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ABSTRACT. We study the Zaremba problem, or mixed problem associated to the Laplace oper-
ator, in two-dimensional Lipschitz graph domains with mixed Dirichlet and Neumann boundary
data in Lebesgue and Lorentz spaces. We obtain an explicit value r such that the Zaremba prob-
lem is solvable in Lp for 1 < p < r and in the Lorentz space Lr,1. Applications include those
where the domain is a cone with vertex at the origin and, more generally, a Schwarz–Christoffel
domain. The techniques employed are based on results of the Zaremba problem in the upper-
half plane, the use of conformal maps and the theory of solutions to the Neumann problem. For
the case when the domain is the upper-half plane, we work in the weighted setting, establish-
ing conditions on the weights for the existence of solutions and estimates for the non-tangential
maximal function of the gradient of the solution. In particular, in the L2-unweighted case,
where known examples show that the gradient of the solution may fail to be squared-integrable,
we prove restricted weak-type estimates.

1. INTRODUCTION AND MAIN RESULTS

Given a Lipschitz domain Ω ⊂ Rn, consider the following mixed problem for Laplace’s
equation, or Zaremba problem in Ω:

(1.1)


∆v = 0 in Ω,

v = fD on D,
∇v · n = fN on N,

where ∆ is the Laplace operator in Rn, n is the outward unit normal vector to ∂Ω, and D and
N are disjoint open subsets of ∂Ω such that ∂N = ∂D and N ∪D = ∂Ω.

Boundary value problems satisfying mixed Dirichlet-Neumann boundary conditions appear
naturally associated with different partial differential equations. They were studied for the first
time by Zaremba [26, 27] for Laplace’s equation. Other physically interesting mixed boundary
value problems extensively studied in many different settings include those associated with
Maxwell equations, Lamé systems or certain elliptic equations; see, for instance, [2, 5, 11, 16,
17, 19, 22] and references therein.

In the context of Lipschitz domains, the study of the regularity of solutions of (1.1) was
motivated by a question of C. Kenig in [14, p.120, problem 3.2.15] that was first partially
solved by R. Brown and J. Sykes [3, 23, 24] for a restricted class of Lipschitz graph domains
known as creased domains (roughly speaking, D and N meet at an angle which is strictly less
than π). In particular, they obtained existence and uniqueness of solution and non-tangential
maximal function estimates for the gradient of the solution in Lp(∂Ω) for 1 < p ≤ 2 when fN

Date: July 20, 2023.
2010 Mathematics Subject Classification. Primary: 35J25; secondary: 35J05, 46E30.
Key words and phrases. Mixed problem, Zaremba problem, Lipschitz graph domain, Lebesgue and Lorentz

spaces, Muckenhoupt weights, Hilbert transform.
First and second authors partially supported by grants PID2020-113048GB-I00 funded by

MCIN/AEI/10.13039/501100011033, CEX2019-000904-S funded by MCIN/AEI/ 10.13039/501100011033
and Grupo UCM-970966 (Spain). Third author partially supported by the NSF under grant DMS 2154113 and
the Simons Foundation under grant 705953 (USA).

1
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and the derivatives of fD are in Lp(∂Ω). Subsequenly, I. Mitrea and M. Mitrea [18] investigated
the mixed problem for the Laplacian in bounded creased domains in Rn for n ≥ 3 when the size
and smoothness of the data and the solutions are measured on Sobolev-Besov scales. Under the
same assumptions on the boundary data as in [24], Brown, Capogna and Lanzani [15] studied
the Zaremba problem in two-dimensional Lipschitz graph domains (i.e. Ω is the upper part of
the graph of a real-valued Lipschitz function) with Lipschitz constant less than one, establishing
existence and uniqueness of solutions and estimates in Lp(∂Ω) for the non-tangential maximal
function of the gradient of the solution in the range 1 < p < p0, for some p0 > 1. In order
to achieve such results, the work [15] also includes the study of the mixed problem with data
in weighted L2 and weighted Hardy space H1 with power weights. Analogous results for
bounded Lipschitz domains in Rn with n ≥ 2 were obtained by Brown and Ott [20, 21] under
the assumption that the boundary between D and N (relative to ∂Ω) is locally given by a
Lipschitz graph. This work was extended under more general conditions on the decomposition
of the boundary by Brown, Ott and Taylor [25]. By considering a more restrictive class of
bounded domains than those in [20], Croyle and Brown [4] were able to give an explicit range
of exponents p for which (1.1) can be solved with data in Lp(∂Ω); this range turns out to be
sharp in two dimensions. When the domain Ω is an infinite sector in two dimensions with
N and D corresponding to the rays of the sector, Awala, Mitrea and Ott [1] established well-
posedness of the Zaremba problem by showing sharp invertibility properties for an associated
singular integral operator.

In this paper, we study the mixed problem (1.1) when Ω is a Lipschitz graph domain in the
plane with data associated to Lebesgue and Lorentz spaces. Before presenting our results, we
describe with more details the settings in which we work.

Let Λ be a curve in the complex plane given parametrically by x + iγ(x) for x ∈ R, where
γ is a real-valued Lipschitz function with constant L, and consider the Lipschitz graph domain

(1.2) Ω = {z ∈ C : Im(z) > γ(Re(z))};

note that Λ = ∂Ω. Given 0 < α < arctan(1/L), define the non-tangential maximal operator
Mα as

Mα(F )(ξ) = sup
z∈Γα(ξ)

|F (z)|, ξ ∈ ∂Ω,

where F is a complex-valued function defined in Ω and

Γα(ξ) = {z ∈ C : Im(z) > Im(ξ) and |Re(ξ)− Re(z)| < tan(α)|Im(z)− Im(ξ)|}.

We will study the mixed problem (1.1) with Ω as in (1.2) and with the sets D and N given by

(1.3) D = {(x, γ(x)) ∈ ∂Ω : x > 0} and N = {(x, γ(x)) ∈ ∂Ω : x < 0}.

The notations fD and fN will be used for functions defined on ∂Ω that are zero outside D and
N, respectively. We have the following definitions regarding solutions of (1.1):

Definition 1.1. For fD ∈ L1
loc(D) and fN ∈ L1

loc(N), a function v defined on Ω is a so-
lution of the mixed problem (1.1) in Ω with data fD and fN if v is harmonic in Ω and the
equalities v = fD on D and ∇v · n = fN on N hold almost everywhere in the sense of non-
tangential convergence. The latter means that there exists 0 < α < arctan(1/L) such that
limz∈Γα(ξ),z→ξ v(z) = fD(ξ) for almost every ξ ∈ D and limz∈Γα(ξ),z→ξ∇v(z) · n(ξ) = fN(ξ)
for almost every ξ ∈ N, with respect to arc-length.

Definition 1.2. Given f : ∂Ω −→ R and ξ = ν(x) = x + iγ(x) ∈ ∂Ω, we define f ′(ξ) by the
condition

f ′(ξ)(1 + iγ′(x)) = (f ◦ ν)′(x),
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whenever f ◦ ν and γ are differentiable at x. We say that f is differentiable (in a weak sense)
over the curve ∂Ω if this holds for almost every x∈R.

Definition 1.3. If X is a Banach space of measurable functions defined on ∂Ω, we say that
the mixed problem (1.1) in Ω is solvable in X if there exist a Banach space Y of measurable
functions defined on ∂Ω and 0 < α < arctan(1/L) such that for every fD ∈ L1

loc(D) with
f ′D ∈ X and every fN ∈ L1

loc(N) with fN ∈ X there exists a solution v of the Neumann
problem in Ω with data fD and fN and

‖Mα(∇v)‖Y . ‖f ′D‖X + ‖fN‖X ,

where the implicit constant is independent of fD and fN and, ‖ ·‖X and ‖ ·‖Y denote the norms
in X and Y, respectively.

Our first main result, Theorem 1.4 below, deals with the mixed problem (1.1) in a general
Lipschitz graph domain Ω in the plane. It is motivated by the results in [15], where, as men-
tioned in the introduction, it is proved that there exists p0 > 1 such that the mixed problem in
a two-dimensional Lipschitz graph domain with Lipschitz constant less than one is solvable in
Lp(∂Ω) for 1 < p < p0.

Before stating Theorem 1.4, we briefly describe the notation used in the statement, directing
the reader to Sections 2 and 4 for more details and references. Consider a conformal map Φ :

R2
+ → Ω; we then have that Φ extends as a homeomorphism from R2

+ onto Ω, and Φ′(x) exists
for almost every x ∈ R and is locally integrable. For 1 < p <∞, the notation Ap stands for the
family of weights w in R that characterizes the boundedness of the Hardy-Littlewood maximal
operator on the weighted Lebesgue spaces Lp(w) (Muckenhoupt weights). The class ARp is
the set of weights w in R that characterizes the boundedness of the Hardy-Littlewood maximal
operator from the weighted Lorentz space Lp,1(w) to the weighted Lorentz space Lp,∞(w); we
have that Ap ( ARp . As usual, p′ denotes the conjugate exponent of p, i.e. 1/p+ 1/p′ = 1. We
define 1 ≤ rΦ ≤ ∞ such that its conjugate exponent is given by

r′Φ = inf{q ∈ (1,∞) : |xΦ′(x2)| ∈ Aq and |Φ′(x)| ∈ Aq}.

Denote by Lp,1(∂Ω) and Lp,∞(∂Ω) the Lorentz spaces with respect to arc-length in ∂Ω.

Theorem 1.4 (Solvability of the mixed problem (1.1) in a Lipschitz graph domain in the plane).
Let Ω be as in (1.2), D and N be as in (1.3) and Φ : R2

+ → Ω be a conformal map such
that Φ((−∞, 0)) = N and Φ((0,∞)) = D. Then the mixed problem (1.1) is solvable in the
following settings:

(a) X = Y = Lp(∂Ω) with 1 < p < rΦ.
(b) If rΦ <∞, X = LrΦ,1(∂Ω), Y = LrΦ,∞(∂Ω) and

(1.4) |xΦ′(x2)| ∈ ARr′Φ and |Φ′(x)| ∈ Ar′Φ .

The techniques used in [15] are completely different from ours and do not give an explicit
expression of p0 as Theorem 1.4 does along with the solvability of the mixed problem at such
endpoint in the setting of Lorentz spaces; as opposed to [15], we do not assumed that the Lip-
schitz constant of the boundary is less than one. The arguments in [15] are based on weighted
L2 estimates established through Rellich indentity, techniques by Dahlberg and Kenig [9] to
obtain weighted estimates in Hardy spaces and interpolation. On the other hand, the methods
of proof we use for Theorem 1.4 rely on the application of the solvability of the mixed problem
(1.1) in the upper half-plane with data in weighted spaces (Theorem 1.5 below), flattening the
boundary via conformal maps (see Figure 1), and results obtained in [6] on the solvability of
the Neumann problem in Lipschitz graph domains in the plane.
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FIGURE 1. Flattening the boundary via a conformal map

For the statement of Theorem 1.5, given a weight w in R, the space Lp,1(w) (respectively,
Lp,∞(w)) consists of all measurable functions f defined on R such that fw−1 ∈ Lp,1(w) (re-
spectively, Lp,∞(w)).

Theorem 1.5 (Solvability of the mixed problem (1.1) in the upper half-plane). The mixed prob-
lem (1.1) is solvable in the following settings for Ω = R2

+, N = (−∞, 0) and D = (0,∞):

(a) X = Y = Lp(w), 1 < p <∞, w ∈ Ap and |x|w(x2) ∈ Ap,
(b) X = Y = Lp(w), 1 < p <∞, w ∈ Ap and |x|1−pw(x2) ∈ Ap,
(c) X = Lp,1(w), Y = Lp,∞(w), 1 < p <∞, w ∈ Ap and |x|w(x2) ∈ ARp ,
(d) X = Lp,1(w), Y = Lp,∞(w), 1 < p <∞, w ∈ Ap′ and |x|w(x2) ∈ ARp′ .

The proof of Theorem 1.5 employs results from [6] on the solvability of the Neumann prob-
lem in R2

+, which allows to find explicit solutions for the mixed problem in the upper half-plane.
Simple examples (see, for instance, [15, p. 93] or [20, p. 1334]) show that the mixed

problem (1.1) with Ω = R2
+, N = (−∞, 0) and D = (0,∞) is not solvable in X = L2(R)

with Y = L2(R). However, the following corollary of Theorem 1.5 gives that this problem is
solvable in the Lorentz space setting with X = L2,1(R) ⊂ L2(R) and Y = L2,∞(R) ⊃ L2(R).

Corollary 1.6. The mixed problem (1.1) is solvable in the following settings for Ω = R2
+,

N = (−∞, 0) and D = (0,∞):

(a) X = Y = Lp(R) if and only if 1 < p <∞ and p 6= 2.
(b) X = L2,1(R) and Y = L2,∞(R).

A different proof for the solvability stated in Part (a) of Corollary 1.6 is given in [1, Theorem
5] (see more details in Section 5.1) while the result in Part (b) of Corollary 1.6 is new.

The organization of the article is as follows. In Section 2, we present notation, definitions
and preliminaries related to our results on the solvability of the Zaremba problem in the upper
half-plane. The proofs of Theorem 1.5 and Corollary 1.6 are then presented in Section 3. The
main content of Section 4 is the proof of Theorem 1.4 on the solvability of the Zaremba problem
in a general two-dimensional Lipschitz graph domain. In Section 5 we present applications of
Theorem 1.4 when the domain is a cone with vertex at the origin (Corollary 5.1) and, more
generally, for Schwarz–Christoffel domains (Corollary 5.4).

2. NOTATION AND PRELIMINARIES

In this section, we introduce notation and definitions associated to the results on the solv-
ability of the Zaremba problem in the upper half-plane; we also state some lemmas that will be
used in the proofs.
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2.1. Functions spaces and weights. Consider a weight w on R (i.e. a non-negative locally
integrable function defined in R). For 1 ≤ p ≤ ∞, the space Lp(w) is the class of measurable
functions f : R→ C such that

‖f‖Lp(w) =

(∫
R
|f(x)|pw(x) dx

) 1
p

<∞,

with the corresponding changes for p = ∞. For 1 ≤ p < ∞, we denote by Lp,1(w) and
Lp,∞(w) the Lorentz spaces defined as the classes of measurable functions f : R → C such
that

‖f‖Lp,1(w) =

∫ ∞
0

(
λwf (t)

) 1
p dt <∞ and ‖f‖Lp,∞(w) = sup

t>0
t
(
λwf (t)

) 1
p <∞,

respectively, where λwf (t) = w({x ∈ R : |f(x)| > t}) and w(A) =
∫
A
w(x)dx for A a

measurable subset of R. For 1 < p < ∞, we define the spaces Lp,1(w) and Lp,∞(w) as the
classes of measurable functions f : R→ C such that, respectively,

‖f‖Lp,1(w) = ‖fw−1‖Lp,1(w) <∞ and ‖f‖Lp,∞(w) = ‖fw−1‖Lp,∞(w) <∞.

When w ≡ 1, we use the notation Lp(R) instead of Lp(w), and similarly for the other spaces
introduced above.

The Hilbert transformH is defined by

Hf(x) =
1

π
lim
ε→0

∫
|t|>ε

f(x− t)
t

dt.

We will work with two classes of weights in R : the Muckenhoupt class Ap and the larger
class ARp . If 1 < p <∞,

w ∈ Ap iff sup
I⊂R

1

|I|
‖χI‖Lp(w)‖χIw−1‖Lp′ (w) <∞,(2.1)

w ∈ ARp iff sup
I⊂R

1

|I|
‖χI‖Lp,1(w)‖χIw−1‖Lp′,∞(w) <∞,(2.2)

where the supremum is taken over all intervals contained in R. We recall that, for 1 < p <∞,
w ∈ Ap if and only if w1−p′ ∈ Ap′ , Ap ⊂ Aq if p < q and, if w ∈ Ap with p > 1 then w ∈ Ap−ε
for some ε > 0. Moreover, it holds that

(2.3) Ap ( ARp ( ∩ε>0Ap+ε.

2.2. Boundedness results and identities for H. The following two statements summarize
results regarding boundedness properties and identities for H in weighted spaces that will be
used throughout the article.

Theorem 2.1. Let 1 < p <∞.
(a) H is bounded from Lp(w) to Lp(w) if and only if w ∈ Ap.
(b) H is bounded from Lp,∞(w) to Lp,∞(w) and from Lp,1(w) to Lp,1(w) if w ∈ Ap.
(c) H is bounded from Lp,1(w) to Lp,∞(w) if w ∈ ARp .

For Part (a), see Hunt–Muckenhoupt–Wheeden [12]; Part (b) follows from Part (a) by inter-
polation; for (c), see [8].

Lemma 2.2. Let 1 < p <∞.
(a) If w ∈ ARp′ , then ∥∥∥∥H(wf)

w

∥∥∥∥
Lp,∞(w)

. ‖f‖Lp,1(w) .
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(b) If w ∈ Ap′ , then ∥∥∥∥H(wf)

w

∥∥∥∥
Lp,1(w)

. ‖f‖Lp,1(w) .

Proof. Proof of Part (a): Let g ∈ Lp′,1(w) be such that ‖g‖Lp′,1(w) ≤ 1. Using duality, the fact
that the adjoint of H is −H, and that H is bounded from Lp

′,1(w) to Lp′,∞(w) since w ∈ ARp′ ,
we have∣∣∣∣∫

R

H(fw)(x)

w(x)
g(x)w(x) dx

∣∣∣∣ =

∣∣∣∣∫
R
f(x)Hg(x)w(x) dx

∣∣∣∣ ≤ ‖f‖Lp,1(w) ‖Hg‖Lp′,∞(w)

. ‖f‖Lp,1(w) ‖g‖Lp′,1(w) ≤ ‖f‖Lp,1(w) .

Taking supremum over all such g gives the desired result.

Proof of Part (b): The proof is analogous to that of Part (a) using the fact that H is bounded
from Lp

′,∞(w) to Lp′,∞(w) for w ∈ Ap′ . �

Lemma 2.3. If 1 < p <∞ and f belongs to Lp,∞(w) with w ∈ Ap or to Lp,∞(w) with w ∈ Ap′
then

−
∫
R
Hϕ(t) f(t) dt =

∫
R
Hf(t)ϕ(t) dt

for all functions ϕ infinitely differentiable in R and with compact support.

Proof. The identity holds for functions in L2(R) and is obtained by density arguments for
functions in Lp(w) with w ∈ Ap. Since Lp,∞(w) ⊂ Lp−ε(w) + Lp+ε(w) for ε > 0 such
that w ∈ Ap−ε ∩ Ap+ε, the result then follows for functions in Lp,∞(w). If w ∈ Ap′ , we
have Lp,∞(w) ⊂ Lp−ε(w1−(p−ε)) + Lp+ε(w1−(p+ε)) for ε > 0 such that w1−(p−ε) ∈ Ap−ε and
w1−(p+ε) ∈ Ap+ε, from which the result holds for Lp,∞(w). �

We next present an additional lemma for functions f on R related to the condition

(2.4)
∫
R

|f(x)|
1 + |x|

dx <∞.

Lemma 2.4. The condition (2.4) is satisfied by any f in the following function spaces:
(a) Lp,1(w) with w ∈ ARp and 1 ≤ p <∞,
(b) Lp,1(w) with w ∈ ARp′ and 1 < p <∞,
(c) Lp,∞(w) with w ∈ Ap and 1 < p <∞,
(d) Lp,∞(w) with w ∈ Ap′ and 1 < p <∞.

Proof.

Proofs of (a) and (b): See [6, Proof of Lemma 3.1].

Proofs of (c) and (d): The case f ∈ Lp(w) with w ∈ Ap can be seen in [6, Proof of Lemma
3.1]. For f ∈ Lp,∞(w) with w ∈ Ap or f ∈ Lp,∞(w) with w ∈ Ap′ , the result follows by
considering the same space decompositions as in the proof of Lemma 2.3. �

3. SOLVABILITY OF THE ZAREMBA PROBLEM IN THE UPPER HALF-PLANE

The main goal of this section is to present the poofs of Theorem 1.5 about the solvability
of the Zaremba problem in the upper half-plane and its Corollary 1.6. Among other tools,
we will use results regarding the solution of the Neumann problem in the upper half-plane,
which we review in Section 3.1. The proofs of Theorem 1.5 and Corollary 1.6 are contained in
Sections 3.2 and 3.3, respectively.
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3.1. The Neumann problem in the upper half-plane. Consider the classical Neumann bound-
ary value problem in R2

+ :

(3.1) ∆u = 0 on R2
+ and ∇u · (0,−1) = f on R,

where the equality∇u · (0,−1) = f is in the sense of non-tangential convergence.
For f : R→ C satisfying (2.4) define

(3.2) uf (x, y) := − 1

π

∫
R

log

(√
(x−t)2+y2

1+|t|

)
f(t) dt, (x, y) ∈ R2

+.

We note that the integral on the right-hand side of (3.2) is absolutely convergent for all f
satisfying (2.4); in particular, uf is well defined and absolutely convergent for all f in any of
the function spaces of Lemma 2.4.

As proved in [6, Theorem 1.3], uf is a solution of the Neumann problem (3.1) in the upper
half-plane; more precisely, the following result holds.

Theorem 3.1 (Solvability of the Neumann problem in the upper half-plane; Theorem 1.3 in
[6]). Given 1 < p < ∞, consider X = Y = Lp(w) with w ∈ Ap or X = Lp,1(w) and
Y = Lp,∞(w) with w ∈ ARp or X = Lp,1(w) and Y = Lp,∞(w) with w ∈ ARp′ . If f ∈ X, then
uf is harmonic in R2

+, ∇u · (0,−1) = f on R in the sense of non-tangential convergence and

‖Mα(∇uf )‖Y . ‖f‖X ,

where the implicit constant is independent of f and 0 < α < π/2.

Remark 3.2. We note that Theorem 3.1 and interpolation give that the results of Theorem 3.1
also hold for X = Y = Lp,∞(w) with w ∈ Ap and X = Y = Lp,∞(w) with w ∈ Ap′ , where
1 < p <∞.

The next lemma deals with the boundary values of uf in terms of non-tangential convergence.

Lemma 3.3. Let f : R→ C satisfy (2.4).

(a) The function x→
∫
R

∣∣∣log
(
|x−t|
1+|t|

)
f(t)

∣∣∣ dt is locally integrable in R.Moreover, the function
given by

(3.3) Bf(x) = − 1

π

∫
R

log
(
|x−t|
1+|t|

)
f(t) dt

satisfies (Bf)′ = Hf in the sense of distributions if, for some 1 < p < ∞, f belongs to
Lp,∞(w) with w ∈ Ap or to Lp,∞(w) with w ∈ Ap′ .

(b) Let 0 < α < π/2. If Mα(∇uf ) is finite almost everywhere in R, then uf = Bf almost
everywhere on R in the sense of non-tangential convergence. In particular, this holds if, for
some 1 < p <∞, f belongs to Lp,∞(w) with w ∈ Ap or to Lp,∞(w) with w ∈ Ap′ .

Proof. Proof of Part (a): The fact that the function x→
∫
R

∣∣∣log
(
|x−t|
1+|t|

)
f(t)

∣∣∣ dt is locally inte-
grable in R can be proved with standard techniques and is left to the reader.

We next show that (Bf)′ = Hf in the sense of distributions if f belongs to one of the
function spaces stated in the lemma. Let ϕ be an infinitely differentiable function defined in R
and with compact support. We will show that 〈(Bf)′, ϕ〉 = 〈Hf, ϕ〉, where 〈T, ϕ〉 denotes the
action of a distribution T on the test function ϕ. Assume supp(ϕ) ⊂ (a, b) for some −∞ <
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a < b <∞, then

〈(Bf)′, ϕ〉 = −
∫
R
Bf(x)ϕ′(x) dx =

1

π

∫ b

a

(∫
R

log
(
|x−t|
1+|t|

)
f(t) dt

)
ϕ′(x) dx

=
1

π

∫
R

(∫ b

a

log
(
|x−t|
1+|t|

)
ϕ′(x) dx

)
f(t) dt =

1

π

∫
R

(∫ b

a

log |x− t|ϕ′(x) dx

)
f(t) dt

= −
∫
R
Hϕ(t) f(t) dt =

∫
R
Hf(t)ϕ(t) dt = 〈Hf, ϕ〉,

where in the third equality we have used Fubini since
∫
R

∣∣∣log
(
|x−t|
1+|t|

)
f(t)

∣∣∣ dt is locally inte-

grable and ϕ′ is bounded, in the fourth equality we have used that
∫ b
a
ϕ′(x) dx = 0, in the fifth

equality we have used that (log |x|)′ = p.v. 1
x

and in the second to last equality we have used
Lemma 2.3.

Proof of Part (b): Fix x0 ∈ R such thatMα(∇uf )(x0) < ∞ and the integral defining Bf(x0)
is absolutely convergent; for (x, y) ∈ Γα(x0) we then have

|uf (x, y)− Bf(x0)| ≤ |uf (x, y)− uf (x0, y)|+ |uf (x0, y)− Bf(x0)|

≤
∣∣∣∣∫ x

x0

∣∣∣∣∂uf∂t (t, y)

∣∣∣∣ dt∣∣∣∣+ |uf (x0, y)− Bf(x0)|

≤ Mα(∇uf )(x0) |x− x0|+ |uf (x0, y)− Bf(x0)| .

The desired convergence will follow if we prove that |uf (x0, y)− Bf(x0)| as y → 0. The latter

is a consequence of monotone convergence since log

(√
(x0−t)2+y2

1+|t|

)
decreases to log

(
|x0−t|
1+|t|

)
as y → 0, and the integrals

∫
R

∣∣∣∣log

(√
(x0−t)2+y2

1+|t|

)∣∣∣∣ g(t) dt and
∫
R

∣∣∣log
(
|x0−t|
1+|t|

)∣∣∣ g(t) dt are

finite for y > 0, g = f+ and g = f−.
Finally, we note that Remark 3.2 implies thatMα(∇uf ) is finite almost everywhere in R if,

for some 1 < p <∞, f belongs to Lp,∞(w) with w ∈ Ap or Lp,∞(w) with w ∈ Ap′ .
�

3.2. Proof of Theorem 1.5. Let fD and fN be zero in the complements of D and N, respec-
tively.

Proof of Part (a): Let fD be such that f ′D ∈ Lp(w) and fN ∈ Lp(w). Consider h1 given by

h1 = fN + pD,

where pD is zero outside D and is to be determined so that h1 ∈ Lp(w) and (Bh1)′ = f ′D on
D in the sense of distributions, with B defined as in (3.3). Once h1 is found, we will show
that there exists a constant C such that uh1 + C, with uh1 as in (3.2), is a solution of the mixed
problem (1.1) in the upper half-plane and that

(3.4) ‖Mα(∇(uh1 + C))‖Lp(w) . ‖f ′D‖Lp(w) + ‖fN‖Lp(w),

where 0 < α < π/2 and the implicit constant is independent of fD and fN .
By Lemma 3.3, we must have

(3.5) f ′D(x) = Hh1(x) for a.e. x > 0.
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Reasoning heuristically, we then obtain

f ′D(x2)−H(fN)(x2) = H(pD)(x2) =
1

π

∫ ∞
0

pD(t)

x2 − t
dt

=
1

π

∫ ∞
0

pD(t2)
2t

x2 − t2
dt =

1

π

∫ ∞
0

pD(t2)

(
1

x− t
− 1

x+ t

)
dt

=
1

π

(∫ ∞
0

pD(t2)

x− t
dt−

∫ 0

−∞

pD(t2)

x− t
dt

)
= Hq1(x),

where

q1(x) =

{
pD(x2) for x > 0,

−pD(x2) for x < 0.

SinceH2 = −Id, then q1(x) = −H (f ′D(t2)−H(fN)(t2)) (x) for x ∈ R, which leads to

(3.6) pD(x) = −H
(
f ′D(t2)−H(fN)(t2)

)
(
√
x) for x > 0.

We note that f ′D(x2)−H(fN)(x2) ∈ Lp(|x|w(x2)) (see line (3.9) below); since |x|w(x2) ∈ Ap,
q1 and Hq1 are well-defined and the above heuristic reasoning is justified. We then obtain that
h1 is given by

(3.7) h1(x) =

{
fN(x) for x < 0,

−H (f ′D(t2)−H(fN)(t2)) (
√
x) for x > 0.

We next prove that, under the assumptions on w, h1 ∈ Lp(w) and

(3.8) ‖h1‖Lp(w) . ‖f
′
D‖Lp(w) + ‖fN‖Lp(w) .

Indeed, we have

‖h1‖pLp(w) = ‖fN‖pLp(w) +

∫ ∞
0

|h1(x)|pw(x) dx,

and using that |x|w(x2) ∈ Ap and w ∈ Ap, it follows that∫ ∞
0

|h1(x)|pw(x) dx =

∫ ∞
0

|H
(
f ′D(t2)−H(fN)(t2)

)
(
√
x)|pw(x) dx

= 2

∫ ∞
0

|H
(
f ′D(t2)−H(fN)(t2)

)
(x)|p|x|w(x2) dx

.
∫ ∞
−∞
|f ′D(x2)−H(fN)(x2)|p|x|w(x2) dx(3.9)

=

∫ ∞
0

|f ′D(x)−H(fN)(x)|pw(x) dx . ‖f ′D‖
p
Lp(w) + ‖fN‖pLp(w) ,

from which (3.8) is obtained.
We now show that (Bh1)′ = f ′D on D in the sense of distributions. We have Hh1 = f ′D

almost everywhere on D by (3.5) and therefore Hh1 = f ′D on D in the sense of distributions;
moreover, Hh1 = (Bh1)′ on R in the sense of distributions by Part (a) of Lemma 3.3, which
implies that Hh1 = (Bh1)′ on D in the sense of distributions. As a consequence, (Bh1)′ = f ′D
on D in the sense of distributions.

We next obtain a solution of the mixed problem (1.1) in the upper half-plane. Since (Bh1)′ =
f ′D on D in the sense of distributions, there exists a constant C such that fD = Bh1 +C almost
everywhere on D. By Theorem 3.1, uh1 + C is harmonic in R2

+ and ∇(uh1 + C) · (0,−1) =
h1 in the sense of non-tangential convergence; in particular, the latter implies that we have
∇(uh1 + C) · (0,−1) = fN on N in the sense of non-tangential convergence. Moreover,

‖Mα(∇(uh1 + C))‖Lp(w) . ‖h1‖Lp(w);
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this estimate and (3.8), lead to (3.4). Finally, Lemma 3.3 gives that uh1 = Bh1 almost every-
where on R in the sense of non-tangential convergence and therefore uh1 + C = fD almost
everywhere on D in the sense of non-tangential convergence.

Proof of Part (b): Let fD satisfy f ′D ∈ Lp(w) and fN ∈ Lp(w). We proceed as in Part (a) to
find another function h2 such that

h2 = fN + pD

where now pD is zero outside D and is to be determined so that h2 ∈ Lp(w) and (Bh2)′ = f ′D
on D in the sense of distributions. Repeating the computations in Part (a) up to the identity

f ′D(x2)−H(fN)(x2) =
1

π

∫ ∞
0

pD(t2)
2t

x2 − t2
dt,

we continue heuristically as follows:

f ′D(x2)−H(fN)(x2) =
1

πx

∫ ∞
0

pD(t2) t

(
1

x− t
+

1

x+ t

)
dt

=
1

πx

(∫ ∞
0

pD(t2) t

x− t
dt−

∫ 0

−∞

pD(t2) t

x− t
dt

)
=

1

πx
Hq2(x),

with q2 defined as

q2(x) =

{
pD(x2)x for x > 0,

−pD(x2)x for x < 0.

Using again that H2 = −Id, it follows that q2(x) = −H [π t (f ′D(t2)−H(fN)(t2))] (x) for
x ∈ R and therefore

(3.10) pD(x) = − 1√
x
H
[
π t
(
f ′D(t2)−H(fN)(t2)

)]
(
√
x) for x > 0.

The heuristic argument given above is justified since x (f ′D(x2)−H(fN)(x2)) ∈ Lp(|x|1−pw(x2))
and |x|1−pw(x2) ∈ Ap (see line (3.13) below), giving that q2 andHq2 are well-defined. We then
have

(3.11) h2(x) =

{
fN(x) for x < 0,

− 1√
x
H [π t(f ′D(t2)−H(fN)(t2))] (

√
x) for x > 0.

We next show that h2 ∈ Lp(w) and

(3.12) ‖h2‖Lp(w), . ‖f
′
D‖Lp(w) + ‖fN‖Lp(w) .

We have

‖h2‖pLp(w) = ‖fN‖pLp(w) +

∫ ∞
0

|h2(x)|pw(x) dx,



THE ZAREMBA PROBLEM IN TWO-DIMENSIONAL LIPSCHITZ GRAPH DOMAINS 11

and since |x|1−pw(x2) ∈ Ap and w ∈ Ap, then∫ ∞
0

|h2(x)|pw(x) dx =

∫ ∞
0

∣∣∣∣ 1√
x
H
[
π t
(
f ′D(t2)−H(fN)(t2)

)]
(
√
x)

∣∣∣∣pw(x) dx

= 2

∫ ∞
0

|H
[
π t
(
f ′D(t2)−H(fN)(t2)

)]
(x)|p|x|1−pw(x2) dx

.
∫ ∞
−∞
|x
(
f ′D(x2)−H(fN)(x2)

)
|p|x|1−pw(x2) dx(3.13)

= 2

∫ ∞
0

|f ′D(x2)−H(fN)(x2)|p|x|w(x2) dx

=

∫ ∞
0

|f ′D(x)−H(fN)(x)|pw(x) dx . ‖f ′D‖
p
Lp(w) + ‖fN‖pLp(w) ,

from which (3.12) follows.
The same reasoning used in Part (a) shows that uh2 + C is a solution of the mixed problem

(1.1) in the upper half-plane, where C is a constant such that fD = Bh2 +C almost everywhere
on D, and that the estimate

‖Mα(∇(uh2 + C))‖Lp(w) . ‖f ′D‖Lp(w) + ‖fN‖Lp(w)

holds.

For the proofs of Parts (c) and (d), we will denote w̃(t) = 2|x|w(x2) and use the following
identities:∥∥g(

√
·)χD

∥∥
Lp,1(w)

= ‖gχD‖Lp,1(w̃) and
∥∥g(
√
·)χD

∥∥
Lp,∞(w)

= ‖gχD‖Lp,∞(w̃) .

Since w̃ is even, for g even, it holds that

‖g‖Lp,1(w̃) = 2 ‖gχD‖Lp,1(w̃) and ‖g‖Lp,∞(w̃) = 2 ‖gχD‖Lp,∞(w̃) .

Proof of Part (c): Let fD be such that f ′D ∈ Lp,1(w) and fN ∈ Lp,1(w).We consider h1 as given
in (3.7) and show that, under the assumptions on w, h1 ∈ Lp,∞(w) and

(3.14) ‖h1‖Lp,∞(w) . ‖f
′
D‖Lp,1(w) + ‖fN‖Lp,1(w) .

We have

‖h1‖Lp,∞(w) ≤ ‖fN‖Lp,∞(w) + ‖h1χD‖Lp,∞(w) ≤ ‖fN‖Lp,1(w) + ‖h1χD‖Lp,∞(w) .

Since w ∈ Ap and w̃ ∈ ARp , we obtain

‖h1χD‖Lp,∞(w) =
∥∥H (f ′D(x2)−H(fN)(x2)

)
χD
∥∥
Lp,∞(w̃)

.
∥∥f ′D(x2)−H(fN)(x2)

∥∥
Lp,1(w̃)

= 2
∥∥(f ′D(x2)−H(fN)(x2)

)
χD
∥∥
Lp,1(w̃)

= 2 ‖f ′D −H(fN)χD‖Lp,1(w) . ‖f
′
D‖Lp,1(w) + ‖fN‖Lp,1(w) ,

from which (3.14) follows.
Using Remark 3.2 and the same reasoning as in Part (a) shows that uh1 + C is a solution of

the mixed problem (1.1) in the upper half-plane, where C is a constant such that fD = Bh1 +C
almost everywhere on D, and that the estimate

‖Mα(∇uh1 + C)‖Lp,∞(w) . ‖f ′D‖Lp,1(w) + ‖fN‖Lp,1(w)

holds.

Proof of Part (d): Let fD be such that f ′D ∈ Lp,1(w) and fN ∈ Lp,1(w). We consider h2 as
given in (3.11) and show that, under the assumptions on w, h2 ∈ Lp,∞(w) and

(3.15) ‖h2‖Lp,∞(w) . ‖f
′
D‖Lp,1(w) + ‖fN‖Lp,1(w) .
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We have

‖h2‖Lp,∞(w) . ‖fN‖Lp,∞(w) + ‖h2χD‖Lp,∞(w) ≤ ‖fN‖Lp,1(w) + ‖h2χD‖Lp,∞(w) .

Consider the operators

Sf(x) =
H(w(t2)|t|f(t))(

√
x)χD(x)√

xw(x)
and S̃f(x) =

H(w(t2)|t|f(t))(x)χD(x)

xw(x2)

and note that, by Part (a) of Lemma 2.2, it follows that

‖Sf‖Lp,∞(w) =
∥∥∥S̃f∥∥∥

Lp,∞(w̃)
=

∥∥∥∥H(w̃f)χD
w̃

∥∥∥∥
Lp,∞(w̃)

. ‖f‖Lp,1(w̃) .

Taking f(x) =
−πsign(x)(f ′D(x2)−H(fN )(x2))

w(x2)
, we have Sf = h2χD

w
; therefore

‖h2χD‖Lp,∞(w) =

∥∥∥∥h2χD
w

∥∥∥∥
Lp,∞(w)

.

∥∥∥∥f ′D(x2)−H(fN)(x2)

w(x2)

∥∥∥∥
Lp,1(w̃)

= 2

∥∥∥∥(f ′D(x2)−H(fN)(x2)

w(x2)

)
χD

∥∥∥∥
Lp,1(w̃)

= 2

∥∥∥∥f ′D −H(fN)

w
χD

∥∥∥∥
Lp,1(w)

.

∥∥∥∥f ′Dw
∥∥∥∥
Lp,1(w)

+

∥∥∥∥fNw
∥∥∥∥
Lp,1(w)

= ‖f ′D‖Lp,1(w) + ‖fN‖Lp,1(w) ,

where in the last inequality we have used Part (b) of Lemma 2.2.
Using Remark 3.2 and the same reasoning as in Part (a) shows that uh2 + C is a solution of

the mixed problem (1.1) in the upper half-plane, where C is a constant such that fD = Bh2 +C
almost everywhere on D, and that the estimate

‖Mα(∇uh2)‖Lp,∞(w) . ‖f ′D‖Lp,1(w) + ‖fN‖Lp,1(w)

holds.
�

3.3. Proof of Corollary 1.6. Proof of Part (a): Recalling that if 1 < p < ∞, |x|a ∈ Ap if and
only if −1 < a < p− 1, the conditions on w ≡ 1 become p > 2 in Part (a) of Theorem 1.5 and
p < 2 in Part (b) of Theorem 1.5. This gives the solvability result for all p 6= 2. As mentioned
in the introduction, known examples show that the Zaremba problem in the upper half-plane
with N = (−∞, 0) and D = (0,∞) is not solvable in X = L2(R) with Y = L2(R) (see, for
instance, [15, 20]).

Proof of Part (b): We have that |x|a ∈ ARp if and only if−1 < a ≤ p−1. In particular, |x| ∈ AR2
and the result follows from Part (c) of Theorem 1.5.

�

4. SOLVABILITY OF THE ZAREMBA PROBLEM IN A LIPSCHITZ GRAPH DOMAIN

The goal of this section is to prove Theorem 1.4 on the solvability of the Zaremba problem
in a general Lipschitz graph domain Ω as in (1.2) with N and D as in (1.3). The proof is based
on Theorem 1.5 as well as on results regarding the solvability of the Neumann problem in a
Lipschitz graph domain in the plane. In Section 4.1 we present some preliminaries along with
such results. We give the proof of Theorem 1.4 in Section 4.2.
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4.1. Preliminaries and the Neumann problem in a Lipschitz graph domain in the plane.
Let Ω be a Lipschitz graph domain in the plane as in (1.2). Since Ω is simply connected, it
is conformally equivalent to R2

+; let Φ : R2
+ −→ Ω be a conformal map such that Φ(∞) =

∞. Then Φ extends as a homeomorphism from R2
+ onto Ω and Φ(x), x ∈ R, is absolutely

continuous when restricted to any finite interval; in particular, Φ′(x) exists for almost every
x ∈ R and is locally integrable. Moreover, Φ′(x) 6= 0 for almost every x ∈ R, limz→x Φ′(z) =
Φ′(x) for almost every x ∈ R in the sense of non-tangential convergence and |Φ′| ∈ A2. If
Φ′(x) exists and is not zero, then it is a vector tangent to ∂Ω at Φ(x). See Kenig [13, Theorems
1.1 and 1.10] for the proof of those properties and additional ones. Given N and D as in (1.3),
we will assume that Φ((−∞, 0)) = N and Φ((0,∞)) = D.

We next recall the definitions of rΦ and pΦ. Let 1 ≤ rΦ ≤ ∞ be such that its conjugate
exponent is defined by

r′Φ = inf{q ∈ (1,∞) : |xΦ′(x2)| ∈ Aq and |Φ′(x)| ∈ Aq}.
Let 1 ≤ pΦ ≤ ∞ be such that its conjugate exponent is defined by

p′Φ = inf{q ∈ (1,∞) : |Φ′(x)| ∈ Aq}.
Note that we have rΦ ≤ pΦ and rΦ < pΦ if |Φ′| ∈ Ar′Φ with rΦ <∞.

Denote by Lp(∂Ω) the space of measurable functions in ∂Ω that are p-integrable with respect
to arc-length; similarly, Lp,1(∂Ω) and Lp,∞(∂Ω) are the corresponding Lorentz spaces with
respect to arc-length in ∂Ω. Given a measurable function g defined in ∂Ω, let Tg and T̃ g be
given by

T̃ g(x) = Φ′(x)g(Φ(x)) and Tg(x) = |Φ′(x)|g(Φ(x)), x ∈ R.

We note that (g ◦ Φ)′ = T̃ g′ since, for x ∈ R,
(g ◦ Φ)(x) = g(Φ1(x),Φ2(x)) = g(Φ1(x), γ(Φ1(x))) = (g ◦ ν)(Φ1(x)),

and, by Definition 1.2,

(g ◦ Φ)′(x) = (g ◦ ν)′(Φ1(x))Φ′1(x) = g′(Φ(x))(1 + iγ′(Φ1(x))Φ′1(x)

= g′(Φ(x))Φ′(x).

Also, if 1 < p <∞, then T and T̃ are bijections from Lp(∂Ω) onto Lp(|Φ′|1−p), from Lp,1(∂Ω)
onto Lp,1(|Φ′|) and from Lp,∞(∂Ω) onto Lp,∞(|Φ′|); in particular, it holds that

‖T̃ g‖Lp(|Φ′|1−p) = ‖Tg‖Lp(|Φ′|1−p) = ‖g‖Lp(∂Ω),(4.1)

‖T̃ g‖Lp,1(|Φ′|) = ‖Tg‖Lp,1(|Φ′|) = ‖g‖Lp,1(∂Ω),(4.2)

‖T̃ g‖Lp,∞(|Φ′|) = ‖Tg‖Lp,∞(|Φ′|) = ‖g‖Lp,∞(∂Ω).(4.3)

Given fD and fN and the corresponding mixed problem (1.1) in Ω, we will consider the fol-
lowing mixed problem in the upper half-plane (see Figure 1):

(4.4)


∆u = 0 in R2

+,

u = fD ◦ Φ in (0,∞),

∇u · n = TfN in (−∞, 0).

We end this section by recalling results regarding the solvability of the Neumann problem in
a Lipschitz graph domain. Consider the classical Neumann boundary value problem in Ω :

(4.5) ∆v = 0 on Ω and ∇v · n = g on ∂Ω,

where n denotes the outward unit normal vector to ∂Ω and the equality∇v ·n = g is interpreted
in the sense of non-tangential convergence.
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Theorem 4.1 (Solvability of the Neumann problem in Lp(∂Ω), Theorem 1.4 in [6]). Let Ω
be a Lipschitz graph domain in the plane as in (1.2) and Φ : R2

+ → Ω a conformal map. If
1 < p < pΦ and g ∈ Lp(∂Ω) then vg := uTg ◦ Φ−1 is a solution of (4.5) and

(4.6) ‖Mα(∇vg)‖Lp(∂Ω) . ‖g‖Lp(∂Ω),

where 0 < α < arctan(1/L) and the implicit constant is independent of g.

Remark 4.2. We note that Theorem 4.1 and interpolation give that the results of Theorem 4.1
also hold for Lp,∞(∂Ω) with 1 < p < pΦ.

4.2. Proof of Theorem 1.4. Let fN be zero outside N and fD be zero outside D. By the
assumption Φ((−∞, 0)) = N and Φ((0,∞)) = D, TfN is zero in (0,∞) while fD ◦ Φ and
T̃ f ′D are zero in (−∞, 0).

Proof of Part (a): We first note that the condition 1 < p < rΦ is equivalent to

(4.7) |xΦ′(x2)| ∈ Ap′ and |Φ′(x)| ∈ Ap′ .

In view of (4.1), for fN ∈ Lp(∂Ω) and fD such that f ′D ∈ Lp(∂Ω), we have TfN ∈
Lp(|Φ′|1−p) and (fD ◦Φ)′ = T̃ f ′D ∈ Lp(|Φ′|1−p). Also note that, by (4.7), w = |Φ′|1−p satisfies
the conditions in Part (b) of Theorem 1.5. Let then u be the solution of (4.4) given by Theo-
rem 1.5 corresponding to w = |Φ′|1−p and define v = u◦Φ−1. We will show that v is a solution
of the mixed problem (1.1) and

(4.8) ‖Mα(∇v)‖Lp(∂Ω) . ‖f ′D‖Lp(∂Ω) + ‖fN‖Lp(∂Ω).

According to the proof of Part (b) of Theorem 1.5, u = uh2 where

(4.9) h2(x) =

{
TfN(x) for x < 0,

− 1√
x
H
[
π t
(
T̃ f ′D(t2)−H(TfN)(t2)

)]
(
√
x) for x > 0,

and h2 ∈ Lp(|Φ′|1−p). By Theorem 4.1, v is a solution of the Neumann problem in Ω with
datum T−1h2; that is, v is harmonic in Ω and ∇v · n = T−1h2 almost everywhere in ∂Ω in the
sense of non-tangential convergence. Moreover,

‖Mα(∇v)‖Lp(∂Ω) . ‖T−1h2‖Lp(∂Ω).

We then have∇v · n = fN on N and since

‖T−1h2‖Lp(∂Ω) = ‖h2‖Lp(|Φ′|1−p) . ‖T̃ f ′D‖Lp(|Φ′|1−p) + ‖TfN‖Lp(|Φ′|1−p)

= ‖f ′D‖Lp(∂Ω) + ‖fN‖Lp(∂Ω)

by (4.1) and (3.12), we obtain (4.8). Finally, v = fD since v ◦ Φ = u = fD ◦ Φ.

Proof of Part (b): Recalling (4.2), for fN ∈ LrΦ,1(∂Ω) and fD such that f ′D ∈ LrΦ,1(∂Ω), we
have TfN ∈ LrΦ,1(|Φ′|) and (fD ◦Φ)′ = T̃ f ′D ∈ LrΦ,1(|Φ′|). Also note that, by (1.4), w = |Φ′|
satisfies the conditions in Part (d) of Theorem 1.5 with p = rΦ. Let then u be the solution of
(4.4) given by Theorem 1.5 corresponding to w = |Φ′| and define v = u ◦ Φ−1. We will show
that v is a solution of the mixed problem (1.1) and

(4.10) ‖Mα(∇v)‖LrΦ,∞(∂Ω) . ‖f ′D‖LrΦ,1(∂Ω) + ‖fN‖LrΦ,1(∂Ω).

In this case, according to Part (d) of Theorem 1.5, u = uh2 with h2 ∈ LrΦ,∞(|Φ′|) given by
(4.9). Since rΦ < pΦ, Remark 4.2 give that v is harmonic in Ω and ∇v · n = T−1h2 almost
everywhere in ∂Ω in the sense of non-tangential convergence. Moreover,

(4.11) ‖Mα(∇v)‖LrΦ,∞(∂Ω) . ‖T−1h2‖LrΦ,∞(∂Ω).
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As in Part (a), the boundary conditions hold and the estimate (4.10) follows from (4.11), (4.3),
(3.15) and (4.2).

�

Remark 4.3. Let rΦ < ∞ and assume |Φ′| ∈ Ar′Φ . Recalling the definition of rΦ, the weight
|xΦ′(x2)| fails to be in the classAr′Φ ; however, it may belong to the larger classARr′Φ . Then, (1.4)
is a natural condition for the endpoint rΦ when compared to condition (4.7) corresponding to
the case 1 < p < rΦ.

An analogous proof for that of Part (a) of Theorem 1.4 leads to the following result.

Theorem 4.4. Let Ω be as in (1.2), D and N be as in (1.3) and Φ : R2
+ → Ω be a conformal

map such that Φ((−∞, 0)) = N and Φ((0,∞)) = D. Then the mixed problem (1.1) is solvable
in the setting X = Y = Lp(∂Ω) and 1 < p <∞ under the condition

(4.12) |x||Φ′(x2)|1−p ∈ Ap and |Φ′(x)|1−p ∈ Ap.

Proof. We reason exactly as in the proof of Part (a) of Theorem 1.4 by observing that w =
|Φ′|1−p satisfies the conditions in Part (a) of Theorem 1.5 by the assumption (4.12) and using
u = uh1 where

(4.13) h1(x) =

{
TfN(x) for x < 0,

−H
(
T̃ f ′D(t2)−H(TfN)(t2)

)
(
√
x) for x > 0.

�

Remark 4.5. We make some observations related to the conditions (4.7) and (4.12). To that
end, we will use the fact that if w0 ∈ Aq0 and w1 ∈ Aq1 for some 1 ≤ q0, q1 < ∞, 0 ≤ θ ≤ 1,

1/q = (1− θ)/q0 + θ/q1 and w(1−θ)q/q0
0 w

θq/q1
1 , then w ∈ Aq.

• The conditions (4.7) and (4.12) are incompatible for the same value of p: Suppose that
w0(x) = |xΦ′(x2)| ∈ Ap′ and w1(x) = |x||Φ′(x2)|1−p ∈ Ap; taking q0 = p′, q1 = p
and θ = 1/2, we get that |x| ∈ A2, which is false.
• Assume rΦ < pΦ; the set of values of p such that (4.12) holds is an open interval

contained in (rΦ, pΦ) :
In view of the definition of pΦ, the condition |Φ′(x)|1−p ∈ Ap in (4.12) implies that

p < pΦ; the incompatibility of (4.7) and (4.12) gives that if (4.12) holds for p then
p ≥ rΦ.

Assume that (4.12) is satisfied for p0 and p1 with p0 < p1 and let p0 < p < p1. If
0 ≤ θ ≤ 1 is such that 1/p′ = (1− θ)/p′0 + θ/p′1, we have(
|x|1−p′0 |Φ′(x2)|

)(1−θ)p′/p′0 (|x|1−p′1|Φ′(x2)|
)θp′/p′1

= |x|1−p′|Φ′(x2)| ∈ Ap′ ;

moreover, |Φ′(x2)| ∈ Ap′ since Ap′1 ⊂ Ap′ . Thus, (4.12) holds with p.
Finally, we show that if (4.12) holds for p then (4.12) holds for q in a neighborhood

of p. If (4.12) holds for p, then |x|1−p′Φ′(x2) ∈ Ap′ ; hence, there exist A1 weights u0

and u1 such that
|x|1−p′Φ′(x2) = u0u

1−p′
1 .

Since Mδ0(x) ≈ 1/|x|, it follows that

|x|1−q′Φ′(x2) ≈ u0u
1−p′
1 (Mδ0)q

′−p′ .

Assume q < p and let r > 1 be such that ur0 ∈ A1; then

u0u
1−p′
1 (Mδ0)q

′−p′ = u1−p′
1

(
(ur0)

1
r (Mδ0)q

′−p′
)
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is a weight in Ap′ ⊂ Aq′ for q sufficiently near p such that 1
r

+ q′ − p′ < 1. Since
the condition |Φ′(x)|1−p ∈ Ap is equivalent to |Φ′(x)| ∈ Ap′ , we also have |Φ′(x)| ∈
Aq′ . We have then shown that (4.12) holds for q < p with q sufficiently closed to p.
Reasoning similarly with u1 instead of u0, it follows that (4.12) holds for q > p with q
sufficiently closed to p.

5. APPLICATIONS

In this section we present applications of Theorem 1.4 when the domain is a cone with vertex
at the origin and, more generally, for Schwarz–Christoffel domains.

5.1. The Zaremba problem for cones. We will consider Ω to be a cone with vertex at the
origin and aperture απ with 0 < α < 2, as shown in Figures 2.

Corollary 5.1. If Ω is a cone with vertex at the origin and aperture απ for some 0 < α < 2,
then the mixed problem (1.1) in Ω with N given by the left ray and D given by the right ray is
solvable in the following settings:
(a) X = Y = Lp(∂Ω) for the following values of α and p :

(i) 0 < α ≤ 1
2

and 1 < p <∞,
(ii) 1

2
< α ≤ 1 and 1 < p <∞ such that p 6= 2α

2α−1
,

(iii) 1 < α < 2 and 1 < p < α
α−1

such that p 6= 2α
2α−1

.

(b) X = Lp,1(∂Ω), Y = Lp,∞(∂Ω) for 1
2
< α < 2 and p = 2α

2α−1
.

A different proof for the solvability of the Zaremba problem in a cone, based on sharp in-
vertibility properties for a singular integral operator, is given in [1, Theorem 5] for values of
1 < p <∞ such that

p 6=



2−α
1−α if 0 < α ≤ 1

2
,

2−α
1−α ,

2α
2α−1

if 1
2
< α < 1,

2 if α = 1,
2α

2α−1
, α
α−1

if 1 < α ≤ 3
2
,

2α
2α−1

, 2α
2α−3

, α
α−1

if 3
2
< α < 2.

Corollary 5.1 improves [1, Theorem 5] by adding the solvability of the mixed problem in a cone
in Lp(∂Ω) for p = 2−α

1−α with 0 < α < 1 and in Lp,1(∂Ω) for p = 2α
2α−1

with 1
2
< α < 2. On the

other hand, for 1 < α < 2, the solvability of the mixed problem in a cone in Lp(∂Ω) given in
Corollary 5.1 is restricted to 1 < p < α

α−1
with α 6= 2α

2α−1
while the range in [1, Theorem 5]

includes all p > α
α−1

for 1 < α ≤ 3
2

and all p > α
α−1

with p 6= 2α
2α−3

for 3
2
< α < 2.

Proof of Corollary 5.1. Let Ω be a cone with vertex at the origin and aperture απ with 0 <
α < 2. Consider Φ : R2

+ → C given by Φ(z) = eiθ zα for some θ ∈ R, where we have
chosen the branch cut {iy : y ≤ 0} so that Φ is analytic in R2

+. Note that Φ((−∞, 0)) = N,
Φ((0,∞)) = D and |Φ′(x)| = α |x|α−1 for x ∈ R \ {0}.

π

zα

απ

eiθ

απ

Ω

D
N

FIGURE 2. Cone with aperture απ
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Proof of Part (a): We will see under what conditions on α and p, Φ satisfies (4.7) or (4.12).

Condition (4.7): Since

|xΦ′(x2)|1−p = α1−p|x|1−p+2(α−1)(1−p) and |Φ′(x)|1−p = α1−p|x|(α−1)(1−p),

we must have

−1 < 1− p+ 2(α− 1)(1− p) < p− 1 and − 1 < (α− 1)(1− p) < p− 1.(5.1)

We then obtain
• 0 < α ≤ 1

2
: (5.1) holds for all 1 < p <∞,

• 1
2
< α < 2 : (5.1) holds for 1 < p < 2α

2α−1
.

Condition (4.12) : Since

|x||Φ′(x2)|1−p = α1−p|x|1+2(α−1)(1−p) and |Φ′(x)|1−p = α1−p|x|(α−1)(1−p),

we must have

−1 < 1 + 2(α− 1)(1− p) < p− 1 and − 1 < (α− 1)(1− p) < p− 1.(5.2)

This leads to
• 0 < α ≤ 1

2
: there is no p such that (5.2) holds,

• 1
2
< α ≤ 1 : (5.2) holds for 2α

2α−1
< p <∞,

• 1 < α < 2 : (5.2) holds for 2α
2α−1

< p < α
α−1

.

From the analysis above we conclude the desired result.

Proof of Part (b): This will follow from Part (b) of Theorem 1.4 if we prove that rΦ = 2α
2α−1

and (1.4) holds.
For 1

2
< α < 2, we have

r′Φ = inf{q ∈ [1,∞) : |xΦ′(x2)| ∈ Aq and |Φ′(x)| ∈ Aq}
= inf{q ∈ [1,∞) : |xΦ′(x2)|1−q′ ∈ Aq′ and |Φ′(x)|1−q′ ∈ Aq′}
= inf {q ∈ [1,∞) : −1 < 1− q′ + 2(α− 1)(1− q′) < q′ − 1

and − 1 < (α− 1)(1− q′) < q′ − 1}
= inf{q ∈ [1,∞) : 1 < q′ < 2α

2α−1
},

and therefore rΦ = 2α
2α−1

.
In this case, condition (1.4) holds if and only if

−1 < α− 1 < r′Φ − 1 and − 1 < 1 + 2(α− 1) ≤ r′Φ − 1,

which is true since r′Φ = 2α. �

5.2. The Zaremba problem for Schwarz–Christoffel domains. In this section, we give ex-
amples of the Zaremba problem in domains Ω where the boundary ∂Ω is a polygonal curve
with a finite number of line segments. More precisely, Ω is defined by a collection of vertices
w1, w2, . . . wn−1 ∈ C, wn = ∞ and interior angles α1π, α2π, . . . , αn−1π, where 0 < αj < 2
for j = 1, · · · , n − 1. The vertices are given in counterclockwise order with respect to the
interior of Ω. In this case, Ω is called a polygon and we always assume that the polygon makes
a total turn of 2π; in particular, this implies

(5.3)
n−1∑
j=1

αj > n− 2.

Figure 3 illustrates this type of domain.
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α1π

α2π

α3π

αiπ

αn−2π

αn−1π

FIGURE 3. Unbounded polygon with w1, . . . , wn−1 ∈ C and wn =∞

Dricoll–Trefethen [10, Theorem 2.1] proved that given a polygon Ω as described above, if
Φ : R2

+ → Ω is a conformal mapping with Φ(∞) = wn, then

(5.4) Φ(z) = A+B

∫
[z0,z]

(ξ − x1)α1−1 · · · (ξ − xn−1)αn−1−1dξ,

where A,B ∈ C, z0 is a suitably chosen point in R2
+ or its boundary, [z0, z] is the straight

line segment from z0 to z, x1, . . . , xn−1 ∈ R with x1 < · · · < xn−1 and Φ(xj) = wj for
j = 1, . . . , n − 1. A mapping of this form is called a Schwarz–Christoffel transformation and
we say that Ω is a Schwarz–Christoffel domain. We have

(5.5) |Φ′(x)| = |B||x− x1|α1−1|x− x2|α2−1 · · · |x− xn−1|αn−1−1.

Before stating the main result in this section (Corollary 5.4), on the solvability of the Zaremba
problem in a Schwarz–Christoffel domain, we present two lemmas to determine the classes of
weights to which |xΦ′(x2)| and |Φ′(x)| belong.

Lemma 5.2 ([6, Section 5.1], [7, Lemma 2.12]). Let β1, β2, . . . , βM ∈ (−1,∞), x1, x2, . . . , xM ∈
R be such that x1 < x2 < · · · < xM and

w(x) = |x− x1|β1|x− x2|β2 · · · |x− xM |βM .
Then w ∈ ARq with

q = max{1, β1 + 1, β2 + 1 . . . , βM + 1, 1 +
M∑
j=1

βj}

and w /∈ ARp whenever p < q.

Lemma 5.3. Let Φ be a Schwarz–Christoffel transformation as given in (5.4) with x1 < x2 <
· · · < xn−1 and 0 < αj < 2 for j = 1, · · · , n− 1.
(a) |Φ′(x)| ∈ ARq0 with

(5.6) q0 = max{1, α1, α2, . . . , αn−1, 2− n+
n−1∑
j=1

αj}

and w /∈ ARp whenever p < q0.
(b) If x1 > 0, then |xΦ′(x2)| ∈ ARq1 with

(5.7) q1 = max{2, 4− 2n+ 2
n−1∑
j=1

αj}

and w /∈ ARp whenever p < q1.
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(c) If x1 = 0, then |xΦ′(x2)| ∈ ARq2 with

(5.8) q2 = max{1, 2α1, α2, · · · , αn−1, 4− 2n+ 2
n−1∑
j=1

αj}

and w /∈ ARp whenever p < q2.

Proof. Part (a) follows directly from (5.5) and Lemma 5.2. For parts (b) and (c), we have

|xΦ′(x2)| = |B||x|2−1

n−1∏
j=1

|x−√xj|αj−1|x+
√
xj|αj−1,

and

|xΦ′(x2)| = |B||x|2α1−1

n−1∏
j=2

|x−√xj|αj−1|x+
√
xj|αj−1,

respectively. The desired results then follow by applying Lemma 5.2 and recalling that αj < 2
for j = 1, · · · , n− 1. �

We next state and prove the main result of this section:

Corollary 5.4. Let Ω be a Schwarz–Christoffel domain as in Fig 3 with Φ : R2
+ → Ω given

by (5.4), where 0 ≤ x1 < x2 < · · · < xn−1. Consider the mixed problem (1.1) with N =
Φ((−∞, 0)) and D = Φ((0,∞)).

(a) If x1 > 0 then

rΦ =
max{2, 4− 2n+ 2

∑n−1
j=1 αj}

max{2, 4− 2n+ 2
∑n−1

j=1 αj} − 1
.

The mixed problem (1.1) is solvable in X = Y = Lp(∂Ω) with 1 < p < rΦ and in
X = LrΦ,1(∂Ω) with Y = LrΦ,∞(∂Ω).

(b) If x1 = 0 then

rΦ =
max{1, 2α1, α2, · · · , αn−1, 4− 2n+ 2

∑n−1
j=1 αj}

max{1, 2α1, α2, · · · , αn−1, 4− 2n+ 2
∑n−1

j=1 αj} − 1
.

The mixed problem (1.1) is solvable inX = Y = Lp(∂Ω) with 1 < p < rΦ and, if rΦ < pΦ,
in X = LrΦ,1(∂Ω) with Y = LrΦ,∞(∂Ω).

Proof. We first note that, by (2.3), we have

(5.9) r′Φ = inf{q ∈ (1,∞) : |xΦ′(x2)| ∈ ARq and |Φ′(x)| ∈ Aq}.

and

(5.10) r′Φ = inf{q ∈ (1,∞) : |xΦ′(x2)| ∈ ARq and |Φ′(x)| ∈ ARq }.

Using (5.3), we obtain

(5.11) 2− n+
n−1∑
j=1

αj < 4− 2n+ 2
n−1∑
j=1

αj.

Let q0, q1 and q2 be as in the statement of Lemma 5.3.

Proof of Part (a): We have to prove that r′Φ = q1, |xΦ′(x2)| ∈ ARr′Φ and |Φ′(x)| ∈ Ar′Φ ; then
the desired result follows from Theorem 1.4.
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By (5.11) and since αj < 2 for j = 1, · · · , n − 1, we have q0 < q1. This inequality and the
inclusions (2.3) along with Part (a) of Lemma 5.3, Part (b) of Lemma 5.3 and (5.9) give

(5.12) |Φ′(x)| ∈ Aq1 , |xΦ′(x)| ∈ ARq1 , r′Φ = q1.

Proof of Part (b): We have to prove that r′Φ = q2, |xΦ′(x2)| ∈ ARr′Φ and |Φ′(x)| ∈ Ar′Φ ; then
the desired result follows from Theorem 1.4.

By (2.3), we have
p′Φ = inf{q ∈ (1,∞) : |Φ′(x)| ∈ ARq }.

This and Part (a) of Lemma 5.3 imply that p′Φ = q0. Then, the hypothesis rΦ < pΦ give
|Φ′(x)| ∈ Ar′Φ

The inequality (5.11) leads to q0 ≤ q2. This inequality and the inclusions (2.3) along with
Part (a) of Lemma 5.3, Part (c) of Lemma 5.3 and (5.10) give

(5.13) |Φ′(x)| ∈ ARq2 , |xΦ′(x)| ∈ ARq2 , r′Φ = q2.

�

Remark 5.5. Assume rΦ < ∞; then the condition |Φ′(x)| ∈ Ar′Φ is not possible in Part (b) of
Corollary 5.4 if rΦ = pΦ. Indeed, this implies that |Φ′(x)| ∈ Ap′Φ , which may only happen if
p′Φ = 1.
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