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Abstract Our goal is to prove weak type (1, 1) boundedness for an operator𝑇𝐴 which
is given as an average of a family of operators {𝑇𝑗 } 𝑗 satisfying certain estimates in
the context of weighted Lebesgue spaces. In particular, we shall prove that, if there
exists 𝛼 > 0, 𝑠 > 0 and𝐶 > 0 such that, for every every weight 𝑣 in the Muckenhoupt
class 𝐴𝑝 and every measurable set 𝐸 ,

sup
𝑗

∥𝑇𝑗 𝜒𝐸 ∥𝐿𝑝,∞ (𝑣) ≤
𝐶

(𝑝 − 1)𝑠 ∥𝑣∥
𝛼
𝐴𝑝
𝑣(𝐸).

and, for some 𝑢0 ∈ 𝐴1 fixed,

sup
𝑗

∥𝑇𝑗 𝜒𝐸 ∥𝐿1,∞ (𝑢0 ) ≤ 𝐶𝑢0𝑢0 (𝐸),

then, for every 𝛽 > 0, there exists a constant 𝐶𝛽 > 0, so that

sup
𝑦>0

𝑦(
1 + log+ (1 + log+ 1

𝑦
)
)𝛽 ∫

{ |𝑇𝐴𝜒𝐸 |>𝑦}
𝑢0 (𝑥)𝑑𝑥 ≤ 𝐶𝛽 𝑢0 (𝐸).

Our main technique is inspired on the theory of analytic families of operators and it
is closely related to the Rubio de Francia’s extrapolation theory.
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1 Introduction

Let {𝑇𝑗 } 𝑗∈N be a collection of operators so that

𝑇𝑗 : 𝐿1 −→ 𝐿1,∞, sup
𝑗

| |𝑇𝑗 | |𝐿1−→𝐿1,∞ < ∞.

Let (𝑐 𝑗 ) 𝑗 ∈ ℓ1 and set
𝑆 =

∑︁
𝑗

𝑐 𝑗𝑇𝑗 .

Since 𝐿1,∞ is not a Banach space, the weak type (1, 1) boundedness of 𝑆 may
fail. However, (we refer to Section 2 for the definition of the Muckenhoupt class of
weights 𝐴𝑝 , 𝑝 ≥ 1) it has been very recently proved ([1]) that if, for every 𝑢 ∈ 𝐴1,

𝑇𝑗 : 𝐿1 (𝑢) −→ 𝐿1,∞ (𝑢), sup
𝑗

| |𝑇𝑗 | |𝐿1 (𝑢)−→𝐿1,∞ (𝑢) < ∞, (1)

then the restricted weak type (1, 1) boundedness of 𝑆 holds, for every 𝑢 ∈ 𝐴1; that
is, for every measurable set and every 𝑢 ∈ 𝐴1,

| |𝑆𝜒𝐸 | |𝐿1,∞ (𝑢) ≤ 𝐶𝑢 | |𝑐 | |ℓ1𝑢(𝐸).

We observe that, by Rubio de Francia extrapolation theory ([18]), condition (1)
implies that, for every 𝑝 > 1 and every 𝑣 ∈ 𝐴𝑝 ,

𝑇𝑗 : 𝐿 𝑝 (𝑣) −→ 𝐿 𝑝,∞ (𝑣), sup
𝑗

| |𝑇𝑗 | |𝐿𝑝 (𝑣)−→𝐿𝑝,∞ (𝑣) < ∞;

that is, condition (1) hides a weighted estimate at level 𝑝 > 1. On the other hand, and
this is the main motivation of this paper, there are examples of operators for which
the hypothesis (1) is only known for the case 𝑢 = 1 and not for every 𝑢 ∈ 𝐴1, but
some weighted estimate at the level 𝑝 > 1 is also true. The main goal of this paper
concerns with this situation.

Now, the Rubio de Francia extrapolation theorem (see [18, 11, 12, 13, 7]), can
be formulated, nowadays, as follows (see [9, 10]): Let 𝑇 be an operator so that, for
some 1 ≤ 𝑝0 < ∞, and for every 𝑤 ∈ 𝐴𝑝0 , we have

𝑇 : 𝐿 𝑝0 (𝑤) −→ 𝐿 𝑝0 (𝑤), | |𝑇 | | ≤ 𝑁 (∥𝑤∥𝐴𝑝0
), (2)

where 𝑁 (𝑡), 𝑡 > 0, is an increasing function. Then, for every 1 < 𝑝 < ∞ and every
𝑤 ∈ 𝐴𝑝 ,

𝑇 : 𝐿 𝑝 (𝑤) −→ 𝐿 𝑝 (𝑤), | |𝑇 | | ≤ 𝐾 (𝑤) (3)

where
𝐾 (𝑤) ≤ 𝐶1𝑁

( 1
𝑝 − 1

∥𝑤∥
max

(
1, 𝑝0−1

𝑝−1

)
𝐴𝑝

)
.
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In particular, the above estimate (3) shows that if, 𝑇 satisfies (2) with 𝑁 (𝑡) = 𝑡𝛼,
then

𝑇 : 𝐿 𝑝 −→ 𝐿 𝑝 ,
1

(𝑝 − 1)𝛼 , 1 < 𝑝 ≤ 𝑝0,

and using Yano’s extrapolation theorem [19, 15], we get that

𝑇 : 𝐿 (log 𝐿)𝛼 −→ 𝐿1 + 𝐿∞.

Hence, if (2) holds for our family of operators {𝑇𝑗 } 𝑗 uniformly in 𝑗 , same estimate
can be deduced for the sum operator 𝑆 defined before, and consequently 𝑆 would
satisfy the above boundedness on the space 𝐿 (log 𝐿)𝛼. Our goal is to see, that under
some extra condition on the operators {𝑇𝑗 } 𝑗 , this estimate can be improved. We
should also mention here paper [16] where it is shown that for a given operator the
optimality of the weighted 𝐿 𝑝 bounds in term of the 𝐴𝑝 constant of the weight is
related to the unweighted behavior of the operator when 𝑝 → 1. Hence, the relation
between Rubio de Francia’s extrapolation and Yano’s extrapolation was already in
the literature (see also [5]).

Our general context will be the following: let {𝑇\ }\ be a family of operators
indexed in a probability measure space (M, 𝑃) such that

𝑇\ : 𝐿1 −→ 𝐿1,∞, sup
\

| |𝑇\ | |𝐿1−→𝐿1,∞ < ∞.

What can we say about the boundedness, near 𝐿1, of the average operator

𝑇𝐴 𝑓 (𝑥) =
∫
M
𝑇\ 𝑓 (𝑥)𝑑𝑃(\),

whenever it is well defined? Our main result is the following:

Theorem 1 Let {𝑇\ }\ be a family of operators indexed in a probability measure
space satisfying the following conditions:

• There exist 𝛼 > 0 and 𝑠 > 0 so that, for every 1 < 𝑝 < 2 with 𝛼𝑝(𝑝 − 1) < 1
and every 𝑣 ∈ 𝐴𝑝 ,

𝑇\ : 𝐿 𝑝 (𝑣) −→ 𝐿 𝑝,∞ (𝑣), sup
\

| |𝑇\ | | ≤
𝐶

(𝑝 − 1)𝑠 ∥𝑣∥
𝛼
𝐴𝑝
,

with 𝐶 a universal constant.
• For some 𝑢0 ∈ 𝐴1 and every measurable set 𝐸 ,

sup
\

∥𝑇\ 𝜒𝐸 ∥𝐿1,∞ (𝑢0 ) ≤ 𝐶𝑢0𝑢0 (𝐸).

Then, for every 𝛽 > 0, the averaging operator 𝑇𝐴 satisfies the following estimate
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sup
𝑦>0

𝑦(
1 + log+ (1 + log+ 1

𝑦
)
)𝛽 ∫

{ |𝑇𝐴𝜒𝐸 |>𝑦}
𝑢0 (𝑥)𝑑𝑥 ≤ 𝐶𝑢0 ,𝛽 𝑢0 (𝐸).

In particular:

Corollary 1 If 𝑇𝑗 satisfies Condition-A uniformly in 𝑗 and

sup
𝑗

∥𝑇𝑗 𝜒𝐸 ∥𝐿1,∞ ≲ |𝐸 |,

then, for every 𝛽 > 0 and every (𝑐 𝑗 ) 𝑗 ∈ ℓ1, the operator 𝑆 =
∑
𝑗 𝑐 𝑗𝑇𝑗 , satisfies that

sup
𝑦>0

𝑦

(1 + log+ (1 + log+ 1
𝑦
))𝛽

|{𝑥 : |𝑆𝜒𝐸 (𝑥) | > 𝑦}| ≲ 𝐶𝛽 | |𝑐 | |ℓ1 |𝐸 |.

Remark 1 We have not succeeded in proving the restricted weak type (1, 1) of 𝑇𝐴
for the weight 𝑢0 neither to find a counterexample and hence this remains as an open
question.

As usual, we shall use the symbol 𝐴 ≲ 𝐵 to indicate that there exists a universal
positive constant 𝐶, independent of all relevant parameters, such that 𝐴 ≤ 𝐶𝐵.
𝐴 ≈ 𝐵 means that 𝐴 ≲ 𝐵 and 𝐵 ≲ 𝐴. Moreover, even though 𝐶 may depend on
𝑝 > 1, we shall only be concerned about the dependence on 𝑝 if this blows up when
𝑝 → 1.

2 Preliminary results and some technical lemmas

For our purposes, let us recall that the Lorentz spaces 𝐿 𝑝,𝑞 (𝑢) is defined as the set
of measurable functions such that

∥ 𝑓 ∥𝐿𝑝,𝑞 (𝑢) =
(
𝑞

𝑝

∫ ∞

0
𝑓 ∗𝑢 (𝑡)𝑞𝑡

𝑞

𝑝
−1
𝑑𝑡

)1/𝑞
=

(
𝑞

∫ ∞

0
𝑦𝑞−1_𝑢𝑓 (𝑦)

𝑞/𝑝𝑑𝑦

)1/𝑞
< ∞,

and 𝐿 𝑝,∞ (𝑢) is defined by the condition

∥ 𝑓 ∥𝐿𝑝,∞ (𝑢) = sup
𝑡>0

𝑡1/𝑝 𝑓 ∗𝑢 (𝑡) = sup
𝑦>0

𝑦_𝑢𝑓 (𝑦)
1/𝑝 < ∞,

where 𝑓 ∗𝑢 is the decreasing rearrangement of 𝑓 , with respect to the weight 𝑢, defined
by

𝑓 ∗𝑢 (𝑡) = inf
{
𝑦 > 0 : _𝑢𝑓 (𝑦) ≤ 𝑡

}
,

and _𝑢
𝑓
(𝑦) = 𝑢

({
𝑥 : | 𝑓 (𝑥) | > 𝑦

})
is the distribution function of 𝑓 with respect to 𝑢.

We shall also use the standard notation 𝑢(𝐸) =
∫
𝐸
𝑢(𝑥) 𝑑𝑥 and, if 𝑢 = 1, we shall
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write _ 𝑓 (𝑦), 𝑓 ∗ and |𝐸 | (see [2]). With the above definition, it holds that, for every
1 < 𝑝 and 1 ≤ 𝑞 ≤ ∞,����∫ 𝑓 (𝑥)𝑔(𝑥)𝑢(𝑥)𝑑𝑥

���� ≤ (
𝑝

𝑞

)1/𝑞 (
𝑝′

𝑞′

)1/𝑞′

| | 𝑓 | |𝐿𝑝,𝑞 (𝑢) | |𝑔 | |𝐿𝑝′ ,𝑞′ (𝑢) ,

and, for every 𝑞, | |𝜒𝐸 | |𝐿𝑝,𝑞 (𝑢) = 𝑢(𝐸)1/𝑝 .
Let us also recall some well known facts of the class 𝐴𝑝 . Let 𝑀 be the Hardy-

Littlewood maximal operator, defined by

𝑀 𝑓 (𝑥) = sup
𝑥∈𝑄

1
|𝑄 |

∫
𝑄

| 𝑓 (𝑦) | 𝑑𝑦,

where 𝑄 denotes a cube in R𝑛 and let 𝑣 be a positive locally integrable function 𝑤
(called weight) such that

∥𝑣∥𝐴𝑟 = sup
𝑄

(
1
|𝑄 |

∫
𝑄

𝑣(𝑥) 𝑑𝑥
) (

1
|𝑄 |

∫
𝑄

𝑣−1/(𝑟−1) (𝑥) 𝑑𝑥
)𝑟−1

< ∞,

with 𝑟 > 1. This class of weights is known as the Muckenhoupt class 𝐴𝑟 (𝑟 > 1).
If 𝑟 = 1, we say that 𝑢 ∈ 𝐴1, if 𝑀𝑢(𝑥) ≤ 𝐶𝑢(𝑥), at almost every point 𝑥 ∈ R𝑛 and
∥𝑤∥𝐴1 will be the least constant 𝐶 satisfying such inequality.

In [17, 3], it was proved that, if 𝑝 > 1, then

𝑀 : 𝐿 𝑝 (𝑣) −→ 𝐿 𝑝 (𝑣)

is bounded if, and only if, 𝑣 ∈ 𝐴𝑝 and also, for every 1 ≤ 𝑝 < ∞, 𝑀 is of weak-type
(𝑝, 𝑝) if and only if 𝑣 ∈ 𝐴𝑝 and, in this case,

∥𝑀 ∥𝐿𝑝 (𝑣)→𝐿𝑝,∞ (𝑣) ≤ 𝐶∥𝑣∥
1
𝑝

𝐴𝑝
.

These classes of weights satisfy the following properties:

1. 𝑢 ∈ 𝐴1 if and only if there exists ℎ ∈ 𝐿1
𝑙𝑜𝑐

(R𝑛) and 𝑘 such that 𝑘, 𝑘−1 ∈ 𝐿∞

satisfying that, for some 0 < 𝛿 < 1,

𝑢(𝑥) = 𝑘 (𝑥) (𝑀ℎ) 𝛿 .

2. Factorization: 𝑣 ∈ 𝐴𝑝 if and only if there exist 𝑢0, 𝑢1 ∈ 𝐴1 such that

𝑣 = 𝑢0𝑢
1−𝑝
1 , ∥𝑢0∥𝐴1 ≤ ∥𝑣∥𝐴𝑝 , ∥𝑢1∥𝐴1 ≤ ∥𝑣∥

1
𝑝−1
𝐴𝑝

.

Moreover, if 𝑣 = 𝑢0𝑢
1−𝑝
1 , then ∥𝑣∥𝐴𝑝 ≲ ∥𝑢0∥𝐴1 ∥𝑢1∥ 𝑝−1

𝐴1
.

3. For every 𝑔 ∈ 𝐿1
𝑙𝑜𝑐

with 𝑀𝑔 > 0, every 𝑢 ∈ 𝐴1, and 0 < 𝛿 < 1, it holds that
𝑣(𝑥) = 𝑢(𝑥) (𝑀𝑔) 𝛿 (1−𝑝) ∈ 𝐴𝑝 with
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∥𝑣∥𝐴𝑝 ≲
∥𝑢∥𝐴1

(1 − 𝛿) (𝑝−1) . (4)

4. If 𝑢 ∈ 𝐴1 and 0 < \ < 1, then (𝑀 𝑓 )1−\𝑢\ ∈ 𝐴1 with(𝑀 𝑓 )1−\𝑢\

𝐴1

≲
∥𝑢∥𝐴1

\
.

The following lemma in complex variable will be fundamental in our theory.

Lemma 1 Let 𝑆 = {0 < 𝑅𝑒 𝑧 < 1} and set 𝐻 (𝑆) the space of analytic functions in 𝑆
and continuous in 𝑆. If 𝐹 ∈ 𝐻 (𝑆) and sup𝑡∈R |𝐹 ( 𝑗 + 𝑖𝑡) | ≤ 𝑀 𝑗 , with 𝑗 = 0, 1, then
for every 0 < \ < 1,

|𝐹𝑁 ) (\) | ≲
(

1
\ (1 − \)

)𝑁
𝑀1−\

0 𝑀 \
1

(
1 +

��� log
𝑀1
𝑀0

���)𝑁 .
Using the dual operator of 𝑀 as in [8], it was also proved in [6] the following

result.

Lemma 2 [6] For every 1 ≤ 𝑝 < ∞ and every 𝑢 ∈ 𝐴1, there exists 𝐶𝑝,𝑢 such that𝑀 ( 𝑓 𝑢(𝑀𝑔)1−𝑝)
𝑢(𝑀𝑔)1−𝑝


𝐿𝑝

′ ,∞ (𝑢(𝑀𝑔)1−𝑝 )
≤ 𝐶𝑝,𝑢

 𝑓 
𝐿𝑝

′ ,1 (𝑢(𝑀𝑔)1−𝑝 )
, (5)

where if 𝑝 = 1 𝐿 𝑝′ ,∞ (𝑢(𝑀𝑔)1−𝑝) = 𝐿 𝑝′ ,1 (𝑢(𝑀𝑔)1−𝑝) = 𝐿∞

The constant 𝐶𝑝,𝑢 was not explicitly computed in [6], but it can be proved that

𝐶𝑝,𝑢 ≲ ∥𝑢∥2
𝐴1
.

3 Main results

In this paper, we shall start with an operator 𝑇 satisfying the following condition:

Condition-A: There exists 𝛼 > 0 and 𝑠 > 0, so that, for every 1 < 𝑝 < 2 with
𝛼𝑝(𝑝 − 1) < 1 and every 𝑣 ∈ 𝐴𝑝 ,

∥𝑇 𝜒𝐸 ∥𝐿𝑝,∞ (𝑣) ≲
∥𝑣∥𝛼

𝐴𝑝

(𝑝 − 1)𝑠 𝑣(𝐸)
1/𝑝 .

This is the case of important operators in Harmonic Analysis such as the Hardy-
Littlewood maximal operator or the maximal Calderón-Zygmund operators ([14]),
among many others.
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Proposition 1 Let 𝑇 be an operator satisfying Condition-A. Then, for every 𝛼𝑝(𝑝 −
1) < 𝛽 ≤ 1, every measurable set 𝐸 and every 𝑢 ∈ 𝐴1,

sup
𝑦>0

𝑦𝑝
∫
{ |𝑇𝜒𝐸 (𝑥 ) |>𝑦}

𝑢(𝑥) (𝑀𝜒𝐸 (𝑥))
(1−𝑝)(

log 𝑒
𝑀𝜒𝐸 (𝑥 )

)𝛽 𝑑𝑥 ≲ 𝐶 (𝑝, 𝛽, 𝛼)∥𝑢∥𝛼𝑝𝐴1
𝑢(𝐸), (6)

with
𝐶 (𝑝, 𝛽, 𝛼) = (𝑝 − 1)𝛽−𝑠

(𝛽 − 𝛼𝑝(𝑝 − 1)) .

Proof Set 𝐶𝑝 = (𝑝 − 1)−𝑠 . Let 0 < ` < 1, and let 𝐾 ⊂ {|𝑇 𝜒𝐸 (𝑥) | > 𝑦} be a
compact set. Set the analytic function on the unit strip 𝑆 = {0 < 𝑅𝑒 𝑧 < 1},

𝐹 (𝑧) =
∫
𝐾

𝑢(𝑥)
(
𝑀𝜒𝐸 (𝑥)

𝑒

) ( 1−`
2 𝑧+`

)
(1−𝑝)

𝑑𝑥.

Then, by (4), we have that, for 𝑗 = 0, 1,

|𝐹 ( 𝑗 + 𝑖𝑡) | ≲
𝐶𝑝 ∥𝑢∥𝛼𝑝𝐴1

𝑢(𝐸)
(1 − `)𝛼𝑝 (𝑝−1) 𝑦𝑝

uniform in 𝑡 ∈ R. Thus,

|𝐹 (1/2) | =
∫
𝐾

𝑢(𝑥)
(
𝑀𝜒𝐸 (𝑥)

𝑒

) 1+3`
4 (1−𝑝)

𝑑𝑥 ≲
𝐶𝑝 ∥𝑢∥𝛼𝑝𝐴1

𝑢(𝐸)
(1 − `)𝛼𝑝 (𝑝−1) 𝑦𝑝

, (7)

and, by Lemma 1,

(1 − `) (𝑝 − 1)
∫
𝐾

𝑢(𝑥) (𝑀𝜒𝐸 (𝑥))
1+3`

4 (1−𝑝) log
𝑒

𝑀𝜒𝐸 (𝑥)
𝑑𝑥 ≲ |𝐹′ (1/2) |

≲
𝐶𝑝 ∥𝑢∥𝛼𝑝𝐴1

𝑢(𝐸)
𝑦𝑝 (1 − `)𝛼𝑝 (𝑝−1) ,

and therefore, letting 𝐾 tend to {|𝑇 𝜒𝐸 (𝑥) | > 𝑦}, we obtain that

𝑦𝑝
∫
{ |𝑇𝜒𝐸 (𝑥 ) |>𝑦}

𝑢(𝑥) (𝑀𝜒𝐸 (𝑥))
1+3`

4 (1−𝑝) log
𝑒

𝑀𝜒𝐸 (𝑥)
𝑑𝑥

≲
𝐶𝑝 ∥𝑢∥𝛼𝑝𝐴1

𝑢(𝐸)
(1 − `)𝛼𝑝 (𝑝−1)+1 (𝑝 − 1)

. (8)

By (7) and (8), we get that, for every 𝑡 > 0,



8 Marı́a J. Carro

𝑦𝑝
∫
{ |𝑇𝜒𝐸 (𝑥 ) |>𝑦}

𝑢(𝑥) (𝑀𝜒𝐸 (𝑥))
1+3`

4 (1−𝑝) min
(
1, 𝑡 log

𝑒

𝑀𝜒𝐸 (𝑥)

)
𝑑𝑥

≲
𝐶𝑝 ∥𝑢∥𝛼𝑝𝐴1

(1 − `)𝛼𝑝 (𝑝−1) min
(
1,

𝑡

(1 − `) (𝑝 − 1)

)
𝑢(𝐸),

and integrating in 𝑡 ∈ (0,∞) against 1
𝑡𝛾+1 , we obtain that, for every 0 ≤ 𝛾 < 1,∫

{ |𝑇𝜒𝐸 (𝑥 ) |>𝑦}
𝑢(𝑥)

(
𝑒

𝑀𝜒𝐸 (𝑥)

) 1+3`
4 (𝑝−1) (

log
𝑒

𝑀𝜒𝐸 (𝑥)

)𝛾
𝑑𝑥

≲
𝐶𝑝 ∥𝑢∥𝛼𝑝𝐴1

𝑢(𝐸)
(1 − `)𝛼𝑝 (𝑝−1)+𝛾 (𝑝 − 1)𝛾

.

Hence, if 𝛼𝑝(𝑝 − 1) + 𝛾 < 1, we can integrate in the variable ` ∈ (0, 1) and we
obtain that if 𝛽 = 1 − 𝛾,

𝑦𝑝
∫
{ |𝑇𝜒𝐸 (𝑥 ) |>𝑦}

𝑢(𝑥) (𝑀𝜒𝐸 (𝑥)) (1−𝑝)
1(

log 𝑒
𝑀𝜒𝐸 (𝑥 )

)𝛽 𝑑𝑥
≲ 𝑦𝑝

∫
{ |𝑇𝜒𝐸 (𝑥 ) |>𝑦}

𝑢(𝑥) (𝑀𝜒𝐸 (𝑥))
1−𝑝

4 𝑑𝑥 + 𝐶𝑝
(𝑝 − 1)𝛽 ∥𝑢∥𝛼𝑝

𝐴1

(𝛽 − 𝛼𝑝(𝑝 − 1)) 𝑢(𝐸)

≲ 𝐶𝑝

(
(𝑝 − 1)𝛽

(𝛽 − 𝛼𝑝(𝑝 − 1)) + 1
)
∥𝑢∥𝛼𝑝

𝐴1
𝑢(𝐸),

as we wanted to see.

Our next step is to prove that an estimate of the form (6) is also true for other
values of 𝑝. To this end, the following lemma is needed.

Lemma 3 Let 𝛼 > 0 and 0 < Y ≤ 1. Let 𝑞 > 1 and 1 < 𝑝 ≤ min(2, 𝑞) such that

(𝛼𝑞 + 1) (𝑝 − 1) = Y

2
.

Let us define 𝛾 > 0 and a > 0 such that

Y𝛾

𝑞 − 1
= 𝛼𝑝 + 1

𝑞
, 𝛾

𝑝 − 1
𝑞 − 1

+ a 𝑞 − 𝑝
𝑞 − 1

= 1 (9)

Then, it holds that:

1
𝑞′
< a,

1
1 − 1

a𝑞′
≤ 2

(
1 + 1

𝛼𝑝

)
𝑞.

Proof We observe that,
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a =
𝑞 − 1
𝑞 − 𝑝

(
1 − 𝛾 𝑝 − 1

𝑞 − 1

)
=
𝑞 − 1 − 𝛾(𝑝 − 1)

𝑞 − 𝑝 =
𝑞 − 1 − (𝑞−1) (𝛼𝑝+ 1

𝑞
)

Y
(𝑝 − 1)

𝑞 − 𝑝

= (𝑞 − 1)
Y − (𝛼𝑝 + 1

𝑞
) (𝑝 − 1)

Y(𝑞 − 𝑝) >
𝑞 − 1
𝑞

if and only if
Y − (𝛼𝑝 + 1

𝑞
) (𝑝 − 1)

Y(𝑞 − 𝑝) >
1
𝑞
.

That is,
Y −

(
𝛼𝑝 + 1

𝑞

)
(𝑝 − 1) > Y

(
1 − 𝑝

𝑞

)
,

or equivalently

Y
𝑝

𝑞
>

(
𝛼𝑝 + 1

𝑞

)
(𝑝 − 1),

Y > (𝛼𝑝𝑞 + 1) 𝑝 − 1
𝑝

=

(
𝛼𝑞 + 1

𝑝

)
(𝑝 − 1).

On the other hand,

a𝑞′

a𝑞′ − 1
=

𝑞
Y−(𝛼𝑝+ 1

𝑞
) (𝑝−1)

Y (𝑞−𝑝)

𝑞
Y−(𝛼𝑝+ 1

𝑞
) (𝑝−1)

Y (𝑞−𝑝) − 1
=

𝑞(Y − (𝛼𝑝 + 1
𝑞
) (𝑝 − 1))

𝑞(Y − (𝛼𝑝 + 1
𝑞
) (𝑝 − 1)) − Y(𝑞 − 𝑝)

=
𝑞(2(𝛼𝑞 + 1) (𝑝 − 1) − (𝛼𝑝 + 1

𝑞
) (𝑝 − 1))

2𝑝(𝛼𝑞 + 1) (𝑝 − 1) − 𝑞(𝛼𝑝 + 1
𝑞
) (𝑝 − 1))

=
𝑞(2(𝛼𝑞 + 1) − (𝛼𝑝 + 1

𝑞
))

2𝑝(𝛼𝑞 + 1) − 𝑞(𝛼𝑝 + 1
𝑞
)

=
2𝛼𝑞2 + 2𝑞 − 𝛼𝑝𝑞 − 1

𝛼𝑝𝑞 + 2𝑝 − 1
≤ 2𝛼𝑞2 + 2𝑞

𝛼𝑝𝑞
≤ 2

(
1 + 1

𝛼𝑝

)
𝑞,

and the result is proved. □

Proposition 2 Let 𝑇 be an operator satisfying Condition-A. Then, for every 0 < Y ≤
1, every 𝑞 > 1, every measurable set 𝐸 and every 𝑢 ∈ 𝐴1,

sup
𝑦>0

𝑦𝑞
∫
{ |𝑇𝜒𝐸 (𝑥 ) |>𝑦}

𝑢(𝑥) (𝑀𝜒𝐸 (𝑥))
(1−𝑞)(

log 𝑒
𝑀𝜒𝐸 (𝑥 )

) Y 𝑑𝑥 ≲ 1
Y𝑞 (𝑠+1+𝛼) ∥𝑢∥

(𝛼+2)𝑞
𝐴1

𝑢(𝐸). (10)

Proof Let 0 ≤ Y < 1 be fixed. Let 𝐾 be a compact set such that 𝐾 ⊂ {|𝑇 𝜒𝐸 (𝑥) | > 𝑦}
and let us define

𝐴𝑞 :=
∫
𝐾

𝑢(𝑥) (𝑀𝜒𝐸 (𝑥))
(1−𝑞)(

log 𝑒
𝑀𝜒𝐸 (𝑥 )

) Y 𝑑𝑥.
Set 𝑝, 𝛾 and a as in Lemma 3 and set 𝐶𝑝 = (𝑝 − 1)−𝑠 . Then, we have that
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𝐴𝑞 ≤
∫
𝐾

(𝑀𝜒𝐸) (1−𝑝)
𝑢
𝑝−1
𝑞−1

[
𝑀

(
𝑢𝜒𝜒𝐾

(𝑀𝜒𝐸 )1−𝑞(
log 𝑒

𝑀𝜒𝐸

) Ya )] 𝑞−𝑝𝑞−1

(log 𝑒
𝑀𝜒𝐸

)Y𝛾
𝑝−1
𝑞−1

𝑑𝑥,

and since,

𝑣 = 𝑢
𝑝−1
𝑞−1

[
𝑀

(
𝑢𝜒𝐾

(𝑀𝜒𝐸)1−𝑞(
log 𝑒

𝑀𝜒𝐸

) Ya )] 𝑞−𝑝𝑞−1

∈ 𝐴1,

with ∥𝑣∥𝐴1 ≲
𝑞−1
𝑝−1 ∥𝑢∥𝐴1 and, by (9), Y𝛾 𝑝−1

𝑞−1 > 𝛼𝑝(𝑝−1), we have by Proposition 1,

𝐴𝑞 ≤ 𝐵

𝑦𝑝

∫
𝐸

𝑢
𝑝−1
𝑞−1 (𝑥)

[
𝑀

(
𝑢𝜒𝐾

(𝑀𝜒𝐸)1−𝑞

(log 𝑒
𝑀𝜒𝐸 (𝑥 ) )Ya

)] 𝑞−𝑝𝑞−1

𝑑𝑥

=
𝐵

𝑦𝑝

∫
𝐸

[𝑀 (
𝑢𝜒𝐾

(𝑀𝜒𝐸 )1−𝑞

(log 𝑒
𝑀𝜒𝐸 (𝑥) ) Ya

)
𝑢(𝑥)

] 𝑞−𝑝
𝑞−1

𝑢(𝑥)𝑑𝑥

=
𝐵

𝑦𝑝

∫
𝐸

[𝑀 (
𝑢𝜒𝐾

(𝑀𝜒𝐸 )1−𝑞

(log 𝑒
𝑀𝜒𝐸 (𝑥) ) Ya

)
𝑢(𝑥) (𝑀𝜒𝐸 (𝑥))1−𝑞

] 𝑞−𝑝
𝑞−1

𝑢(𝑥) (𝑀𝜒𝐸 (𝑥))1−𝑞𝑑𝑥

with

𝐵 ≲ 𝐶𝑝
∥𝑣∥𝛼𝑝

𝐴1
(𝑝 − 1) (𝛼𝑝+

1
𝑞
) (𝑝−1)

(Y𝛾 𝑝−1
𝑞−1 − 𝛼𝑝(𝑝 − 1))

≲ 𝐶𝑝
𝑞∥𝑣∥𝛼𝑝

𝐴1

(𝑝 − 1)

≲ 𝐶𝑝
𝑞1+𝛼𝑝

Y1+𝛼𝑝 ∥𝑢∥
𝛼𝑝

𝐴1
≈ 𝑞2+𝛼𝑝

Y𝑠+1+𝛼𝑝 ∥𝑢∥
𝛼𝑝

𝐴1
.

Then, by duality,

𝐴𝑞 ≲
𝐵𝑢(𝐸) 𝑝/𝑞

𝑦𝑝

𝑀
(
𝑢𝜒𝐾

(𝑀𝜒𝐸 )1−𝑞

(log 𝑒
𝑀𝜒𝐸

) Ya
)

𝑢(𝑀𝜒𝐸)1−𝑞

 𝑞−𝑝𝑞−1

𝐿𝑞
′ ,∞ (𝑢(𝑀𝜒𝐸 )1−𝑞 )

.

Now, using (5) with the behavior of the constant 𝐶𝑝,𝑢 we have that
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(
𝑢𝜒𝐾

(𝑀𝜒𝐸 )1−𝑞

(log 𝑒
𝑀𝜒𝐸

) Ya
)

𝑢(𝑀𝜒𝐸)1−𝑞


𝐿𝑞

′ ,∞ (𝑢(𝑀𝜒𝐸 )1−𝑞 )

≲ ∥𝑢∥2
𝐴1

 𝜒𝐾

(log 𝑒
𝑀𝜒𝐸

)Ya


𝐿𝑞

′ ,1 (𝑢(𝑀𝜒𝐸 )1−𝑞 )

= ∥𝑢∥2
𝐴1

∫ ∞

0

( ∫{
𝑥∈𝐾 : 1

(log 𝑒
𝑀𝜒𝐸

) Ya >𝑧
} 𝑢(𝑥) (𝑀𝜒𝐸 (𝑥))1−𝑞𝑑𝑥

)1/𝑞′

𝑑𝑧

= 𝑡∥𝑢∥2
𝐴1

∫ 1

0

( ∫{
𝑥∈𝐾 : 1

(log 𝑒
𝑀𝜒𝐸

) Ya >𝑧
} 𝑢(𝑥) (𝑀𝜒𝐸 (𝑥))1−𝑞𝑑𝑥

)1/𝑞′

𝑑𝑧

≲ ∥𝑢∥2
𝐴1

( ∫
𝐾

𝑢(𝑥) (𝑀𝜒𝐸)1−𝑞 (𝑥)(
log 𝑒

𝑀𝜒𝐸 (𝑥 )

) Y 𝑑𝑥)1/𝑞′ ∫ 1

0
𝑧
− 1
a𝑞′ 𝑑𝑧

≲
∥𝑢∥2

𝐴1

1 − 1
a𝑞′

𝐴
1/𝑞′
𝑞 ≲ ∥𝑢∥2

𝐴1
𝐴

1/𝑞′
𝑞

Consequently, we have that

𝐴𝑞 ≲
∥𝑢∥𝛼𝑝

𝐴1

Y𝑠+1+𝛼𝑝𝑦𝑝
𝑢(𝐸) 𝑝/𝑞

(
∥𝑢∥2

𝐴1

) 𝑞−𝑝
𝑞−1

𝐴

𝑞−𝑝
𝑞′ (𝑞−1)
𝑞 ≲

∥𝑢∥ (𝛼+2) 𝑝
𝐴1

Y𝑠+1+𝛼𝑝𝑦𝑝
𝑢(𝐸) 𝑝/𝑞𝐴

𝑞−𝑝
𝑞

𝑞 ,

and hence,

𝐴𝑞 ≲
∥𝑢∥ (𝛼+2)𝑞

𝐴1

Y
(𝑠+1+𝛼𝑝) 𝑞

𝑝 𝑦𝑞
𝑢(𝐸) ≤

∥𝑢∥ (𝛼+2)𝑞
𝐴1

Y𝑞 (𝑠+1+𝛼) 𝑦𝑞
𝑢(𝐸),

as we wanted to see. □

Remark 2 We observe that, in general, the constant has to blow up when Y → 0,
since on the contrary it can be proved that 𝑇 will be of weak type (1, 1) for every
weight 𝑢 ∈ 𝐴1, which is false in general.

We shall now fix a weight 𝑢0 ∈ 𝐴1 and let us consider the condition:

| |𝑇 𝜒𝐸 | |𝐿1,∞ (𝑢0 ) ≲ 𝑢0 (𝐸), ∀𝐸. (11)

Corollary 2 Let 𝑇 be an operator satisfying Condition-A and (11). Then, for every
𝑞 > 1, every measurable set 𝐸 , and every 𝛽 > (𝑞 − 1) (𝑠 + 1 + 𝛼),

sup
𝑦>0

𝑦𝑞

(1 + log(1 + log+ 1
𝑦
))𝛽

∫
{ |𝑇𝜒𝐸 (𝑥 ) |>𝑦}

𝑢0 (𝑥) (𝑀𝜒𝐸 (𝑥)) (1−𝑞)𝑑𝑥 ≲ 𝐶𝑢0 ,𝑞𝑢0 (𝐸).
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Proof First of all we observe that,

𝑦𝑞

(1 + log(1 + log+ 1
𝑦
))𝛽

∫
{ |𝑇𝜒𝐸 (𝑥 ) |>𝑦,𝑀𝜒𝐸 (𝑥 )>𝑦}

𝑢0 (𝑥) (𝑀𝜒𝐸 (𝑥)) (1−𝑞)𝑑𝑥

≤ 𝑦

∫
{ |𝑇𝜒𝐸 (𝑥 ) |>𝑦 𝑀𝜒𝐸 (𝑥 )>𝑦}

𝑢0 (𝑥)𝑑𝑥 ≤ 𝐶𝑢0𝑢(𝐸)

Now, let 0 < \ < 1 and let 𝑝 = 1 + 𝑞−1
\

. Let us define, in the case 𝑦 < 1, the
following analytic function

𝐹 (𝑧) =
∫
𝐾

𝑢0 (𝑥)
(𝑀𝜒𝐸 (𝑥 )

𝑒
)𝑧 (1−𝑝)(

log 𝑒
𝑀𝜒𝐸 (𝑥 )

) Y 𝑑𝑥,
where 𝐾 ⊂ {|𝑇 𝜒𝐸 (𝑥) | > 𝑦, 𝑀𝜒𝐸 (𝑥) ≤ 𝑦} is an arbitrary compact set. Then, by
(11),

|𝐹 (𝑖𝑡) | ≲ 1
𝑦
𝑢0 (𝐸)

and, by (10),

|𝐹 (1 + 𝑖𝑡) | ≲ 1
Y𝑝 (𝑠+1+𝛼) 𝑦𝑝

𝑢0 (𝐸),

and thus, since 1 − 𝑞 = \ (1 − 𝑝), we have by Lemma 1, that

|𝐹′ (\) | ≈
����(𝑝 − 1)

∫
𝐾

𝑢0 (𝑥) log
( 𝑒

𝑀𝜒𝐸 (𝑥)

)1−Y (𝑀𝜒𝐸 (𝑥)
𝑦

)1−𝑞
𝑑𝑥

����
≲

𝐶𝑞

Y (𝑞−1+\ ) (𝑠+1+𝛼) 𝑦𝑞

(
1 + log+

1
𝑦

) (
1 + log+

1
Y

)
,

from which it follows that, for every 𝛽 > (𝑞 − 1) (𝑠 + 1 + 𝛼), we can take \ so that

1
Y (𝑞−1+\ ) (𝑠+1+𝛼)

(
1 + log+

1
Y

)
≤ 1
Y𝛽
,

and hence (
log

𝑒

𝑦

)1−Y
����∫
𝐾

𝑢0 (𝑥)
(𝑀𝜒𝐸 (𝑥)

𝑦

)1−𝑞
𝑑𝑥

���� ≲ 𝐶𝑞

Y𝛽𝑦𝑞

(
1 + log+

1
𝑦

)
.

Therefore,

sup
Y

Y𝛽(
log 𝑒

𝑦

) Y ����∫
𝐾

𝑢0 (𝑥)
(𝑀𝜒𝐸 (𝑥)

𝑦

)1−𝑞
𝑑𝑥

���� ≲ 𝐶𝑞𝑦𝑞 ,
from which the result follows in the case 𝑦 < 1.

Now, when 𝑦 > 1, we consider the analytic function
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𝐹 (𝑧) =
∫
𝐾

𝑢0 (𝑥)
(𝑀𝜒𝐸 (𝑥 )

𝑦
)𝑧 (1−𝑝)(

log 𝑒𝑦

𝑀𝜒𝐸 (𝑥 )

) 𝑑𝑥.

Then, by (11) and (10),

|𝐹 ( 𝑗 + 𝑖𝑡) | ≲ 𝑢0 (𝐸),
𝑦

, 𝑗 = 0, 1,

and thus,

|𝐹′ (1/2) | ≈
����(𝑞 − 1)

∫
𝐾

𝑢0 (𝑥)
(𝑀𝜒𝐸 (𝑥)

𝑦

)1−𝑞
𝑑𝑥

���� ≲ 𝐶𝑞𝑦 𝑢0 (𝐸),

and the result follows, letting 𝐾 tends to {|𝑇 𝜒𝐸 (𝑥) | > 𝑦, 𝑀𝜒𝐸 (𝑥) ≤ 𝑦}. □

4 Applications to average operators

The following result was proved in [4], but we include the proof for the sake of
completeness.

Proposition 3 If there exists 𝐶 > 0 so that sup𝑦>0𝑊 (𝑦)_𝑇\ 𝑓 (𝑦) ≤ 𝐶, then
sup𝑦>0𝑊 (𝑦)_𝑇𝐴 𝑓 (𝑦) ≤ 𝐶, where

𝑊 (𝑅) = sup
𝑥≤𝑅

𝑅 − 𝑥∫ ∞
𝑥

1
𝑊 (𝑢) 𝑑𝑢

·

Proof Let 𝜙(𝑡) =
∫ 𝑡

0 ℎ(𝑠) 𝑑𝑠, with ℎ a positive and increasing function. Then 𝜙 is a
convex function and, by Jensen’s inequality,

𝜙( |𝑇𝐴 𝑓 (𝑥) |) ≤
∫
M
𝜙(𝑇\ 𝑓 (𝑥) |) 𝑑𝑃(\)·

Hence, for every 𝑅 > 0, 𝜙(𝑅)𝜒{𝑥; |𝑇𝐴 𝑓 (𝑥 ) |>𝑅} (𝑥) ≤
∫
M 𝜙(𝑇\ 𝑓 (𝑥)) 𝑑𝑃(\) and inte-

grating over R𝑛, we obtain

𝜙(𝑅)_𝑇𝐴 𝑓 (𝑅) ≤
∫
M

∫
R𝑛
𝜙(𝑇\ 𝑓 (𝑥)) 𝑑𝑥 𝑑𝑃(\)·

Now, ∫
R𝑛
𝜙(𝑇\ 𝑓 (𝑥)) 𝑑𝑥 =

∫ ∞

0
_𝑇\ 𝑓 (𝑦)𝑑𝜙(𝑦) =

∫ ∞

0
_𝑇\ 𝑓 (𝑦)ℎ(𝑦) 𝑑𝑦

and hence, we deduce that
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𝜙(𝑅)_𝑇𝐴 𝑓 (𝑅) ≤
∫
M

∫ ∞

0
_𝑇\ 𝑓 (𝑦)ℎ(𝑦) 𝑑𝑦 𝑑𝑃(\) ≤ 𝐶

∫ ∞

0

ℎ(𝑦)
𝑊 (𝑦) 𝑑𝑦,

and therefore, if ℎ ↑ indicates that h is an increasing function, we get that(
sup
ℎ↑

∫ 𝑅
0 ℎ∫ ∞

0
ℎ (𝑦)
𝑊 (𝑦) 𝑑𝑦

)
_𝑇𝐴 𝑓 (𝑅) ≤ 𝐶.

The result now follows by computing the exact expression of the function between
parenthesis by a simple change of variable and the well known fact that

sup
𝑓 ↓

∫ ∞
0 𝑓 (𝑡)𝑣(𝑡)𝑑𝑡∫ ∞
0 𝑓 (𝑡)𝑢(𝑡)𝑑𝑡

= sup
𝑟>0

∫ 𝑟
0 𝑣(𝑡)𝑑𝑡∫ 𝑟
0 𝑢(𝑡)𝑑𝑡

.

where 𝑓 ↓ indicates that 𝑓 is a decreasing function. □

Theorem 2 If 𝑇\ satisfies Condition-A uniformly in \ and, for some 𝑢0,

sup
\

∥𝑇\ 𝜒𝐸 ∥𝐿1,∞ (𝑢0 ) ≲ 𝑢0 (𝐸),

then, for every 𝛽 > 0,

sup
𝑦>0

𝑦

(1 + log+ (1 + log+ 1
𝑦
))𝛽

∫
{ |𝑇𝐴𝜒𝐸 |>𝑦}

𝑢0 (𝑥)𝑑𝑥 ≲ 𝐶𝛽 𝑢0 (𝐸).

Proof Let us fix 𝑞 > 1 so that 𝛽 > (𝑞 − 1) (𝑠 + 1 + 𝛼), and let us choose 𝑊 (𝑦) =
𝑦𝑞

(1+log+ (1+log+ 1
𝑦
) )𝛽 . Then a simple computation shows that, in this case,

(𝑞 − 1)𝑊 (𝑦) ≲ 𝑊 (𝑦),

and hence, by Proposition 3,

sup
𝑦>0

𝑦𝑞(
1 + log(1 + log+ 1

𝑦
)
)𝛽 ∫

{ |𝑇𝐴𝜒𝐸 (𝑥 ) |>𝑦}
𝑢0 (𝑥) (𝑀𝜒𝐸 (𝑥)) (1−𝑞)𝑑𝑥 ≲ 𝐶𝛽 𝑢0 (𝐸).

Therefore,
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𝑦

(1 + log+ (1 + log+ 1
𝑦
))𝛽

∫
{ |𝑇𝐴𝜒𝐸 |>𝑦}

𝑢0 (𝑥)𝑑𝑥

≤ ∥𝑢0∥𝐴1𝑢0 (𝐸) +
𝑦

(1 + log+ (1 + log+ 1
𝑦
))𝛽

∫
{ |𝑇𝐴𝜒𝐸 |>𝑦,𝑀𝜒𝐸 (𝑥 )≤𝑦}

𝑢0 (𝑥)𝑑𝑥

≤ ∥𝑢0∥𝐴1𝑢0 (𝐸) +
𝑦𝑞

(1 + log+ (1 + log+ 1
𝑦
))𝛽

∫
{ |𝑇𝐴𝜒𝐸 |>𝑦}

𝑢0 (𝑥) (𝑀𝜒𝐸 (𝑥))1−𝑞𝑑𝑥

≲ 𝐶𝛽 𝑢0 (𝐸),

and the result follows.

Finally, the proof of Corollary 1 follows immediately.
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104. North-Holland Publishing Co., Amsterdam, 1985.

13. L. Grafakos, Modern Fourier Analysis, Second edition. Graduate Texts in Mathematics, 250.
Springer, New York, 2009.

14. P.T. Hytönen, M.T. Lacey, H. Martikainen, T. Orponen, M.C. Reguera, E. Sawyer and I.
Uriarte-Tuero Weak and strong type estimates for maximal truncations of Calderón-Zygmund
operators on Ap weighted spaces, J. Anal. Math. 118 (2012), no. 1, 177–220.

15. B. Jawerth and M. Milman, Extrapolation theory with applications, Mem. Amer. Math. Soc.
89 (1991), no. 440, iv+82 pp.

16. T. Luque, C. Pérez and E. Rela, Optimal exponents in weighted estimates without examples,
Math. Res. Lett. 22 (2015), no. 1, 183–201.



16 Marı́a J. Carro

17. B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer.
Math. Soc. 165 (1972), 207–226.

18. J.L. Rubio de Francia, Factorization theory and 𝐴𝑝 weights, Amer. J. Math. 106 (1984), no.
3, 533–547.

19. S. Yano, Notes on Fourier analysis. XXIX. An extrapolation theorem., J. Math. Soc. Japan 3
(1951), 296–305.


