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Outlook

Parton distributions functions:
» Some history.
» How to compute them.
» Technical details.
Using machine learning to learn about PDFs:
»  Motivation.
» Accessing momentum fractions in p+p with ML
(several methods and results).

Going greener with ML (preliminary results).
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) The scaling is expected if DIS is the incoherent scattering of partons
(Feynman, 1969).

iy
FZLO(x) =X Z el.2 fi1,(x)

=1

»  f.,,(x) is the probability density of finding the parton i inside the hadron

with x. These are called Parton Distribution Functions (PDFs).
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> At higher orders in the expansion the scaling breaks down, a dependence
on the renormalisation scale p appears.
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The scaling is expected if DIS is the incoherent scattering of partons
(Feynman, 1969).

iy
FZLO(x) =X Z el.2 fi1,(x)

=1

1:1,(x) is the probability density of finding the parton i inside the hadron

with x. These are called Parton Distribution Functions (PDFs).

At higher orders in the expansion the scaling breaks down, a dependence
on the renormalisation scale p appears.

Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations give the
evolution with the scale, while mixing the partons.
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These objects are related to the ones in the parton model and we still call
them “PDFs”, but the probabilistic interpretation is not 100% accurate.
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) These objects are related to the ones in the parton model and we still call
them “PDFs”, but the probabilistic interpretation is not 100% accurate.

» The PDFs contain the long distance structure of hadrons.

> They are universal, so any process that is an inclusive hard scattering can
be written as

doPIS — 2 do -l ® f doPY = 2 doiti—i+l RfQf
i i.Jj
with the same PDFs.

Without PDFs there is no prediction!

| will adhere the KISS principle and stick to collinear PDFs.

5



D.E. Soper, Nucl.Phys.B

HOW tO COmPUte PDFS (Proc.Suppl.) 53 (1997) 69

> PDFs have formal definitions in terms of operators, for example
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> PDFs have formal definitions in terms of operators, for example
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3 v is the field operator of a quark.



D.E. Soper, Nucl.Phys.B

HOW tO ComPUte PDFS (Proc.Suppl.) 53 (1997) 69

> PDFs have formal definitions in terms of operators, for example

1 —p~IXP" + + _>
ﬁ/h(X,M) — 4—ﬂ Y (P, 0 7 l//J(Oa)’ 0 N ARY l//](o 0, OT) | P, 0 7)uis
y_ —_—
O = @exp(igJ' dz=AF(0,z7, 0 ) ta> P*E = (PO + P3)/\/§
0
» | P) is the state of a hadron.

» y isthe field operator of a quark.

> So we can’t compute these from first principles in pQCD, we must resort
to phenomenology. We do global fits.
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Steps for a “traditional” fit:

» Choose:
> a factorisation scheme
> an order in perturbation theory*

> a starting scale Q) (so that above it pQCD is valid)

> the data to be fitted
> a heavy flavour scheme



Steps for a “traditional” fit:

» Choose:
> a factorisation scheme
> an order in perturbation theory*

> a starting scale Q) (so that above it pQCD is valid)

> the data to be fitted
> a heavy flavour scheme

» Parametrise the quark and gluon distribution (or a combination of them):
xfi(x, QF) = Aix%(1 — x)PiP(x, c;)

> Solve the DGLAP equations for the measured kinematics.
> Compute the hard cross sections for the observables.
> Convolute PDFs and partonic cross-sections.

v
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Compute this quantity and minimise it:
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—1
Z [O-exp _ Gth] _Cij [

ij=1 :



> Compute this quantity and minimise it:

Ndata
1 _
[O-exp o Gth] .Cij lgexp o Gth] = Atest

ij=1 :

) By the CLT, each term in the sum is distributed according to the square of
a standard Gaussian.
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Compute this quantity and minimise it:

N, data

1 _
[O-exp o Gth] .Cij lgexp o Gth] = Atest
= I
i,j=1

By the CLT, each term in the sum is distributed according to the square of
a standard Gaussian.
If we use d parameters, y>., follows a y* distribution with N, ~—d

degrees of freedom.
E[)(z%st] = Ndata —d= Nd.o.f. — E[)(z%st]/Nd.o.f. =1

When we reach this point (the fit is “good enough”) we can be happy and
store the final parameters.
Use some method to estimate theoretical error bands.

Create grids in x and Q2, and provide an interpolator for the grid. Make it
publicly available (LHAPDF).



Some details (k) I(K)

> The basic process is DIS with photon/Z boson exchange:
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For quarks, Neutral Current DIS is sensitive only to the non-singlet and
singlet combination of the PDFs.
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> For quarks, Neutral Current DIS is sensitive only to the non-singlet and

singlet combination of the PDFs.

) We need to use other observables, such as Charged Current DIS to

distinguish flavours.

d’c y? -1 -
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. . . (k) ['(K")
xF5 provides more PDF combinations, but it not

enough (plus it is very complicated).

h(P)
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> For quarks, Neutral Current DIS is sensitive only to the non-singlet and
singlet combination of the PDFs.

) We need to use other observables, such as Charged Current DIS to
distinguish flavours.

d’c y? -1 -

2\ 2N — ,. :
dxdQ* ~ R (I-y)? R (1=

. . . (k) ['(K")
xF5 provides more PDF combinations, but it not

enough (plus it is very complicated).

We can use “neutrons”, but it is still to enough,
due to the kinematic reach of the data...

h(P)

We use p+p!
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) Let us see for example Drell-Yan:

d?c? A o2 1 1 2264 ) )
TordG? = 505 2 egj d”J iy — 5 U0, 0t ) + 701, 071, 07)
F X X F

l 1 2

Lo —4”“22 zrdzrdt 45 (11, OO [fi(t2, 0D + Fity, 0O)] + (1 < 2
Tod0? = ogn 26| | dn| T 0 OO 09 +76 0)] + (1 = 2)

l 1 2

N



4

d*c? Aro® 5 I . d
— | dt dt
dx,d02 902 2 J 1L 2

XF

d*c¢

l 1 2

4

l 1 2

Let us see for example Drell-Yan:

d*c d*c4 d?*cC¢
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ddeQZ dXFdQ2 dXFdQ2
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Now it is quadratic in the PDFs, therefore harder to extract.
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) Let us see for example Drell-Yan: — +
ddeQZ dXFdQ2 ddeQZ
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) Now it is quadratic in the PDFs, therefore harder to extract.

) More importantly, beyond LO the x;, x, are not the momentum fractions

of the partons in the hard interaction!
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d*c d*c4 d?*cC¢

) Let us see for example Drell-Yan: — +
ddeQZ d.XFdQ2 ddeQZ

d?c? A o2 1 1 2264 ) )
TordG? = 505 2 eizj d”J iy — 5 U0, 0t ) + 701, 071, 07)
F X X F

I 1 2

d*c  4rma’ (! 1 726 : o 2
Tdg 905 &° J u J U | Gmagn 1t OOty 09 + /(0O + (1 = 2)

l 1 2

) Now it is quadratic in the PDFs, therefore harder to extract.

) More importantly, beyond LO the x;, x, are not the momentum fractions

of the partons in the hard interaction!

| M? =
X1, Xy = Teiy c[eﬁnition used Eeyonaf L0 (W but it is not true!)
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Machine learning for PDFs



Motivation

»  Not being able to access the real x, x, from measuring the kinematics is

not exclusive of the Drell-Yan process. It happens for all p+p collisions.

M? |
»  And can have significant impact: e.g. in p+Pb collisions Xps Xy = \/ —e®

13



Motivation

F,Fe/E,D
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Motivation

F,Fe/E,D

»  Not being able to access the real x{, x, from measuring the kinematics is
not exclusive of the Drell-Yan process. It happens for all p+p collisions.
M2
o oo . . o o =+
> And can have significant impact: e.g. in p+Pb collisions X1, Xy = T@‘y
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4 We want to use ML to find a link between the measurable quantities and

the parton momentum fractions.



Accessing the kinematics using ML Renteria-Estrada et al,

arXiv:2112.05043 [hep-ph]

»  Welooked at one particular process: p+p —> a7 +7y

»  Reconstructed x;, X, and z from momenta of 77, y

4 For RHIC kinematics, so we could compare with previous results.

D. de Florian and G. Sborlini,
Phys.Rev.D 83 (2011) 074022
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First: check the dependences on the kinematics

> Transverse momentum dependence:
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»  X; = X, Zdependences:
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Second: check correlations
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Second: check correlations

NLO Kinematics Xin =" 7="17
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Kinematics: LO

Kinematics: NLO
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Kinematics: LO x4 = (@i”” + ei"y)

Kinematics: NLO Xy =7

T +n?
e, _ PTE™" — cos(@™ — gpMpre™

»  Experimental collaborations used X2 =

Vs
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4
Kinematics: LO xpee = 2L (@i”” + ei"y)

Kinematics: NLO Xy =7

. . rec. p%{einﬂ — COS(Qbﬂ — ¢y)p%eiﬂy
) Experimental collaborations used Xy = \/_
\)
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D. de Florian, G. Sborlini, PRD 83, 074022 18



Kinematics: NLO X5

> Experimental collaborations used
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=7

Kinematics: LO X =
Kinematics: NLO X[

> Experimental collaborations used

19.2

176

16.0

144

128

X (x1000)

112

96

8.0

6.4

48

48 64 80 96 11212814416017619.2

X', (x1000)

D. de Florian, G. Sborlini, PRD 83, 074022

18

Real

rec.
<

0.76

0.68
0.60

0.52
0.44
0.36
0.28
0.20

0.12
0.04

= — cos(¢” - thp—f
Pr

/A
rec. — &
y
Pr
rec. __ ‘)

004 0.120.200.280.36 0.44 0.520600.68 0.76

Z

E



In the last decade PDFs and FFs have changed significantly.
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In the last decade PDFs and FFs have changed significantly.

The code now includes QED corrections:

D. Renteria-Estrada, R. Hernandez-Pinto, G. Sborlini, Symmetry 13 (2021) 6, 942

New numerical methods/tools available with tutorials “for dummies”.
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In the last decade PDFs and FFs have changed significantly.

The code now includes QED corrections:

D. Renteria-Estrada, R. Hernandez-Pinto, G. Sborlini, Symmetry 13 (2021) 6, 942

New numerical methods/tools available with tutorials “for dummies”.

We're the dummies: we want to apply machine learning technigques to
access the real momentum fractions and lower the assumptions.
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At NLO we have real (2 — 3) and virtual (2 — 2) contributions and

counterterms (2 — 2).
Cancellations can only happen in the MC integration when histograming.

{P7. P i i, COS(P™ — 1) } € V' pp

(p%/")j,MAX (pg)j,MAX
0Bl P I, COS(" — 7)) = p} dp} deldxzdz ds

(PP)jmiv (PF)imin
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At NLO we have real (2 — 3) and virtual (2 — 2) contributions and

counterterms (2 — 2).

Cancellations can only happen in the MC integration when histograming.

{P7. P i i, COS(P™ — 1) } € V' pp

(pT)j,MAX (pT)j,MAX
0y P 11 T TOS(" — 1) =[ dp;J dp} deldxzdz ds

(PP)jmiv (PF)imin

We weight the momentum fractions from the MC with the per-bin cross-

section

do;
<x1>j=;<xl>,-d—);<pj; (x));) (2); = Z(z) (p], (2);)
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At NLO we have real (2 — 3) and virtual (2 — 2) contributions and

counterterms (2 — 2).

Cancellations can only happen in the MC integration when histograming.

{P7. P i i, COS(P™ — 1) } € V' pp

(pT)j,MAX (pT)j,MAX
0y P 11 T TOS(" — 1) =[ dp;J dp} deldxzdz ds

(PP)jmiv (PF)imin

We weight the momentum fractions from the MC with the per-bin cross-

section

do;
<x1>j=;<xl>,-d—);<pj; (x));) (2); = Z(z) (p], (2);)

With this we search for the mapping

Xirec: Vxe = Xigear = ()}



> In general, in ML

training set, each entry target

is a d-dimensional vector

(d = number of features) . . .
target function, we estimate it

using an algorithm that
minimises a cost function
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training set, each entry / \ target

is a d-dimensional vector

(d = number of features) . . .
target function, we estimate it

using an algorithm that
minimises a cost function

Linear regression 5 = Gy + O x»
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> In general, in ML

training set, each entry target

is a d-dimensional vector

(d = number of features) . . .
target function, we estimate it

using an algorithm that
minimises a cost function

Linear regression 5 = 0y + 0,xD

> “cheat”: linear means linear in the parameters.

2 N
[xD]” = x@ - =60+ 0xD + 0,1

»  the parameters minimise min ||y — yll%
0

21



Xrear (x107%)

7.8

6.4

5.0

3.6

2.2

Let us start with LO and use linear regression:

)4 4 4 -
plre pTe” pTe ad pTe " pT

Basis: Bro =
Vs Vs Vs s

p%/“ + + pﬂ:
*r *y T
rec.
X —_—— erl _|_ e” Zrec. —
1,2 ¥
S Pr
1.0
| [ | I
Linear I\/Iethodw 91 Linear Methocﬂ
1T 1LO QCD =T 1LO QCD
0.8
7.3
0.6 :|-\
=
Z 55
=
-0.4 &
N
3.7
0.2
1.9
0.0
2.2 3.6 5.0 6.4 7.8 1.9 3.7 5.5 7.3
Xgric (x1072%) Zygc (x1071)
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Linear regression

" u

> We used three bases: “LO inspired”, “general”, “physically motivated”

1.0

l I I
Y n" Y  n' Linear Method
LO _ pTe +pTe 7.4 1 NILO QCD + LO QED]
xl _ LO-inspired basis J
\/E 0.8
6.3
i\ 0.6
T T )/ —
PToP- pre’ —cos(¢p™ — " )ple” =52
— =
1 = I
\/E >§ 0.4
4.2
- 0.2
Y oll"  n Yol Vo= =N LT
95’ . pTe pTe pTe pTe pT 3.0
LO — ’ ’ ’ ’ ¥
Vs s s s P
3.0 4.2 5.2 6.3 7.4

XREC (X 1072)

A 4
exp(n™), L3 exp(?), LL23 5 exp(y), L

7r T 4 4 T P
e {\/ e \/_ AP0~ eXpU = explr) exp(r), 2L 5 exp('?”)}
Scm vV Scm VScm \VSem m

H 5 = cos(¢p” — ¢7)
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Linear regression

”, “general”,

4

We used three bases: “LO inspired

/4 T
pT pT ;/I}’, e’,’ﬂ’ COS(¢E— ¢7)

K = , , e
Vs /s

”, “physically motivated”

I

9
XREC = 2 (@ +b; Ks) K+ Z (¢ +dy Hs) K
i=1,i#5 i<j,{1,j}#3,j—i#5
1.0
» 81 parameters in total. 4 {;Ql“”;“d QED}
0.8
6.3
i\ 0.6
% 5.2
E - 0.4
4.2
- 0.2
3.0
3.0 4.2 5.2 6.3 7.4 -
Xpso (x10)
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Linear regression

”, “general”, “physically motivated”

4

We used three bases: “LO inspired

4 4

K = , , e
Vs /s

9
XREC = 2 (a;+b; Hs) K + Z (cjj+ dy Hs) XK

i=1,i#5 i<j{i,j}#5,j—i#5
| | 1.0
» Remove contributions w.r.t. which we 4 {;hQ“ﬂthd . ]
ysically-motivated basis
0.8
see no dependence (~40 parameters).
6.3
i\ 0.6
\>-:/ 5.2
Eé - 0.4
4.2
- 0.2
3.0
3.0 4.2 5.2 6.3 7.4 -
XREC (><10_2)
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Linear regression

4

For z:

8.0 1

Linear Method
NLO QCD + LOQED
General Basis

|

6.9

5.8

ZREAL (X 10_1)

4.7

3.5

1.0

0.8

0.6

- 0.4

- 0.2

0.0

3.5 4.7

ZREC (X ].0_1)
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Linlear I\/IlethodI ]
8.0 4-{NLO QCD + LO QED
LO-inspired basis J
0.8
6.9
= 0.6
=
X 58
=
Nm 0.4
4.7
35
L o0
35 4.7 58 6.9 8.0
Zrpc (x1071)
| | | | | 10
Linear Method 1
8.0 4{NLO QCD + LO QED
Physically-motivated basis
0.8
6.9
n 0.6
)
i
258
3
=
[ - 0.4
N
4.7
- 0.2
35
0.0
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The Radial Basis Function

X = (l,xl,xz)T " X = (1,x1,x2,x12,x1x2,x22)T

»  How to pick X? Before we did it by intuition.

Ix — ()13

»  WereplacexP by fi(x)=e 22

> This Radial Basis Function

» requires less elements (one per feature in the basis).
> effectively considers infinite terms.
> is a popular form of the kernel method.
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7.4

6.2

5.0

Xrear (x1072)

3.8

2.6

Gaussian Process ]
NLO QCD — LO QED
LO-inspired basis J

1.0

0.6

0.4

- 0.2

2.6 3.8 5.0 6.2 74
Xrec (x1072)

Similar results for the
reconstruction of z.

0.0
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Gaussian Process
7.4 4 NLO QCD — LO QED
Physically-motivated basis
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C‘II
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X
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N
3.8
206
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0.6

0.4
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2.6 3.8 5.0 6.2 7.4
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Gaussian Process ]
7.4 +{NLO QCD + LO QED
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. 6.2
C‘ll
=
X
— 5.0
-
=
L
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0.6

0.4

- (.2
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Neural networks: the basics image from scikit-learn.org

> Pass from one layer to the
next by applying a non-linear
e | activation function to a
Bias weighted sum of the

@ ° previous layers.
\\ » Pros: no need to play with
“7/6 @ the basis, less human bias

N (but not zero!)

Features &
[X] el’AQ Output
// > Cons: the complexity of the

aun architecture requires more

/ e time for training.

> Also, one needs to choose
the architecture.

29
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Neural networks

T ] 10
6.9 - Neural Network] e Neural-Network ]
' LO QCD J ' NLO QCD + LO QEDJ
0.8
5.7 6.4
2 -
0.6 )
= =
X
— 4.5 é 5.0
— =
< =
5 L 0.4 -
o't .
e =
3.3 3.6
- (.2
2.1 29
0.0
2.1 3.3 4.5 5.7 6.9 29 3.6 50 6.4 78

XREC (X 10_2)

1.0

0.8

0.6

- 0.4

- 0.2

0.0

XREC ( X 10_2)

> For LO the complexity of the NN greatly surpasses the complexity of the

problem.
30



Going greener with ML

) All the running of MC codes takes a long time to reach good precision.

) Apart from boring, they carry a significant environmental impact (and to
our pockets given the cost of electricity).

) What can we do to make things faster using current available resources?

> Improve the codes: has to be done code by code.
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Going greener with ML

) All the running of MC codes takes a long time to reach good precision.

) Apart from boring, they carry a significant environmental impact (and to
our pockets given the cost of electricity).

) What can we do to make things faster using current available resources?

> Improve the codes: has to be done code by code.

> Can we speed up the running time without touching the code?

Perhaps.

31



Most codes require non perturbative inputs (e.g. PDFs).

PDFs are provided as grids and functions that read the grids and
interpolate over them (e.g. LHAPDF).

And this is quite efficient, as long as we don’t need to run millions and
millions of calculations.
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Most codes require non perturbative inputs (e.g. PDFs).

PDFs are provided as grids and functions that read the grids and
interpolate over them (e.g. LHAPDF).

And this is quite efficient, as long as we don’t need to run millions and

millions of calculations.

A quick exploration shows that the time spent on the interpolation could
be reduced 40-50% if we had analytical expressions for the PDFs.
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> Most codes require non perturbative inputs (e.g. PDFs).

> PDFs are provided as grids and functions that read the grids and
interpolate over them (e.g. LHAPDF).

> And this is quite efficient, as long as we don’t need to run millions and

millions of calculations.

> A quick exploration shows that the time spent on the interpolation could
be reduced 40-50% if we had analytical expressions for the PDFs.

Goal: find an analytical x and Q2 form for a set of proton PDFs.

» We are working (for now) with HERAPDF2.0
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Idea and first results

> For most PDFs the x dependence at some initial scale is written as
fix, Qg) = N; x%(1 — x)PiP(x, c;))
> We propose
£, 02, 0%) = (Nikg, (07, O))xtei-00)(1 — x)Pres @ COP(x, ¢ g, (0% O))

with g, (07, 05) = 0
In particular, for now, we're exploring g; ,(0* Q5) =0
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With that simplification, the ratio of the same flavour PDF at different
scales is

R(x, 0%, Q%) 820700 (1 — x)8i3(2%00)

Taking logarithm

l

N/ 2’ 2
In(R)) = 1Il< I(QN. QO)) + 2,2(0% OIn(x) + g;5(Q% O)In(1 — x)
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With that simplification, the ratio of the same flavour PDF at different
scales is

R(x, 0%, Q%) 820700 (1 — x)8i3(2%00)

Taking logarithm

l

N/ 2’ 2
In(R)) = 1Il< I(QN. QO)) + 2,2(0% OIn(x) + g;5(Q% O)In(1 — x)

Now we only have to find the missing functions.
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First results: valence up

Ruv(x, Q)

Qe (Omin. Mc)
Qe (Mc. Mb)
Q€ (Mp, Qcs)
Q€ (Qcs, Omax)

1073

10~4

1073

35
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First results: valence up

%10~% x1071
3.5 1 = = Fit with PZ(O—OO) 0.5 7 = = Fit with P3(G—Qo)
® Trainig ® Trainig
3.0 1 QO < Q < m. ® Testing ® Testing
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2.5 1
’03 2.0 A g —0.5 1
S 151 S
3 3 —1.0 -
> 1.0 >
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—-0.5 —2.0 A1 '
-0.4 -0.3 -0.2 -0.1 0.0 0.1 -0.4 -0.3 -0.2 -0.1
O — Qo [GeV] O — Qo [GeV]
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First results: valence up

guv,z(é: Qo)
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The GAPP Initiative

> This work is part of the GAPP Initiative.

> We aim to quantify the carbon footprint of HEP research and study ways

of reducing it.

) If you are doing phenomenological studies and would like to contribute to
the project, please send an email to gapp-initiative@googlegroups.com
with:

> brief description of the simulation
> time needed to run
> hardware used
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The GAPP Initiative

> This work is part of the GAPP Initiative.

> We aim to quantify the carbon footprint of HEP research and study ways

of reducing it.

) If you are doing phenomenological studies and would like to contribute to
the project, please send an email to gapp-initiative@googlegroups.com
with:

> brief description of the simulation
> time needed to run
> hardware used

Join the GAPP!
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X, (x1000)

Summary

> We have explored the applicability of ML techniques to better
understand the underlying kinematics of a p+p collision.

> The methodology can be used for any process by non-experts.

> The methods applied can result in a better reconstruction than in the
original work, but physical intuition can play a relevant role.
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Xrear (x1072)

Higher sophistication of the method does not always translate into better

results. E.g.:

exact relation known
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»  Higher sophistication of the method does not always translate into better

results. E.g.:

: . = . : 1.0 1.0
Gaussian Process W
o - Neural-Network
7.4 l\_JL() QCD — .L() QED 7.8 —«[NLO QCD + LO QEDJ
General Basis J
0.8 0.8
6.2 6.4
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; : P
3.8 3.6
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26 3.8 5.0 6.2 7.4 2.2 3.6 5.0 6.4 7.8
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‘\’le(' ( X 1“_2)

several hours to train

few minutes to train . .
exploration of “good"” architecture
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»  Higher sophistication of the method does not always translate into better

results. E.g.:

" " X " " " " l-(j | | |
Gaussian Process 1
2 4 4+INLO QCD = LO QED 78 -«[ﬁfgrg'égejv{ongED}
General Basis J
0.8
6.2 6.4
’."ll o —
S (.6 lo
X %
— 50 — 5.0
— =
= =
= - (0. =
= 0.4 2
' 38 36
- (1.2
2.6 2.2
0.0

2.2 3.6 5.0 6.4 7.8
XREC (X 10_2)

2.0 3.8 5.0 6.2 7.4
Xgrec (x1072)

several hours to train

few minutes to train . .
exploration of “good"” architecture

) Promising steps in speeding up the calculation of codes using PDFs.
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Thank you for
your attention!



