f)v, for j = 0.

Definition 17. Lets,r € R, 0 < p < 0, 0 < ¢ < o0, and let {y;}72, be a resolution
of unity as above.

e [9,10] If p < o0, we define the Triebel-Lizorkin space of generalised smooth-
ness, F;”;(Rd), to be the set of all tempered distributions f for which

o . 1/q
Py (R 1= <Z 2% (1 + )" |3, /] >

=0

| £]

Lr(R4)
18 finite, with the usual modification if ¢ = oo.

e |2, Definition 2.7] Let 0 < g < o0 and let D be the set of all dyadic cubes
in R™. We define F3',(R™) to be the set of all tempered distributions f for

which
1N gy may = HAOJCHLOC(R%
1/q
1 < i ) |A !
+ sup IQI/ DT 214 ) Ajf(x)‘ d
4%6)21 Qj:—log2 £(Q)

1s finite.

Remark 18. In the previous definition, the case where r = 0 recovers the classical
definition of Triebel-Lizorkin space.
Remark 19. Letp(§) = Z\a\gN ca &% be a polynomial expression in & with constant

coefficients, where for every multi-index oo € N%,

la| = a1 +...aq, & =& -6

Let D := —id, so p(D) denotes the constant coefficient differential operator
p(D)f = 3 caD" .
lal<d

Using the properties of the Fourier transform, for any f € S, this can be written as
the Fourier multiplier operator with symbol p(§) given by

WD) = (2m) ! | (O F(E)etag.

Notice that such an expression makes sense, on S(R?), and on S'(R?) for a wider
class of symbols p than polynomials, such as those in the Kohn—Nirenberg classes
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S™(RY), with m € R. Let us recall that a symbol o belongs to S™(R?) if, and only
if, o is smooth and, for all multi-indices o € N", satisfies

(5.2) sup (€)™ oga(g)] < 0.
£eRn

Here, we use the shorthand notation
(€)= (1+ )2, ceRr™

In particular, if one defines p(§) = |§\2, the Laplacian of f can be written as

d

~Af(z 2 )20%¢ f(x) = p(D)f(x).

This allows us to define, for any s € R, (1— A)s/2 as the Fourier multiplier operator
with symbol (£)°.

These spaces of generalised smoothness, see Definition [17] above, can be realised
as potential type spaces. To be more specific, if one defines, for r € R,

log" (e = A) /(@) 1= (2m)* [ 10w (e + F(Oee e, e R
then

(5:3) |71

S '
For ey & H(1 — M) log (e = A)f

FOO(R)

This is a consequence of the lifting property of these spaces (see [9, Proposition 3.2]
for p < oo and |3, Proposition 2.15] for the case p = o) and the fact that for all
multi-indices «,

(54) 0 log" (e + €1*)| < (1 + €)™ 1*Nlog" (e + [¢])-
In particular, we have that
HfHF;’g(Rd) ~ ||log" (e — A) o ray -

Indeed, if one defines u,(€) := log" (e + |¢]*), and
(5.5) wo(§) = X5 (1+0)¢;(), €eRY,

the aforementioned lifting property yields that
| £

5‘

N\

FSo(Re) = || f”FO Q(R4)
A simple calculation shows that both u,/w, and w,/u, belong to the Kohn—Niren-
berg class S°(R?). Hence, the associated Fourier multiplier operators are bounded
in Triebel-Lizorkin spaces (see [35, Theorem 2.3.7]), establishing the equivalence in
63).

The description as potential-type spaces allows known results to be lifted into
spaces of generalised smoothness. For instance, one can show that

(F05 7)) = FL®Y,
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by using the identification of the dual of h!(R%) = FR’QO (R9) as bmo(RY) = Fo%’g(Rd).
This is a consequence of the fact that

sup [{f,9)l = sup [(w—r(D)f, (w-r) " (D)g)l

Hf”FIO,’z_T(TRd)Sl HWfT(D)thl(Rd)Sl

= sup |<h7 (Wfr)_l(D)g>|

Hh”hl(md)sl

= H (W*T)_l(D)gHbmo(Rd) ~ HWT(D)gHbmo(Rd)7

where in the last equivalences, we use that both w_,./w, and w,/w_, belong to
SY9(R9), and the boundedness of these Fourier multipliers on bmo(R9).

5.2. Embedding of local Hardy—Orlicz spaces into spaces of logarithmic
smoothness. In this section we shall prove the following Euclidean analogue of
Theorem |16, which can be regarded as an embedding result of the space h¥!(R9)

into the Triebel-Lizorkin space of generalised smoothness F{) | (RY).

Theorem 20. Let r > 0. There exists a constant C,. > 0 such that

- 1/2
A 2
(5.6) (Z ('H({;'> < Ol gy

7=0 L@
where W, 1(t) := t[log(e + )], t = 0.

Theorem [20| will be obtained by combining the following lemma with the atomic
decomposition of h¥=1(R?).

Lemma 21. Let r > 0. There exists a constant M, > 0 such that for any cube
Q < RY and for any function Bg € L*(R?) satisfying that:

(i) supp(Bq) < Q;
(ii) JoBa=01if|Q] <1;

one has p
|A ﬂQ HﬂQHLm(Rd)
(Z G+ ) = Mg e o T

L1(R4)

Proof. Let r = 0 and let @ and Bg be as in the statement of the lemma with
|Q| < 1. Without loss of generality, by translation-invariance, we may assume that
Q is centred at the origin.

We write
1/2
1A, (Be) (@)
(5.7) (2 TSI ) < A(x) + B(a),
where
1/2
1A;(Be) (@)
Alz) := P
wda U
and
1/2

PP (VIS ICol

2r
wio U
We shall prove that there exists a constant K, > 0 such that

”BQ”L:@(Rd)
[log (e + Q)]

(5:8) [ Al L1 (gay < K |Q)
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and
HBQHLOO(Rd)
[log (e + QI71)]"

Note that the desired estimate then follows from (5.7)), (5.8]), and (5.9)).
For the proofs of (5.8]) and (5.9)), we shall use the standard facts that there is an
absolute constant C' > 0 such that

(5.9) Bl gy < KrlQ

(5.10) 1A3;(80) ()] < C21Q| |8 o (zay  for all w e RY,
and for each N > 0 there exists a constant C'y > 0 such that

~ a1 9J(2d—N)
(5.11) 1A;(Bg)(7)] < Cn|Q) ||5Q||Lw(Rd)W

for all € R with |z| > 2|Q| and for all j > 0.
To prove (5.10) and (5.11]), consider Schwartz functions

;= <pjv.
It follows that
”q)jHLCO(Rd) < 27d for aH] > 0.

One thus deduces that
N ’ |
[35(80)] . o) = 125 * Bl gy < 271Q1 1Bl gy for all j 0.

Hence, (5.10) holds. To prove (5.11)), let & be such that |z| > 2|Q|. For j > 1,
properties (i) and (ii) of 8¢ yield that

13,(Bo)(@)| = ‘/QBQ(?J) [®)(z —y) = @;(x)] dy

< 8ol /Q B (x — y) — ®;(x)] dy
22jd

< » ——d

~N HBQHL (Rd)/Q|y|(1+2]|$|)N Y

9J(2d—N)
S |Q|d+1”BQ”L°°(Rd)Wa

where the implicit estimate that was used to go from the second to the third line

can be justified by appealing to the mean value theorem and the rapid decay of ;.
Going back to the proof of (5.8]), write

(5.12) Mo = [ @+ [ 4]
|z]<2|Q)|

|z|>2[Q
Hence, by using (5.10), we have

N 1/2
I3, (80)13« s
[ A@Id S Al S Q1
lel<2/Q| wlio U
1/2
d+1 224
< » s
sl beli=an | X T

2<[Q|™!

and as

Z 92jd - |Q|72d

)2 ST 2
21 <|Q|! (7+1) [log (e +|Q[~1)]
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we get

HﬁQHLw(Rd)
[log(e + Q7)™

To handle the second term, note that by using (5.11)), we have

(5.13) / A@)]de <, [Q)
|z|<2|Q)|

1/2

9j(4d—2N) dr
A(2)dz £ Q" |Ball v A /
/MQ| e < | e | X G| S

N
o o |>2Q| 7|

provided 2d > N > d. This, combined with

Z 2j(4d—2N) |Q|—(4d—2N)
<T r?
p o U1 T log (e + Q1))
yields
HﬁQHLoo(qr)
(5.14) [ l@ides, @l .
jal>1Q| [log (e + |Q[71)]
In view of (5.13)) and (5.14)), the proof of (5.8]) is complete.
To prove (5.9)), note that
1/2
1 -
B(z) < v 1A, (Bg)(x)[?
log(e + Q[ )] % e
Hence, it suffices to show that
1/2
(5.15) L3 Bk o< @llel
RY \ 2iz 1)1
To this end, write
1/2 1/2
L1 2 Beaer)| a-| S R G@P | de
Re \ 2iz|Ql-1 lz|<2[Q] \ 213)0|1
1/2
f 1A (B)@)? |  dx
[21>2[Q] \ 25>|7]-1

For the first term, by using the Cauchy—Schwarz inequality and Parseval’s identity,
we get
1/2

/ 1<2/Q) Z ‘AJ(BQ)(Q?)F dr < ‘Q|1/2 HIBQHLz(Rd)

21=|Q|!
and hence,

1/2

(5.16) /MQ| T A G@P | dr < Q1 IBal e e

2i>[Q|1
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To handle the second term, we use (5.11]) for N > 2d,

1/2
/ IEVICHICTE I
lz1>21Q1 \ 25> 1g|-1
1/2
o 1
QA Wl | X 2| [ e
21 >(Q|-1 |z|>2]|Q| |=T|
Hence,
1/2
AU Y RB)@E | do < 1@l 180l e
l2>1QI \ 25 >|7]-1

Therefore, in view of and , holds and so, the proof of the lemma
is complete for the case |Q] < 1.
Assume now that |@Q| > 1. Notice then that B¢ is then a multiple of an h!(R%)-
atom as
Be

o Bo
? 7 1Bal o gy Q]

is an by (R9)-atom. The the characterisation of h!(R?) in terms of Littlewood-Paley
partitions (see e.g. [32] for the corresponding periodic case), the homogeneity of
the h!(R%)-norm, and the fact that for |Q| > 1

log(e + Q™) ~ 1,

yield
|A T 1/2
(Z G+ 1er ) < (Z |Aj(,6’cz)|2>
7=0 L1(Rd) j=0 L1(R4)
~ HﬂQth(Rd)
< ‘Q| HﬁQHLx(Rd)
_1Q11B1] oo may
[log (e + |Q[~1)]"
This completes the proof of the lemma. O

Proof of Theorem The case r = 0 is well-known. In fact, for r = 0,
holds as an equivalence; this is the Littlewood—Paley characterisation of h'(R%)
(see e.g. [32] for the corresponding periodic case or [18, Theorem 2.2.9] for the
homogeneous case i.e. for the Littlewood-Paley characterisation of H!(R)).

We shall therefore give a proof for the case r > 0. Towards this aim, observe
that, as the norms in both sides of are homogeneous, it suffices to establish
for f € h¥r1(R?) with 1f e ey = 1-

To this end, consider an f € h¥"1(R?) with If 1391 ey = 1 and note that by

the atomic decomposition of h¥r1(R?) there exists an absolute constant A, > 0
and a sequence of multiples {8g, }ren of atoms such that

(5.18) F=Y6o, inS(RY
k
and
HIBQk HLOO(]Rd)
(5.19) A = < Ay

it s (e + 1ol poqe)]
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By (5.18)), one has
LGN 5 (3 Bt
G+ - G+

> >
Jj=0 L1(R%) keN [ \7=0 L1(R%)

and hence, in view of (5.19)), it suffices to prove that there exists an M, > 0,
depending only on the constant A, appearing in (5.19)), such that

1/2
|A B H/BQk HLoo Rd
(5.20) (Z ]+f3 < M, | Qi &
=) . [10g (e + 1800 | r (ao) )

for all k£ e N.
For each k € N, as g, is a multiple of an h¥~1-atom, Bq, satisfies properties
(i) and (ii) of Lemma Moreover, it follows from ([5.19) that

|8l oo (ra)
[log (6 + HBQ& HLOO(Rd))]T

<A7‘|Qk}|_17

which implies that
(5.21) [log (e + [1Bo, HLOO(Rd)H <, [log (e + |Qk|71)]r .
Therefore, (5.20) follows from (5.21)) the Lemma [21]

Here we give two re-statements of Theorem [20] The first one is read as a em-
bedding of spaces, while the second one, by using (5.3), can be interpreted as a
Sobolev-type embedding.

Corollary 22. Let r = 0. The space h¥~'(R?) is continously embedded in the
space FR’;T (R9).
Corollary 23. Let r = 0. There exists a constant C. > 0 such that for all f €
hYr1(RY) one has

T

Hlog_ (6 - A)thl(Rd) < C”’ Hf“hq/"’l(Rd) :

5.3. Behaviour of the Fourier transform of distributions in Hardy—Orlicz
spaces. Let U be a growth function. In this section we study properties of the
Fourier transform of distributions belonging to HY (R?), or h¥ (R9). We first obtain
pointwise estimates, and then use them to prove Theorem [7} which is an extension
of the Hardy-Littewood inequality to H'°8-spaces.

Proposition 24. Let U be a growth function of order p € (0,1].
If f € HY(R?), then its Fourier transform coincides with a continuous function

that we denote by f. Moreover, there exists a constant Agw > 0, depending only
on V¥ and d, but not on f, such that

U (aq €]
aq €|
for all ¢ e RA\{0}. Here U~! denotes the inverse of ¥ and aq := |B(0, 1)|_1.

‘]?(5)‘ < Agw £ o (ray

Proof. Let ¢ be a fixed Schwartz function on R? such that rj?(f) =1forall || <1
For f e S'(R?), define

MG[f](z) = sup [ os(y)|, weR™
(y,t)eR? x[0,00):
ly—z| <t
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Let f € HY(R?) be non-zero. Suppose first that

|1l e ey = inf {)\ >0: /Rd v (AflM}L}w [f](:z:)) dz < 1} =1.

Observe that this implies

(5.22) / U (M[f](z)) do < 1.
Rd
Note first that, for ¢ > 0, if |z — y| < ¢ then
[fedu(@)| < sup  [f % ds(2)| = MZ[f](y),

(2,8)eRI % [0,00):
lz—yl<s

which implies that for ¢t > 0 and |z — y| < ¢,
U (|f = pe(@)]) < T (MG f(y)) -
This yields

(.29 V(o@D < [ W 10)
B(z,t)
where aq := [B(0,1)]7". It follows from (5.23) that
(5.24) sup |f # ¢u(z)] < U (agt™?),
zeR?
where we also used (5.22)).

Let us define 1 : (0,00) — (0,00) given by n(t) :=t - [¥(t)]~*, t > 0. Observe
that

1 6u(@)] < 0 (f * oe(@)]) ¥ (ME[F]()) < <sup . ¢t<x>|) W (M2[f)(x))

zeRd
and so, by employing (5.24]), we obtain

(5.25) |f * de(x)| <noW™! (adtfd) U (M:;[f](x)) .
Then using , we get
(5.26) / |f * ¢¢(z)| do < po T (adt_d) .

R

Note that for all 0 < t < 1, we have h; := f % ¢; € L'(R?), and $t(§) = 1 for
|€] < 1/t, which yields that, in the sense of distributions,

ot = he.
So we have that, for all 0 < ¢ < 1, the distribution f concides with the continuous
function h; on the compact set {|{| < 1/t}, and notice that for 0 < s < t < 1,

hy = hy for all & € R with [¢] < 1/t. This allows us to construct a continuous
function g, such that f coincides with g in a distributional sense and

o —_

(5.27) 9(&) = f*¢u(§), [¢l <1/t
Fixing ¢ € R%\{0}, and combining (5.27)) (with the choice t = |¢|~1) with (5.26)),
we have
—— - U (aal¢]")
190 = |1 9161 (©)] < |1 * d1e1-1 | s gy <m0 ¥ aalél) = et
d
Since ¥ is of lower type p it follows that for all £ € R?
1_
9O < (L + |gh™ Y,

which yields g € S’(R?). Therefore, the proof is complete if | f 1 e gay = 1.
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If f is non-zero and HfHH\p(]Rd) # 1, define

Fo= £l gy f

and then apply the previous step to f By homogeneity, we obtain the desired
result for the general case. O

The proof of the theorem above can be easily modified to obtain the following
counterpart for local Hardy—Orlicz spaces. We omit the details.

Proposition 25. Let U be a growth function of order p € (d/(d + 1),1]. If f €
R¥ (R%), then its Fourier transform coincides with a continuous function that we

denote by f Moreover, there exists a constant Aqw > 0, depending only on ¥ and
d, but not on f, such that

s ¥~ (aa(1 + [¢)%)
7] < Ase—1" e Mo

If we take U, ,(¢) := t? [log(e + t)] " as in (L.5)), with 0 < p < 1 and r > 0, then
it follows from (1.8)) that
(5.28) U (t) ~ t'/P log(e + )7/,

We thus deduce from Propositions [24] and [25] the following result.

Corollary 26. Given p € (d/(d + 1),1] and r = 0, there exist positive constants
Adpr, Bapr, depending only on the dimension, p, and r, such that:

(1) for all f € HY»(R?),
7@

SUp —5— < Adpr
cek [¢]7 " log"/? (e + [¢])
(2) for all f € h¥r»(RY),
7©
sup — "
gere (1 +[¢])7 " log"P (e + [¢])
Remark 27. Ifpe (d/(d+1),1] and ®,(t) := ¥y ,(t) =P, t = 0, the first part of
Corollary[26] recovers the classical fact that
~ d(p—1—
7] $ap 1617 1 linaey € RY

see §5.4 (a) in Chapter III of [33], and its local counterpart.

|fHH‘I’r,p(1Rd) )

< Bd,P,T Hf“h‘l’hp(]Rd) .

5.4. Proof of Theorem [7} Arguing as in the proof of [4, Theorem 28], we shall
prove that there exists a constant A4 w , > 0, depending only on d, ¥, and p, such
that

d | —~
(5.29) / d de < 44,0 1Q1 Y (laq] o ae) )

for all L®-functions a¢ that are supported in some cube @ with [, 0 9Q (z)dz = 0.
To this end, fix an L®-function ag of this type and write

o (e an(€)]
(5.30) /Rd<§|2d)d§—A+B,
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where

v (lel ) w5 v (I¢* | ©))

2d 2d
gllQl<1 iy €1%1Q1>1 §
To handle A, note that by using the cancellation of ag and the fact that

|emi2m28 _ o278 < o (¢ & — y| <a |€]]Q)Y for all 2,y € Q,
one deduces that
(5.31) 13(6)] <a 11 QI agl o gy for all € € R
It thus follows from ([5.31)) that
v (I laa€)) @ (1Q1" M fagl 1 gy 5™
[ ), ;
l€141Ql<1 0

¢

A=

S

QI+
S QP (Jagl o) [

~ap 1QY (laql )

since W is of order p > d/(d + 1). Hence,

v (¢l a5 ()
(5.32) /|é“%2|<1 T d€ <p,a Q¥ (HGQ”LOC(Rd)) )

where the implied constant depends only on p and d and not on ag.
To deal with B, note that Holder’s inequality (with exponents 4 and 4/3) and
Plancherel’s theorem yield

d |~
B = / M |@(§)|1/Q d¢
1€

Q=1 € ag ()]
3/4

. 4/3
< ealtn | / v (laa©l))
X ||a 2 (md

EED | g \ 672 |an©) ) el

3/4

d |~ 4/3
<1Q aall 2 | | v (@ @) ) ac
L*(R?) ‘§|d‘Q|>1 |§|d/2 ‘@(6)‘1/2 |§‘2d

Since 1/2 < d/(d + 1) < p, the function ¢ — t~1/2W(t) is quasi-increasing. Hence,
as for all £ € R% one has

aQ(&)] < Q| lagl e (gay »
we deduce that

vl i@©l) (619l laql )

d )~ 1/2 ~p d 1/2°
(Ig1"1aa(e)) (Ie" 1@l laq - s )
Then, in view of (5.33)), one has

(5.33)

43 3/4
G A

d 1/2 2d
€172 11" laql 2 ey ) Il

1/4 1/2
B %, Q" a2 | |
l€171QI>1
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Since ¢ — t~1W(t) is non-increasing, it follows that

. 3/4
B <, ¥ (Jag| o e (/ ds) .
( L )) el4Ql=1 €43

(16 |ag ()]
(534) B Sd,p /§|d|Q>1 (|€|2d) df sp,d ‘Q|\I’ (HaQHLOO(]Rd)) y

where the implied constant depends only on p and d and not on ag.
To complete the proof of the theorem, note that for any given atomic decompo-

sition of f i.e.
f = ija
J

where b; are constant multiples of atoms in H ¥(R?), supported in cubes Qj, the
sub-linearity of ¥ and ([5.29)) imply that

ala
[ v (le*|Fe)|)
2d
R 14
By taking the infimum over all possible atomic decompositions of f, one obtains
the result of the statement.
The following inequality, is a consequence of Theorem [7] combined with Propo-
sition and can be regarded as a Euclidean version of Theorem

Corollary 28. Let U be a growth function of order p with p € (d/(d+1),1]. Then,
for every 1 < q < o0, there exist constants aq > 0 and Bgw,pq > 0 such that

1/q

Hence,

a6 <ap 21NV (15l 0 ) -
J

< Bdﬁl’,p,q

~ d \ ¢
[ e\ ae

vt \ 0t (aglgl") ) 161"

Proof. Set aq := |B(0, 1)|71 and observe that Proposition 24| corresponds to the
‘g = oo’ case. Therefore, it suffices to prove the desired inequality for ¢ = 1 and

then, the case ¢ € (1,00) follows by interpolation.
We shall first establish the g = 1 case when || | o (gay = 1. Write

| o [ THIGIARR |
re U1 (aq [¢|7) $- A [ Ad.w \p(lfﬂw U1 (aq|é]?) €]
Agw

e (gay -

7 d¢,

where A4 g is the constant in Proposition By Proposition 24] together with the
fact that ¢t — t~1W(t) is non-increasing, we have that
dla
1| 7te)|

R N e \I/_l d )
e <

/Rd W_\lf@)\ 1c < Au /qu RGN

(aale]yy =~ aq Aay ) g™

(€) 7
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Hence, by Theorem [7] we obtain

70
/Rd mdg < Byw,p,

where By, = 2a;'Cy v, with Cyq g, being as in the statement of Theorem @
Therefore, the case ‘g = 1’ holds for all f € HY(RY) with If e gay = 1. The
general case follows by homogeneity. O

Corollary 29. Let U be a growth function of order p with p € (d/(d+1),1]. Then,
for every 1 < ¢ < oo, there exist constants aq > 0 and By w pq > 0 such that

1/q

fele" \" a
(5.35) /Rd \111(ad<§>d) W < Bawpg

Proof. By using [28, Lemma 7.4] we have that a distribution belongs to the local
space h¥ if, and only if, po(D)f € LY and (1 — ¢o)(D)f € HY and

[ £ e ~ 11 = 20) (D) fll go + [0(D) S pw
where g is a Schwartz function, radial, positive and supported in |[£| < 1, which is

equal to 1 for €] < 1/2. Let fo = po(D)f, and f1 = f — f1. So, it suffices to show

(5.35) for both fo and f;.
Using that for [£| = 1, |{] ~ (&), a direct application of Corollary [28| to deduce

that (5.35) holds for f.
Since for |£] < 1, (§) ~ 1, using Propositionwe have

fo©]©"" S
/Rd \Ijol(@d) éfd s /§|<1 ‘f({)‘ s HfOHZW(Rd).

|l ey -

(]
Remark 30. Note that if W (t) := t-[log(e +t)]™', ¢t = 0, then Comllary yields

(5.36) /‘ﬂ0’<1<lﬂ
' re €T log (e + fg) 1 HTHED

for all f € H™8(RY), which is a Euclidean version of (L.7).

5.5. Applications of the Euclidean results.

5.5.1. Sobolev embedding-type results. By using Corollary and its local version
(5.35), with ¢ = 1, and appealing to the properties of the Fourier transform, we
have the following Sobolev embedding-type results.

Corollary 31. Let U be a growth function of order p with p € (d/(d + 1),1].

(1) Then there exist positive constants aq and Bq w , such that for any Schwartz
function f on R¢

v (o2

(2) Then there exist positive constants aq and Cq w , such that for any Schwartz
function f on R?

I oy < Ca | 97" (a1 = 2)) 1

HfHLOO(]Rd) < Bawp Y (RY)

R (RY)
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To give an intuitive interpretation of the previous statement, let us consider the
particular case that we take ¥, ,(t) = t?log(e +¢)~" as in (L.5). Using (5.28) and
the corollary, we have the following result.

Corollary 32. Let p € (d/(d + 1),1] and r = 0. Then there exists a positive
constant Bq ., such that for all Schwartz functions f on R¢
dp r
Iy < Barg | (-0 F hogb e = 2)f]
and

dp r
1f 1l oo ray < Baryp | (1= A)2 log? (e — A)

R¥r.p (R)
Roughly speaking, these inequalities say that if a distribution has its derivatives
of order dp plus r/p-logarithmic order in h¥r»(R?), then it belongs to Co(R%).
Corollary and the identification in [1, Proposition 2.26] yield that for 2 <
q < o0 one has the following result.

Corollary 33. Let pe (d/(d+1),1] and r = 0. Then for all Schwartz functions f
on R? and for 2 < g < 0 one has

o] <0
(5.37) HfHF;’;E(]Rd) ‘log (e—Af Loty S (-A)2 fH%,p(Rd)
and
T S rp .
(5.38) I\fI\F;?,,E(Rd) | £l ey

Remark 34. Recall that Corollary yields

Hf|‘Ff;2*T(Rd) ~ Hlog_r(e - A)thl(]Rd) $d7q Hf”hlcgr(]R'i) .
Note that, for all ¢ > 1, the standard Sobolev embedding between Triebel-Lizorkin
spaces |35, §2.7.1] and this last inequality yield

71 e S ey S s ey
q

proving that, for p =1, (5.38]) holds for all 1 < ¢ < 0.

5.5.2. Embedding of analytic function spaces on the right halfplane. In this section
we show how L2?-based analytic Sobolev spaces of generalised logarithmic smooth-
ness, and as a consequence, Hardy—Orlicz spaces of logarithmic type, can be embed-
ded into certain spaces of analytic functions on the right halfplane (see Proposition
and its corollary).

To be more specific, let v be a positive regular Borel measure on [0, o), satisfying
the doubling condition

v[0, 2t)
sup
t>0 V[Oat)
The Zen space A2 is defined to consist of all analytic functions F' on
C; :={2€C:Re(z) >0}

(5.39)

such that
1P| = sup/ F(z + iy + O dv(z) dy < .

t>0 JC4
Examples of Zen spaces include Hardy spaces HP(C,.) (when v = 3—;’7) and weighted
Bergman spaces BE(C,.) (take o > —1 and dv(z) = %dx) We refer the reader to
[22H24] and the references therein.

A feature of Zen spaces is that the Laplace transform defines an isometric map
from weighted L? spaces on (0,0) into certain spaces of analytic functions. More

specifically we have (see e.g. |24, Proposition 2.3]):



42 BAKAS, POTT, RODRIGUEZ-LOPEZ, AND SOLA

Theorem 35 (Paley-Wiener theorem for Zen spaces). Suppose that w is given as
a weighted Laplace transform

[e0]
w(t) = 27r/ e ?dv(r) (t>0).
0

Then the Laplace transform provides an isometric map

£ 12((0,00), w(t) dt) — A2,
where

0
L)) = [ o
0
Definition 36. Set
HT(RY) = {feS8 : (1-A)2log" (e — A) f e L*(RY)} = F35 (RY),
and endow H*" (R?) with the norm
[ £l3ge.r = (1 = A)% log" (e = A)f]] -

We shall denote by H%"(R) those distributions in H*" (R) whose Fourier transform
in supported in [0, 00).

The main result of this section is the following one.

Proposition 37. Let a > —1 and v > 0. The Laplace—Fourier transform given by

~

Tf:=L(f)(z)

provides an isometric map

a+1

5
Ly 2
T: HA ? : (R) - Al’a»'v ((C-‘r)v
where dv, 4(2) = ke 4 (2/2) dz and

0 ta+bb771
5.40 ko (t) i= et / ab.
(5.40) A(t) = o T(T(@a+b+1)

The previous proposition, jointly with (5.38)) with the choice ¢ = 2, implies the
following result.

Corollary 38. Let pe (1/2,1] and r > 0. Then the Laplace—Fourier transform T
is a bounded map

T:hy7(R) — A2 (Cy),

where

2
a=p-—1, ~v= ;T, dvg ~(2) = mke 4 (2/2) dx

and hi”’ (R) is defined as those distributions in h¥~»(R) whose Fourier transform
is supported in [0, 00).

Proof of Proposition [37. We start the proof by giving two technical results that
identify the symbol of the Fourier multiplier defining the space H*"(R?) as the
Laplace transform of a suitable doubling measure.

Lemma 39. Let a > —1,7 > 0. If k.~ denotes the function given in (5.40) then

1
(e+s)etlIn(e + s)7"

E(ka,'y)(s) =
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Proof. Notice that for a > —1
o
(e+s)" @D (q +1) = / tie et dt,
0
so if we take
taefte
5.41 )= ————
( ) ga( ) F(a + 1)7
then
L(ga)(s) = (e + )7,
Also, we have that

0 y—1 oe] 0 1b—1pv—1
T _ / b db = / / E 07 4 eteets at
In(e + s)7 o (e+s)b 0 0 T'(b)

=T(7)L(hy)(s),
where
e—te [P pb—1py—1
(5.42) (0= £ /0 ! F(l;)) b,

A change of the order of integration, a change of variables, and the relation between
the Beta function and the Gamma function yield

e~ te O py—1 t o b1
hW*ga(t):F(a+1)F(’y)/0 F(b)/o(t—s) s*"1dsdb

00 ta+bb771
= efte/ db.
o T(T(a+b+1)

The result follows since, by the properties of the Laplace transform, we have that

‘C(ka,’y) = ‘C(h’y)[’(ga)'

d

Lemma 40. Let a > —1 and v > 0. Define

D, (1) ::/0 ka(s)ds.

Then

P, (21)
sup —m—
120 ®an (1)

Proof. A change on the order of integration and a change of variables yield

(5.43) <

o ’ Gl " grthese dsdb
an~n(t) = s¥Pe7 %% ds
() /0 L(y)L'(a+b+1) /0

0 e_(‘”'b'H)b'y_l et b
= s % dsdb.
/0 F(y)(a+b+1) /0

In particular it follows that ®, ~ is continuous on [0, c0), increasing and

a—1

sup @, (t) = e~
>0

Hence, for ¢ = 1/2 we have that

D, ~(2t) et

Dyq(t)  Pay(1/2)

Then, it suffices to check the doubling property for 0 < ¢ < 1/2.

(5.44) 1<
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For t < 1, a change of variables gives

0 taerbA/fl - e efuu'yfl
n(t :=/ db =t |Int|” / m db
®) o TMMT(a+b+1) [t o TMa+ mg+1)

— 1o |Int| 77 B(D).

Then, for 0 <t < 1/2

n(2t) g In2t|" B(2t)
n(t) Int | B(t)
It then follows that
lim Pan(2t) =27

t—0+ (I)%’y(t)

In particular, this yields that we can extend %’”(ét)) as a continuous function on
a,y

[0,1/2]. By compactness, it has a maximum on that interval, which jointly with

(.44 yields (5.3). 0

Notice first that Lemma guarantees the doubling property . By the
definition of the norm on H%", Lemma (39| and the Paley-Wiener theorem [35| we
have

~ 2
) « 7))
W oy~ |, oo

= ["[F et s = ()

2
b
A2, (Cy)

where
dvg (%) = Thkq ~(2/2) dz,
finishing the proof of Proposition

Remark 41. In the case that r = 0, with a similar argument as above one shows
that
T (R) — AZ (C.)

with
Tx®

va(2) = mga(w/2) dvdy = Somrmy

e %2 4z dy.

Remark 42. Note that for a > —1
L(z*)(t) =T(a+ 1)t
So defining for v > 0 and a > —1

na7,y(t) = F(i
with h. as in (5.42)), then
L(na,y)(s) =

Tracing the argument above, one shows that for p € (1/2,1] and r > 0, the Laplace—
Fourier transform T is a bounded map

T:HY™(R) — A2, (Cy),

sotllog? (e + s)’

where

2
a=p—1, = %, dvg 4 (2) = g 4 (2/2) dx
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and H;I‘I"’P (R) is defined as those distributions in HY»(R) whose Fourier transform
is supported in [0, 00).
One can rephrase this boundedness result in terms of a Sobolev-like embedding
involving a Bergman space. For instance, one obtains that forp e (1/2,1] andr =0
1

2
17515, ey < [los(e=a)7 /|

where BZ(Cy) = A7 (C.) with

HYro(R)

Tx®

a(2) = 1)

dz dy.
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