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ON SOME IMPROVED WEIGHTED WEAK TYPE INEQUALITIES

ANDREI K. LERNER, KANGWEI LI, SHELDY OMBROSI, AND ISRAEL P. RIVERA-RÍOS

Abstract. In this paper we obtain the sharp quantitative matrix weighted weak type
bounds for the Christ–Goldberg maximal operator MW,p in the case 1 < p < 2, im-
proving a recent result by Cruz-Uribe and Sweeting [7]. Also, in the scalar setting, we
improve a weak type bound obtained in [7] for Calderón–Zygmund operators.

1. Introduction

In this paper we consider weighted weak type inequalities of the form

(1.1) |{x ∈ Rd : |w(x)1/pT (fw−1/p)(x)| > α}| ≤
C

αp

∫

Rd

|f |pdx,

both in the scalar and matrix settings. Here 1 ≤ p <∞ and T is a given operator.
Suppose first that w is a scalar weight, that is, w is a non-negative locally integrable

function on Rd. In this case inequalities (1.1) were first considered by Muckenhoupt and
Wheeden in [18], and then studied by many authors, see, e.g., [6, 17, 22].

Observe that there are more standard weighted weak type inequalities of the form

(1.2) w{x ∈ Rd : |T (f)(x)| > α}| ≤
C

αp

∫

Rd

|f |pwdx,

where w(E) :=
∫

E
wdx for a measurable set E ⊂ Rd. Even though inequalities of the

form (1.1) are interesting in their own right, they are relatively exotic compared to (1.2).
The situation is different in the matrix weight setting. Suppose that w = W is a

matrix weight, that is, W is an n× n self-adjoint matrix function with locally integrable
entries such that W (x) is positive definite for a.e. x ∈ Rd. For f : Rd → Cn and a linear
operator T , define T (f) componentwise. Then the strong Lp(W ) boundedness of T means
that

∫

Rd

|W (x)1/pT (fW−1/p)(x)|pdx ≤ C

∫

Rd

|f |pdx,

and we see that (1.1) is its natural weak type counterpart, while (1.2) is meaningless in
the matrix setting.
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WEIGHTED WEAK TYPE INEQUALITIES 2

In what follows, we assume that T is a Dini-continuous Calderón–Zygmund operator.
Given a matrix weight W and 1 ≤ p <∞, define

TW,pf(x) :=W (x)1/pT (fW−1/p)(x).

We also consider the Christ–Goldberg maximal operator defined by

MW,pf(x) := sup
Q∋x

1

|Q|

∫

Q

|W 1/p(x)W−1/p(y)f(y)|dy.

For p = 2 this operator was defined by Christ–Goldberg [3] and for p > 1 by Goldberg [9].
Quantitative matrix weighted inequalities of the form (1.1) were first considered by

Cruz-Uribe et al. [5] in the case p = 1. In a very recent work by Cruz-Uribe and
Sweeting [7], the results of [5] have been extended to the case p > 1. Both results in [5, 7]
can be formulated as follows.

Theorem A ([5, 7]). Let 1 ≤ p <∞. Then

(1.3) ‖TW,pf‖Lp,∞ . [W ]
1+ 1

p

Ap
‖f‖Lp,

and the same bound holds for MW,p.

In [14], the authors showed that in the case p = 1 the quadratic dependence on [W ]A1

in (1.3) is best possible both for TW,1 and MW,1.
Suppose now that p > 1. Consider Theorem A for MW,p in the matrix case and for

Tw,p in the scalar case. From the known strong type bound for MW,p (which is due to
Buckley [1] in the scalar case, and Isralowitz–Moen [10] in the matrix case) one can
conclude that

(1.4) ‖MW,pf‖Lp,∞ . [W ]
1

p−1

Ap
‖f‖Lp (1 < p <∞).

Also, by the A2 theorem of Hytönen [12], the same bound holds for Tw,p when 1 < p ≤ 2.
Therefore, in both cases Theorem A provides a new bound for p satisfying 1 + 1

p
< 1

p−1
,

namely, for 1 < p < 1+
√
5

2
. It was conjectured in [7] that in this range (1.3) is sharp in

both cases considered above.
We will show that this conjecture is not true. For MW,p we obtain the sharp weak Lp

bound for all 1 < p < 2. For Tw,p we also obtain an improvement of Theorem A but our
new bound is probably not optimal. In order to state the sharpness part of our results,
let us define in the scalar setting

ϕMp(t) := sup
[w]Ap≤t

‖Mw,p‖Lp→Lp,∞ (t ≥ 1).

In the similar way define ϕTp(t). Our results read as follows.

Theorem 1.1. For all 1 < p < 2,

‖MW,pf‖Lp,∞ . [W ]
2
p

Ap
‖f‖Lp,

and, moreover, this bound is sharp in the sense that ϕMp(t) & t
2
p for all t ≥ 1.
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Theorem 1.2. For all 1 < p < 2,

(1.5) ‖Tw,pf‖Lp,∞ . [w]
1+ 1

p2

Ap

(

log([w]Ap + e)
)

1
p‖f‖Lp.

Some comments about these results are in order.

• The example used to prove the sharpness part of Theorem 1.1 is a modification of
the corresponding example constructed in the case p = 1 by the authors in [14].

• We emphasize that Theorem 1.2 is scalar, and it is not clear to us whether it can
be extended to the matrix case. Observe that the currently best known strong type
bound for TW,p in the matrix case is

‖TW,p‖Lp→Lp . [W ]
1+ 1

p(p−1)

Ap
(1 < p <∞)

(see [19] for the case p = 2 and [4] for all p > 1). It is a big open question whether
this bound can be improved to max( 1

p−1
, 1) as in the scalar case. The weak type

bound for TW,p obtained in Theorem A provides a new result when 1+ 1
p
< 1+ 1

p(p−1)
,

that is, when 1 < p < 2, and it is an important question whether in this range the
exponent 1 + 1

p
is sharp. Theorem 1.2 shows that this is not true in the scalar case.

• Even though we stated Theorem 1.2 for all 1 < p < 2, it provides a new bound in a
smaller range of p satisfying 1 + 1

p2
< 1

p−1
.

• The same example as in Theorem 1.1 shows also that ϕHp(t) & t
2
p for the Hilbert

transform H . For this reason it is tempting to conjecture that the right-hand side

of (1.5) can be improved to [w]
2
p

Ap
for all 1 < p < 2.

• In a very recent paper [20], the authors obtained a multilinear version of Theorem
A for Calderón–Zygmund operators in the scalar setting. In the linear case they
recover the exponent 1 + 1

p
of [w]Ap. Therefore it would be interesting to check

whether the approach used in the proof of Theorem 1.2 can be extended to the
multilinear setting.

We complement Theorems 1.1 and 1.2 by considering the corresponding weak type
bounds in the case p ≥ 2. First consider MW,p. Comparing the bounds in Theorem 1.1
and in (1.4), we see that 2

p
< 1

p−1
precisely when 1 < p < 2. Therefore, it is natural

to conjecture that (1.4) is sharp for p ≥ 2. The sharpness of the strong type bound
follows easily by the standard power weight example. However, the weak type case is
more complicated. While we are not able to establish this conjecture, we obtain a close
result by showing that (1.4) is ‘almost’ sharp for p ≥ 2.

Theorem 1.3. Let p ≥ 2. Then, for all t ≥ 1,

ϕMp(t) & t
1

p−1
(

log(t+ e)
)− 1

p .

In particular, this result shows that the exponent 1
p−1

in (1.4) cannot be decreased

when p ≥ 2.
Consider now Tw,p. By the A2 theorem [12],

‖Tw,p‖Lp,∞ . [w]Ap‖f‖Lp (p ≥ 2).

We will show that this bound is best possible.
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Theorem 1.4. Let p ≥ 2, and let H be the Hilbert transform. Then, for all t ≥ 1,

ϕHp(t) & t.

Observe that this result is much simpler than Theorem 1.3, namely, the example show-
ing the sharpness here is much more elementary compared to the example used in the
proof of Theorem 1.3.

The paper is organized as follows. Section 2 contains some preliminary facts. In
Section 3 we prove Theorems 1.1 and 1.3, and in Section 4 we prove Theorems 1.2
and 1.4.

Throughout the paper we use the notation A . B if A ≤ CB with some independent
constant C. We write A ≃ B if A . B and B . A.

2. Preliminaries

2.1. Dyadic lattices, sparse families and Calderón–Zygmund operators. Given
a cube Q0 ⊂ Rd, let D(Q0) denote the set of all dyadic cubes with respect to Q0, that
is, the cubes obtained by repeated subdivision of Q0 and each of its descendants into 2d

congruent subcubes.
A dyadic lattice D in Rd is any collection of cubes such that

(i) if Q ∈ D , then each child of Q is in D as well;
(ii) every 2 cubes Q′, Q′′ ∈ D have a common ancestor, i.e., there exists Q ∈ D such

that Q′, Q′′ ∈ D(Q);
(iii) for every compact set K ⊂ Rd, there exists a cube Q ∈ D containing K.

Lemma 2.1. There exist 3d dyadic lattices Dj such that for every cube Q ⊂ Rd there is

a cube R from some Dj which contains Q and |R| ≤ 3d|Q|.

This lemma and the above definition of a dyadic lattice can be found in [15].
Let D be a dyadic lattice. We say that a family S ⊂ D is η-sparse, 0 < η < 1, if for

every cube Q ∈ S,
∣

∣

∣

⋃

Q′∈S:Q′(Q

Q′
∣

∣

∣
≤ (1− η)|Q|.

In particular, if S ⊂ D is η-sparse, then defining for every Q ∈ S,

EQ = Q \
⋃

Q′∈S:Q′(Q

Q′,

we obtain that |EQ| ≥ η|Q| and the sets {EQ}Q∈S are pairwise disjoint. If the sparseness
number is nonessential we will skip it by simply saying that a family S is sparse.

The following result is an immediate combination of [15, Lemmas 6.3, 6.6].

Lemma 2.2. If S ⊂ D is η-sparse and m ≥ 2, then one can represent S as a disjoint

union S = ∪m
j=1Sj, where each family Sj is m

m+(1/η)−1
-sparse.

The following statement is implicit in [8]. We will give its proof for the sake of com-
pleteness.



WEIGHTED WEAK TYPE INEQUALITIES 5

Lemma 2.3. Let a family S ⊂ D be 7
8
-sparse. For a non-negative locally integrable ϕ

and γ > 0, set

F := {Q ∈ S : γ ≤
1

|Q|

∫

Q

ϕ ≤ 4γ}.

Then there exist pairwise disjoint subsets GQ ⊂ Q,Q ∈ F, such that for all Q ∈ F ,
∫

Q

ϕ ≤ 8

∫

GQ

ϕ.

Proof. Define

GQ := Q \
⋃

Q′∈F :Q′(Q

Q′.

Then the sets {GQ}Q∈F are pairwise disjoint. Next, let Pj be the maximal cubes of the
family {Q′ ∈ F : Q′ ( Q}. Then they are pairwise disjoint, and

∑

j

|Pj| = |Q \GQ| ≤
1

8
|Q|.

Hence,

γ|Q| ≤

∫

Q

ϕ =

∫

GQ

ϕ+
∑

j

∫

Pj

ϕ

≤

∫

GQ

ϕ+ 4γ
∑

j

|Pj| ≤

∫

GQ

ϕ+
γ

2
|Q|.

From this, γ|Q| ≤ 2
∫

GQ
ϕ, and the statement follows from the definition of F . �

Given a sparse family S, define for non-negative locally integrable ϕ the sparse operator
AS by

AS(ϕ)(x) :=
∑

Q∈S

( 1

|Q|

∫

Q

ϕ
)

χQ(x).

We say that T is a Dini-continuous Calderón–Zygmund operator if T is a linear operator
of weak type (1, 1) such that

Tf(x) =

∫

Rn

K(x, y)f(y)dy for all x 6∈ supp f

with kernel K satisfying the smoothness condition

|K(x, y)−K(x′, y)| ≤ ω

(

|x− x′|

|x− y|

)

1

|x− y|n

for |x− x′| < |x− y|/2, where ω is a modulus of continuity such that
∫ 1

0
ω(t)dt

t
<∞.

The following result is well known, see, e.g., [16] for a short proof.
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Theorem 2.4. Let T be a Dini-continuous Calderón–Zygmund operator. There exist

3d dyadic lattices Dj with the following property: for every compactly supported and

integrable f , there exist ηd-sparse families Sj ⊂ Dj such that

(2.1) |Tf(x)| .
3d
∑

j=1

ASj
(|f |)(x)

almost everywhere.

2.2. Matrix weights. Recall first that a scalar weight w satisfies the scalar Ap, p > 1,
condition if

[w]Ap := sup
Q

( 1

|Q|

∫

Q

w
)( 1

|Q|

∫

Q

w− 1
p−1

)p−1

<∞.

We will use the following sharp reverse Hölder property from [13].

Proposition 2.5. There exists a constant cd > 0 such that for all w ∈ Ap and every cube

Q ⊂ Rd,

(2.2)
( 1

|Q|

∫

Q

wr
)1/r

≤ 2
1

|Q|

∫

Q

w,

where r := 1 + 1
cd[w]Ap

.

Turn now to matrix weights. Given a n× n matrix W , define its operator norm by

‖W‖ := sup
u∈Cn:|u|=1

|Wu|.

Observe that if {ej} is the standard orthogonal basis of Cn, then

(2.3) ‖W‖ ≃
n

∑

j=1

|Wej|.

Further, if V,W self-adjoint positive definite n× n matrices, then ‖VW‖ = ‖WV ‖.
We say that a matrix weight W ∈ Ap, p > 1, if

[W ]Ap := sup
Q

1

|Q|

∫

Q

( 1

|Q|

∫

Q

‖W (x)1/pW (y)−1/p‖p
′

dy
)p/p′

dx <∞.

This definition was given by Roudenko [21]. Observe that for the scalar valued weights
w we obtain the standard Ap-constant [w]Ap. It was also shown in [21] that if W ∈ Ap,

then for any u ∈ Cn, the scalar weight |W 1/p(x)u|p belongs to the scalar Ap and

(2.4) [|W 1/p(x)u|p]Ap ≤ [W ]Ap.

We say that W ∈ A1 if

[W ]A1 := sup
Q

ess sup
y∈Q

1

|Q|

∫

Q

‖W (x)W (y)−1‖dx <∞.

Recall (see [9, Prop. 1.2]) that given a norm ρ on Cn, there is a self-adjoint and positive
definite matrix A, called a reducing operator, such that

ρ(u) ≃ |Au| (u ∈ Cn).
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Using this result, given a p > 1 and a cube Q ⊂ Rd, one can define a reducing operator
VQ,p such that

(2.5) |VQ,pu| ≃
( 1

|Q|

∫

Q

|W−1/p(y)u|p
′

dy
)1/p′

(u ∈ Cn).

For VQ,p such defined we will use the following standard properties.

Proposition 2.6. For any f ∈ Lp(Q),

1

|Q|

∫

Q

|V −1
Q,pW

−1/p(y)f(y)|dy .

(

1

|Q|

∫

Q

|f(y)|pdy

)1/p

.

Proof. By Hölder’s inequality,

1

|Q|

∫

Q

|V −1
Q,pW

−1/p(y)f(y)|dy ≤

(

1

|Q|

∫

Q

‖V −1
Q,pW

−1/p(y)‖p
′

dy

)1/p′ (
1

|Q|

∫

Q

|f(y)|pdy

)1/p

.

Next, using (2.3), (2.5) and that the matrices W−1/p(y) and V −1
Q,p commute in operator

norm, we obtain
(

1

|Q|

∫

Q

‖V −1
Q,pW

−1/p(y)‖p
′

dy

)1/p′

.

n
∑

j=1

(

1

|Q|

∫

Q

|W−1/p(y)V −1
Q,pej|

p′dy

)1/p′

.

n
∑

j=1

|VQ,pV
−1
Q,pej| ≤ n,

which, along with the previous estimate, completes the proof. �

Proposition 2.7. Assume that W ∈ Ap, p > 1. There is a constant cd > 0 such that for

s := 1 + 1
cd[W ]Ap

,
( 1

|Q|

∫

Q

‖W 1/p(x)VQ,p‖
spdx

)1/s

. [W ]Ap.

Proof. Combining (2.2) with (2.4) and (2.3), we obtain

(2.6)
( 1

|Q|

∫

Q

‖W 1/p(x)VQ,p‖
spdx

)1/s

.
1

|Q|

∫

Q

‖W 1/p(x)VQ,p‖
pdx.

Further, by (2.3) and (2.5),

1

|Q|

∫

Q

‖W 1/p(x)VQ,p‖
pdx . [W ]Ap,

which completes the proof. �

3. The Christ–Goldberg maximal operator

In this section we prove Theorems 1.1 and 1.3. The proof of Theorem 1.1 will be based
on several ingredients. The first one is a pointwise sparse bound for the local dyadic
Christ–Goldberg maximal operator defined by

Md
Q,W,pf(x) := sup

R∈D(Q),R∋x

1

|R|

∫

R

|W 1/p(x)W−1/p(y)f(y)|dy.
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In what follows, VQ,p denotes the reducing operator defined by (2.5).

Lemma 3.1. There exists a sparse family S ⊂ D(Q) such that for every r > 0 and for

a.e. x ∈ Q,

(3.1) Md
Q,W,pf(x)

r ≤ 2r
∑

R∈S

(

‖W 1/p(x)VR,p‖
1

|R|

∫

R

|V −1
R,pW

−1/p(y)f(y)|dy

)r

χR(x).

Proof. We will use almost the same argument as in [11, Section 5.1.2]. Let Md
Q denote

the standard local dyadic maximal operator in the scalar setting, that is,

Md
Qϕ(x) = sup

R∋x,R∈D(Q)

1

|R|

∫

R

|ϕ|.

Consider the set

Ω := {x ∈ Q :Md
Q(|V

−1
Q,pW

−1/pf |) > 2
1

|Q|

∫

Q

|V −1
Q,pW

−1/pf |}.

Then |Ω| ≤ 1
2
|Q|. Write Ω as the union of the maximal pairwise disjoint dyadic cubes,

Ω = ∪jRj.
Assume that x ∈ Q and R ∈ D(Q) is such that x ∈ R and R ∩ (Q \ Ω) 6= ∅. Then

1

|R|

∫

R

|W 1/p(x)W−1/p(y)f(y)|dy ≤ ‖W 1/p(x)VQ,p‖
1

|R|

∫

R

|V −1
Q,pW

−1/p(y)f(y)|dy

≤ 2‖W 1/p(x)VQ,p‖
1

|Q|

∫

Q

|V −1
Q,pW

−1/p(y)f(y)|dy.

From this, setting

Fj := {x ∈ Rj :M
d
Q,W,pf(x) 6=Md

Rj ,W,pf(x)},

we obtain that for x ∈ ∪jFj ∪ (Q \ Ω),

Md
Q,W,pf(x) ≤ 2‖W 1/p(x)VQ,p‖

1

|Q|

∫

Q

|V −1
Q,pW

−1/p(y)f(y)|dy.

Hence, for all x ∈ Q,

Md
Q,W,pf(x) ≤ 2

(

‖W 1/p(x)VQ,p‖
1

|Q|

∫

Q

|V −1
Q,pW

−1/p(y)f(y)|dy

)

χ∪jFj∪(Q\Ω)

+
∑

j

Md
Rj ,W,pf(x)χRj\Fj

.

From this, for any r > 0,

Md
Q,W,pf(x)

r ≤ 2r
(

‖W 1/p(x)VQ,p‖
1

|Q|

∫

Q

|V −1
Q,pW

−1/p(y)f(y)|dy

)r

χQ

+
∑

j

Md
Rj ,W,pf(x)

rχRj
.

Iterating this estimate, we obtain a 1
2
-sparse family S ⊂ D(Q), for which (3.1) holds. �
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Our second ingredient is a sparse operator defined in the scalar-valued setting for a
sparse family S ⊂ D and a sequence of non-negative functions λ := {λQ}Q∈S by

Tλ,Sψ(x) :=
∑

Q∈S
λQ(x)

( 1

|Q|

∫

Q

ψ
)

χQ(x).

Lemma 3.2. Suppose that there exist r > 1 and A > 0 such that

sup
Q∈S

( 1

|Q|

∫

Q

λQ(x)
rdx

)1/r

≤ A.

Then

‖Tλ,Sψ‖L1,∞ . Ar′‖ψ‖L1 .

Proof. Let us show first that Tλ,S is bounded on L(2r′)′ and

(3.2) ‖Tλ,Sψ‖L(2r′)′ . Ar′‖ψ‖L(2r′)′ .

By Hölder’s inequality and by sparseness,
∫

Rd

(Tλ,Sψ)ϕ =
∑

Q∈S

∫

Q

λQϕ
( 1

|Q|

∫

Q

ψ
)

≤ A
∑

Q∈S

( 1

|Q|

∫

Q

ϕr′
)1/r′( 1

|Q|

∫

Q

ψ
)

|Q|

. A
∑

Q∈S

∫

EQ

(Mr′ϕ)Mψ . A

∫

Rd

(Mr′ϕ)Mψ.

From this, applying Hölder’s inequality again, we obtain
∫

Rd

(Tλ,Sψ)ϕ . A‖Mr′ϕ‖L2r′‖Mψ‖L(2r′)′ . Ar′‖ϕ‖L2r′‖ψ‖L(2r′)′ ,

which, by duality, implies (3.2).
Take γ > 0 which will be chosen later on. Using the standard Calderón–Zygmund

decomposition, write the set Ω := {x ∈ Rd : MDψ(x) > γ} as the union of the maximal
cubes Qj ∈ D , and set

b :=
∑

j

(

ψ −
1

|Qj |

∫

Qj

ψ
)

χQj
, g := ψ − b.

Then, observing that for x 6∈ Ω, Tλ,Sb(x) = 0, and using (3.2), we obtain

|{x ∈ Rd : Tλ,Sψ(x) > 1}| ≤ |Ω|+ |{x 6∈ Ω : Tλ,Sg(x) > 1}|

.
1

γ
‖ψ‖L1 + (Ar′)(2r

′)′γ(2r
′)′−1‖ψ‖L1.

Optimizing this expression with respect to γ, we obtain

|{x ∈ Rd : Tλ,Sψ(x) > 1}| . Ar′‖ψ‖L1,

which completes the proof. �

Proof of Theorem 1.1. We start by showing that

(3.3) ‖MW,pf‖Lp,∞ . [W ]
2
p

Ap
‖f‖Lp.
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The proof follows some ideas used in [5]. By Lemma 2.1, it suffices to prove the theorem
for the dyadic maximal operator MD

W,pf (where the supremum is taken over all cubes
Q ∈ D containing the point x). In turn, by the standard limiting argument, given a fixed
cube Q ∈ D , it suffices to prove the theorem for Md

Q,W,pf .
Applying Lemma 3.1 with r = p along with Proposition 2.6 yields

Md
Q,W,pf(x)

p .
∑

R∈S

(

‖W 1/p(x)VR,p‖
p 1

|R|

∫

R

|f(y)|pdy

)

χR(x).

From this, setting

λR(x) := ‖W 1/p(x)VR,p‖
p,

we obtain that

‖Md
Q,W,p‖Lp→Lp,∞ . ‖Tλ,S‖

1/p
L1→L1,∞ .

Now, Lemma 3.2 along with Proposition 2.7 implies

‖Tλ,S‖L1→L1,∞ . [W ]2Ap
,

which, along with the previous estimate, proves (3.3).
Turn to the second part of the theorem by showing the sharpness of (3.3) in the

scalar case. We will show that for every natural N ≥ 100, there is a weight w such
that [w]Ap ≃ N and ‖Mw,p‖Lp→Lp,∞ & N2/p. From this we will clearly obtain that

ϕMp(t) & t2/p.
The construction of the example is a modification of that in [14]. We begin with the

notations presented there. For k = 3, . . . , N we denote Jk = [2k, 2k+1). We will split Jk
into small intervals. Set Ik = [2k, 2k + k) and Lk = Jk \ Ik = [2k + k, 2k+1). Let L−

k and
L+
k be the left and right halves of Lk, respectively. Next we define (L−

k )
1 to be the right

half of L−
k and (L+

k )
1 the left half of L+

k . Then

• when (L−
k )

j = [ajk, b
j
k) is defined, let (L

−
k )

j+1 = [aj+1
k , bj+1

k ) satisfy that

bj+1
k = ajk, |(L−

k )
j+1| =

1

2
|(L−

k )
j|;

• when (L+
k )

j = [cjk, d
j
k) is defined, let (L

+
k )

j+1 = [cj+1
k , dj+1

k ) satisfy that

cj+1
k = djk, |(L+

k )
j+1| =

1

2
|(L+

k )
j|.

The process is stopped when we have (L−
k )

k−1 and (L+
k )

k−1 defined, and we simply define

(L−
k )

k = [2k + k, 2k + k +
|L−

k |

2k−1
), (L+

k )
k = [2k+1 −

|L+
k |

2k−1
, 2k+1).

Now we have

Jk = Ik ∪
k
∪
j=1

(

(L−
k )

j ∪ (L+
k )

j
)

=: Ik ∪
k
∪
j=1

Lj
k.

Define

wk := 2k+1χIk +

k
∑

j=⌊log2 k⌋
2jχLj

k
+ k

⌊log2 k⌋−1
∑

j=1

χLj
k
.
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and our weight on [0, 2N+2] is

w(x) :=



















χ[0,8)(x) +
N
∑

k=3

2(k+1)(p−1)wk(x), x ∈ [0, 2N+1),

2(N+1)p−1, x = 2N+1,

w(2N+2 − x), x ∈ [2N+1, 2N+2].

Finally we extend w(x) from [0, 2N+2] to R periodically with period 2N+2. Since w1/p(x) >
x on Ik, we have

‖w1/pM(χ[0,1])‖
p
Lp,∞ ≥ |{x ∈ (1,∞) : w1/p(x)M(χ[0,1]) > 1}|

≥ |{x ∈ (1,∞) : w1/p(x) > x}| ≥
N
∑

k=3

|Ik| =
N
∑

k=3

k ≃ N2.

From this, ‖Mw,p‖Lp→Lp,∞ & N2/p. Hence, in order to prove the claim, it remains to
check that [w]Ap ≃ N . Since w is periodic on R and symmetrical on [0, 2N+2], it suffices
to prove that

sup
I⊂[0,2N+1]

w(I)

|I|

( 1

|I|

∫

I

w− 1
p−1

)p−1

≃ N

First, observe that

|Lj
k| = 2−j(2k − k), j = 1, 2, . . . , k − 1, |Lk

k| = 21−k(2k − k).

Hence when I = [0, 2N+1] we have

w(I)

|I|
= 2−(N+1)

(

8 +

N
∑

k=3

2(k+1)(p−1)
(

k2k+1 +

k
∑

j=⌊log2 k⌋
2j|Lj

k|+ k

⌊log2 k⌋−1
∑

j=1

|Lj
k|
))

≃ 2−(N+1)
(

8 +
N
∑

k=3

2(k+1)(p−1)k2k+1
)

≃ N2N(p−1)

and since 1 < p < 2,

1

|I|

∫

I

w− 1
p−1

= 2−(N+1)
(

8 +

N
∑

k=3

2−(k+1)
(

k2−
k+1
p−1 +

k
∑

j=⌊log2 k⌋
2−

j
p−1 |Lj

k|+ k−
1

p−1

⌊log2 k⌋−1
∑

j=1

|Lj
k|
))

≃ 2−(N+1)
(

8 +

N
∑

k=3

2−(k+1)
(

k2−
k+1
p−1 +

k
∑

j=⌊log2 k⌋
2−

j
p−12k−j + k−

1
p−1

⌊log2 k⌋−1
∑

j=1

2k−j
))

. 2−(N+1)
(

8 +
N
∑

k=3

(k2−kp′ + k−p′ + k−
1

p−1 )
)

≃ 2−N .
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Thus
w(I)

|I|

( 1

|I|

∫

I

w− 1
p−1

)p−1

≃ N.

We are left to prove that for any I ⊂ [0, 2N+1], there holds that

(3.4)
w(I)

|I|

( 1

|I|

∫

I

w− 1
p−1

)p−1

. N.

As that in [14], our weight is a step function (one may view
⋃⌊log2 k⌋−1

j=1 Lj
k as a single

interval but it is not necessary), and the jump of w from the interval [0, 8) to I3 is 24p

for each two other adjacent intervals from the definition of w, the jump is at most 2p+1.
From this observation we have the following

Claim A. If I intersects at most m intervals from the definition of w, then

w(I)

|I|
≤ max

x∈I
w(x) ≤ 24p+(m−2)(p+1) ess inf

x∈I
w(x).

In what follows we will prove (3.4) according to the size of I.

Case 1. |I| ≤ 8. In this case, note that in each Jk (k ≥ 3), (L−
k )

k−1, (L−
k )

k and
(L+

k )
k−1, (L+

k )
k are the smallest intervals, and

|(L−
k )

k−1| = |(L−
k )

k| = |(L+
k )

k−1| = |(L+
k )

k| = 1−
k

2k
>

1

2
.

Hence I intersects at most 17 intervals from the definition of w, and we are in position
to apply Claim A with m = 17.

Case 2. |I| > 8. In this case, we may assume |I| ∈ (2k0, 2k0+1] with some k0 ≥ 3. We
may further assume k0 < N − 10 as otherwise

w(I)

|I|

( 1

|I|

∫

I

w− 1
p−1

)p−1

.
w([0, 2N+1])

|[0, 2N+1]|

( 1

|[0, 2N+1]|

∫ 2N+1

0

w− 1
p−1

)p−1

≃ N.

Case 2a. I ⊂ [0, 2k0+10]. Then similarly to above,

w(I)

|I|

( 1

|I|

∫

I

w− 1
p−1

)p−1

.
w([0, 2k0+10])

|[0, 2k0+10]|

( 1

|[0, 2k0+10]|

∫ 2k0+10

0

w− 1
p−1

)p−1

≃ k0.

Case 2b. I 6⊂ [0, 2k0+10]. Then I ⊂ [2k0+9, 2N+1]. Denote by ck the center of Lk.

Case 2b-a. I contains some ck with k ≥ k0 + 9. Then the estimate is trivial since
I ⊂ (L−

k )
1 ∪ (L+

k )
1 and w is a constant on I.

Case 2b-b. I does not contain any ck. In this case we may assume I ⊂ (cℓ, cℓ+1) for
some k0+8 ≤ ℓ ≤ N . Suppose that I = [a, b] and a ∈ (L+

ℓ )
j for some j. If j ≤ ℓ−k0−4,

then

|(L+
ℓ )

j+1| = |L+
ℓ |2

−(j+1) =
2ℓ − ℓ

2j+2
> 2k0+1,

so that I will intersect at most (L+
ℓ )

j and (L+
ℓ )

j+1 and we again apply Claim A with
m = 2.
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If j ≥ ℓ− k0 − 3, note that then

I ⊂
ℓ
∪

j=ℓ−k0−3
(L+

ℓ )
j ∪

ℓ+1
∪

i=ℓ−k0−2
(L−

ℓ+1)
i ∪ Iℓ+1.

Here i ≥ ℓ− k0 − 2 since

|(L−
ℓ+1)

ℓ−k0−2| =
2ℓ+1 − (ℓ+ 1)

2ℓ−k0−1
>

2ℓ

2ℓ−k0−1
= 2k0+1 ≥ ℓ(I).

Hence we have

w(I)

|I| ess inf
x∈I

w(x)

≤

ℓ
∑

j=ℓ−k0−3

w((L+
ℓ )

j) +
ℓ+1
∑

i=ℓ−k0−2

w((L−
ℓ+1)

i) + w(Iℓ+1)

2k02ℓ−k0−32(ℓ+1)(p−1)

.

ℓ
∑

j=ℓ−k0−3

max{2j, ℓ} · 2ℓ−j +
ℓ+1
∑

i=ℓ−k0−2

max{2i, ℓ+ 1} · 2ℓ+1−i + (ℓ+ 1)2ℓ+2

2ℓ
. ℓ,

from which (3.4) follows immediately.
It remains to consider the case a ∈ Iℓ+1 ∪ L

−
ℓ+1. However, in this case we just need to

discuss whether b ∈ (L−
ℓ+1)

j with some j ≤ ℓ− k0 − 3 or not, which is completely similar.
This completes the proof. �

Remark 3.3. Recall that the Hilbert transform is defined by

Hf(x) = P.V.

∫

R

f(t)

x− t
dt.

Let w be the weight constructed in the sharpness part of Theorem 1.1. Using that
H(χ[0,1])(x) >

1
x
for all x > 1, we have

‖w1/pH(χ[0,1])‖
p
Lp,∞ ≥ |{x ∈ (1,∞) : w1/p(x) > x}| & N2.

From this, exactly as for the maximal operator, we obtain that ϕHp(t) & t
2
p .

Remark 3.4. Recall that the scalar A∞ constant is defined by

[w]A∞
:= sup

Q

1

w(Q)

∫

Q

M(wχQ).

Given a matrix weight W and p > 1, define its Asc
∞,p constant by

[W ]Asc
∞,p

:= sup
u∈Cn

[|W 1/pu|p]A∞
.

Then it is easy to show that Proposition 2.7 holds with s = 1 + 1
c[W ]Asc

∞,p

. As a result, a

statement of Theorem 1.1 can be written in the form

‖MW,pf‖Lp,∞ .
(

[W ]Ap[W ]Asc
∞,p

)1/p
‖f‖Lp.
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Remark 3.5. Lemma 3.1 can also be used in order to give a simple proof of the strong
type bound

(3.5) ‖MW,pf‖Lp . [W ]
1

p−1

Ap
‖f‖Lp (1 < p <∞)

(see [1, 10]).
Indeed, as before, it suffices to prove (3.5) for Md

Q,W,pf . By Lemma 3.1,
∫

Q

Md
Q,W,pf(x)

pdx .
∑

R∈S

∫

R

‖W 1/p(x)VR,p‖
pdx

(

1

|R|

∫

R

|V −1
R,pW

−1/p(y)f(y)|dy

)p

. [W ]Ap

∑

R∈S

(

1

|R|

∫

R

|V −1
R,pW

−1/p(y)f(y)|dy

)p

|R|

. [W ]Ap

∫

Q

M̃D

w,Qf(x)
pdx,

where

M̃D

w,Qf(x) := sup
R∋x,R∈D(Q)

1

|R|

∫

R

|V −1
R,pW

−1/p(y)f(y)|dy.

Next, the standard machinery based on the reverse Hölder estimate shows that

MD

w,Qf(x) .MQ,p−ε(|f |)(x),

where ε ≃ [W ]
− 1

p−1

Ap
. Hence,

∫

Q

Md
Q,W,pf(x)

pdx . [W ]Ap

∫

Q

MQ,p−ε(|f |)(x)
pdx . [W ]

p
p−1

Ap

∫

Q

|f(x)|pdx,

which proves (3.5).

We conclude this section by proving Theorem 1.3.

Proof of Theorem 1.3. Denote

N := ‖Mp,w‖Lp→Lp,∞.

Then trivially

(3.6) ‖w
1
pH(fw− 1

p )‖Lp,∞ ≤ N‖f‖Lp,

where H stands for the Hardy operator

H(f)(x) :=
1

x

∫ x

0

f(t)dt.

By duality (3.6) is equivalent to that

(3.7) ‖H∗(w
1
pχE)‖Lp′ (σ) . N|E|

1
p′

holds for any measurable set E, where σ := w− 1
p−1 .

Next let us choose specific w and E in (3.7). The construction of w here is actually
a slight modification of the one in the proof of Theorem 1.1. For k = k0(p) + 1, k0(p) +
2, . . ., where k0(p) is the minimal integer such that kp−1 < 2k−1, let Jk = [2k, 2k+1)
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and Ik = [2k, 2k + kp−1]. Then define (L−
k )

j and (L+
k )

j with the same logic, and let

Lj
k = (L−

k )
j ∪ (L+

k )
j . For sufficiently large N , our weight on [0, 2N+2] is

w(x) :=



















χ[0,2k0(p)+1)(x) +
N
∑

k=k0(p)+1

2(k+1)(p−1)wk(x), x ∈ [0, 2N+1),

2(N+1)p−1, x = 2N+1,

w(2N+2 − x), x ∈ [2N+1, 2N+2],

where

wk(x) := 2k+1χIk +
k

∑

j=⌊(p−1) log2 k⌋
2jχLj

k
+ kp−1

⌊(p−1) log2 k⌋−1
∑

j=1

χLj
k
.

With similar computations as before we get

σ(Jk) & k2−kp′ + k−p′ + k−1 ≥ k−1

and
[w]Ap ∼ Np−1(logN)p−1.

Take E = ∪N
k=k0(p)+1Ik. Then for fixed k and x ∈ Jk, we have

H∗(w
1
pχE)(x) =

∫ +∞

x

w
1
p (t)χE(t)

t
dt

∼

∫ +∞

x

χE(t)dt ∼
N
∑

j=k+1

|Ij | ∼ (Np − kp).

In particular, if k ≤ N/2, then

H∗(w
1
pχE)(x) ∼ Np.

Then it follows that

‖H∗(w
1
pχE)‖

p′

Lp′(σ)
&

N/2
∑

k=k0(p)+1

Npp′σ(Jk) &

N/2
∑

k=k0(p)+1

Npp′k−1 ∼ Npp′ logN.

Since |E| ∼ Np, by (3.7) we have

N &
Np(logN)

1
p′

Np−1
= N(logN)

1
p′ &

[w]
1

p−1

Ap

(log[w]Ap)
1
p

,

from which ϕMp(t) & t
1

p−1
(

log(t + e)
)− 1

p . �

4. Calderón–Zygmund operators

In this section we prove Theorems 1.2 and 1.4. Let us start with some preparations
needed to prove Theorem 1.2. First, by Theorem 2.4, it suffices to prove this result for the
sparse operator AS instead of T , where S ⊂ D and S is ηd-sparse. Second, by Lemma 2.2,
one can split S = ∪md

j=1Sj , where each Sj will be at least 7
8
-sparse. Therefore, without

loss of generality, we will assume in this section that S is 7
8
-sparse.
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Given a cube Q ∈ S, denote S(Q) := {Q′ ∈ S : Q′ ⊆ Q}. We start with the following
weak type estimate for the sparse operator AS(Q).

Lemma 4.1. Let p > 2. For every measurable set E ⊂ Q,

‖AS(Q)(w
− 1

pχE)‖Lp,∞(w) . [w]
2
p

Ap
log([w]Ap + e)|E|

1
p .

Proof. Since the Ap-constant is invariant under pointwise multiplication by a constant,
it suffices to show that

(4.1) w{x ∈ Q : AS(Q)(w
− 1

pχE)(x) > 2} . [w]2Ap
logp([w]Ap + e)|E|.

Let MQ denote the maximal operator restricted to a cube Q. By the weak type bound
of M (see [1]),

w{x ∈ Q :MQ(w
− 1

pχE)(x) > 1/4} . [w]Ap|E|.

Therefore, setting

G := {x ∈ Q : AS(Q)(w
− 1

pχE)(x) > 2,MQ(w
− 1

pχE)(x) ≤ 1/4},

we obtain

(4.2) w{x ∈ Q : AS(Q)(w
− 1

pχE)(x) > 2} . [w]Ap|E|+ w(G).

Denote

Fk := {Q′ ∈ S(Q) : 4−k−1 <
1

|Q′|

∫

Q′

w− 1
pχE ≤ 4−k}.

Then, for x ∈ G,

AS(Q)(w
− 1

pχE)(x) =
∞
∑

k=1

AFk
(w− 1

pχE)(x).

From this, for a natural N which will be chosen later on we have

w(G) ≤ w{x ∈ Q :
N
∑

k=1

AFk
(w− 1

pχE)(x) > 1}

+ w{x ∈ Q :
∞
∑

k=N+1

AFk
(w− 1

pχE)(x) > 1} := I + II.

Let us start by estimating I. We have

I
1
p ≤

N
∑

k=1

‖AFk
(w− 1

pχE)‖Lp(w).

By Lemma 2.3, there exist pairwise disjoint (for Q′ ∈ Fk) sets GQ′ ⊂ Q′ such that

AFk
(w− 1

pχE)(x) ≤ 8
∑

Q′∈Fk

( 1

|Q′|

∫

GQ′

(w− 1
pχE)

)

χQ′(x).

Hence, by Hölder’s inequality for weak norms,
∫

Q

AFk
(w− 1

pχE)g ≤ 8

∫

Q

(

∑

Q′∈Fk

( 1

|Q′|

∫

Q′

g
)

χGQ′

)

w− 1
pχE
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≤ 8

∫

Q

(MQg)w
− 1

pχE ≤ 8‖(MQg)w
− 1

p‖Lp′,∞|E|
1
p .

By Theorem 1.1 (note that p′ < 2),

‖(MQg)w
− 1

p‖Lp′,∞ . [w−p′/p]
2
p′

Ap′
‖g‖Lp′(w−p′/p) = [w]

2
p

Ap
‖g‖Lp′(w−p′/p).

Combining this with the previous estimate, we obtain by duality that

‖AFk
(w− 1

pχE)‖Lp(w) . [w]
2
p

Ap
|E|

1
p ,

which implies

(4.3) I . Np[w]2Ap
|E|.

Turn to II. Since
∑∞

k=N+1 2
−k < 1, we have

II ≤ w{x ∈ Q :

∞
∑

k=N+1

AFk
(w− 1

pχE)(x) >

∞
∑

k=N+1

2−k}

≤
∞
∑

k=N+1

w{x ∈ Q : AFk
(w− 1

pχE)(x) > 2−k}

≤
∞
∑

k=N+1

w{x ∈ Q : 4−k
∑

Q′∈Fk

χQ′(x) > 2−k}

≤
∞
∑

k=N+1

∑

R∈Fm
k

w{x ∈ R :
∑

Q′∈Fk(R)

χQ′(x) > 2k},

where Fm
k stands for the maximal cubes of Fk (hence they are pairwise disjoint).

By sparseness, there is an absolute c > 0 such that

|{x ∈ R :
∑

Q′∈Fk(R)

χQ′(x) > 2k}| ≤ e−c2k .

Combining this with the sharp quantitative reverse Hölder property expressed in (2.2),
we obtain

w{x ∈ R :
∑

Q′∈Fk(R)

χQ′(x) > 2k} ≤ e
− c2k

[w]Ap w(R).

It follows that

II ≤
∞
∑

k=N+1

4kpe
− c2k

[w]Ap

∑

R∈Fm
k

4−kpw(R).

By the disjointness of R and Hölder’s inequality,
∑

R∈Fm
k

4−kpw(R) ≤ 4p
∑

R∈Fm
k

( 1

|R|

∫

R

w− 1
pχE

)p

w(R)

≤ 4p
∑

R∈Fm
k

( 1

|R|

∫

R

w−p′/p
)p/p′w(R)

|R|
|E ∩ R|
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≤ 4p[w]Ap

∑

R∈Fm
k

|E ∩ R| ≤ 4p[w]Ap|E|.

Thus, we obtain

II . [w]Ap|E|
∞
∑

k=N+1

4kpe
− c2k

[w]Ap .

Now observe that one can choose N ≃ log([w]Ap + e) so that

4kpe
− c2k

[w]Ap ≤ 2−k

for every k ≥ N . Then we obtain that

II . [w]Ap|E|.

Combining this estimate with (4.3) yields

w(G) . [w]2Ap
logp([w]Ap + e)|E|.

This along with (4.2) proves (4.1), and therefore the proof is complete. �

Remark 4.2. Observe that Lemma 4.1 implies easily its global version with Q = Rd and
an arbitrary sparse family S. Indeed, by the limiting argument, one can assume that S
is finite. Then one can write S = ∪jS(Qj), where Qj are the maximal cubes of S, and
apply (4.1) for each Qj .

An important ingredient in the proof of Theorem 1.2 is the following equivalence re-
lation of Cascante–Ortega–Verbitsky [2] saying that for every dyadic lattice D and a
non-negative sequence {λQ}Q∈D ,

(4.4)
∥

∥

∥

∑

Q∈D

λQχQ

∥

∥

∥

Lp(w)
≃

(

∑

Q∈D

λQ

( 1

w(Q)

∑

Q′∈D,Q′⊆Q

λQ′w(Q′)
)p−1

w(Q)
)

1
p
.

Proof of Theorem 1.2. Let N denote the best possible constant in the inequality

‖w
1
pAS(fw

− 1
p )‖Lp,∞ ≤ N‖f‖Lp.

By duality this is equivalent to that for every measurable set E,

‖AS(w
1
pχE)‖Lp′(σ) . N|E|

1
p′ ,

where σ := w− 1
p−1 . Further, by (4.4),

(4.5) ‖AS(w
1
pχE)‖Lp′ (σ) .

(

∑

Q∈S
λQ

( 1

σ(Q)

∑

Q′∈S(Q)

λQ′σ(Q′)
)

1
p−1
σ(Q)

)
1
p′

,

where λQ := 1
|Q|

∫

Q
(w

1
pχE)dx.

By Hölder’s inequality for weak norms,

(4.6)
∑

Q′∈S(Q)

λQ′σ(Q′) =

∫

Q

AS(Q)(w
1
pχE)σ ≤ ‖AS(Q)(w

1
pχE)‖Lp′,∞(σ)σ(Q)

1
p .
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Next, by Lemma 4.1 (note that p′ > 2),

‖AS(Q)(w
1
pχE)‖Lp′,∞(σ) = ‖AS(Q)(σ

− 1
p′χE)‖Lp′,∞(σ)

. [σ]
2
p′

Ap′
log([σ]Ap′

+ e)|E ∩Q|
1
p′ ≃ [w]

2
p

Ap
log([w]Ap + e)|E ∩Q|

1
p′ .

Combining this estimate with (4.6) and (4.5) yields

(4.7) ‖AS(w
1
pχE)‖Lp′(σ) . C([w]Ap)

(

∑

Q∈S

( 1

|Q|

∫

Q

(w
1
pχE)

)

σ(Q)
1
p′ |E ∩Q|

1
p

)
1
p′

,

where

C([w]Ap) := [w]
2
p2

Ap
log

1
p ([w]Ap + e).

Let r := 1 + 1
cd[w]Ap

as in Proposition 2.5. Then

1

|Q|

∫

Q

(w
1
pχE) ≤

( 1

|Q|

∫

Q

wr
)

1
pr

(

|E ∩Q|

|Q|

)
1

(pr)′

≤ 21/p
( 1

|Q|

∫

Q

w
)

1
p

(

|E ∩Q|

|Q|

)
1

(pr)′

Therefore,

∑

Q∈S

( 1

|Q|

∫

Q

(w
1
pχE)

)

σ(Q)
1
p′ |E ∩Q|

1
p . [w]

1
p

Ap

∑

Q∈S

(

|E ∩Q|

|Q|

)
1
p
+ 1

(pr)′

|Q|.

By sparseness, take pairwise disjoint sets EQ ⊂ Q such that |EQ| ≃ |Q|. Then

∑

Q∈S

(

|E ∩Q|

|Q|

)
1
p
+ 1

(pr)′

|Q| .
∑

Q∈S

∫

EQ

(MχE)
1+ 1

p
(1− 1

r
)dx

≤

∫

Rd

(MχE)
1+ 1

p
(1− 1

r
) .

1

r − 1
|E| . [w]Ap|E|.

Combining the two previous estimates with (4.7), we obtain

‖AS(w
1
pχE)‖Lp′(σ) . C([w]Ap)[w]

(1+ 1
p
) 1
p′

Ap
|E|

1
p′ .

Therefore,

N . C([w]Ap)[w]
(1+ 1

p
) 1
p′

Ap
= [w]

1+ 1
p2

Ap
log

1
p ([w]Ap + e),

which completes the proof. �

Turn to the proof of Theorem 1.4. As we mentioned in the Introduction, the example
used here is much simpler than in the previous proofs.

Proof of Theorem 1.4. Denote

N := ‖Hp,w‖Lp→Lp,∞ .

Then, by duality,

‖w− 1
pH(w

1
pχE)‖Lp′ . N|E|

1
p′ (p ≥ 2).
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Taking here E = (0, 1), we obtain

(4.8)
(

∫ 1

0

w
1
pdx

)(

∫ ∞

2

w− 1
p−1 (x)

xp′
dx

)
1
p′

. N .

Let wε be a radial weight on R defined on [0,∞) by

wε(x) :=

{

ε−1, 0 ≤ x ≤ 1,

x−(1−ε), x > 1.

Then the left-hand side of (4.8) is equivalent to ε−1. Therefore, the lower bound ϕHp(t) & t
would follow if we show that [wε]Ap . ε−1.

Denote

Ap(wε; I) :=
( 1

|I|

∫

I

wε

)( 1

|I|

∫

I

w
− 1

p−1
ε

)p−1

.

Since wε is radial, it suffices to consider the intervals I ⊂ [0,∞).
Denote vε(x) := |x|−(1−ε). We will use the well known fact that [vε]Ap ≃ ε−1. Hence,

the case where I ⊂ (1,∞) is trivial. Suppose that I∩ [0, 1] 6= ∅. Then we have to consider
only two cases. Assume that |I| ≤ 1. Then

Ap(wε; I) ≤
supI wε

infI wε
. ε−1.

Suppose now that |I| > 1. Then

Ap(wε; I) . sup
h>2

Ap(wε; (0, h)).

Observe that for h > 2,
1

h

∫ h

0

wε =
1

ε
hε−1

and
(1

h

∫ h

0

w
− 1

p−1
ε

)p−1

.
(1

h

(

ε
1

p−1 + h
p−ε
p−1

)

)p−1

. h1−ε.

Therefore,

sup
h>1

Ap(wε; (0, h)) .
1

ε
,

and the proof is complete. �
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