Parton distribution functions and machine learning

P. Zurita

in collaboration with **D. Rentería-Estrada**, **R. Hernández-Pinto** and **G. Sborlini**

Outlook

- Parton distributions functions:
 - Some history.
 - How to compute them.
 - Technical details.
- Using machine learning to learn about PDFs:
 - Motivation.
 - Accessing momentum fractions in p+p with ML (several methods and results).
- Going greener with ML (preliminary results).
- Summary

"All" about parton distribution functions

1960s: Deep(ly) Inelastic Scattering

$$Q^2 = -(k - k')^2$$
 $x = \frac{Q^2}{2P \cdot q}$ $y = \frac{P \cdot q}{P \cdot k}$

$$\frac{d^2\sigma}{dxdQ^2} \propto F_2(x,Q^2) - \frac{y^2}{1 + (1-y)^2} F_L(x,Q^2)$$

1960s: Deep(ly) Inelastic Scattering

$$Q^2 = -(k - k')^2$$
 $x = \frac{Q^2}{2P \cdot q}$ $y = \frac{P \cdot q}{P \cdot k}$

J.T. Friedman and H.W. Kendall, Ann.Rev.Nucl.Sci. 22 (1972) 203. The scaling is expected if DIS is the incoherent scattering of partons (Feynman, 1969).

$$F_2^{LO}(x) = x \sum_{i=1}^{n_f} e_i^2 f_{i/h}(x)$$

• $f_{i/h}(x)$ is the **probability** density of finding the parton *i* inside the hadron *h* with *x*. These are called *Parton Distribution Functions* (PDFs).

 The scaling is expected if DIS is the incoherent scattering of partons (Feynman, 1969).

$$F_2^{LO}(x) = x \sum_{i=1}^{n_f} e_i^2 f_{i/h}(x)$$

- $f_{i/h}(x)$ is the **probability** density of finding the parton *i* inside the hadron *h* with *x*. These are called *Parton Distribution Functions* (PDFs).
- At higher orders in the expansion the scaling breaks down, a dependence on the renormalisation scale µ appears.

 The scaling is expected if DIS is the incoherent scattering of partons (Feynman, 1969).

$$F_2^{LO}(x) = x \sum_{i=1}^{n_f} e_i^2 f_{i/h}(x)$$

- $f_{i/h}(x)$ is the **probability** density of finding the parton *i* inside the hadron *h* with *x*. These are called *Parton Distribution Functions* (PDFs).
- At higher orders in the expansion the scaling breaks down, a dependence on the renormalisation scale µ appears.
- Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations give the evolution with the scale, while mixing the partons.

$$\mu^2 \frac{d}{d\mu^2} f_{a/h}(x,\mu) = \int_x^1 \frac{d\xi}{\xi} \sum_b P_{a/b}\left(\frac{x}{\xi}, \alpha_s(\mu)\right) f_{b/h}(\xi,\mu)$$

These objects are related to the ones in the parton model and we still call them "PDFs", but the probabilistic interpretation is not 100% accurate.

- These objects are related to the ones in the parton model and we still call them "PDFs", but the probabilistic interpretation is not 100% accurate.
- The PDFs contain the long distance structure of hadrons.

- These objects are related to the ones in the parton model and we still call them "PDFs", but the probabilistic interpretation is not 100% accurate.
- The PDFs contain the long distance structure of hadrons.
- They are universal, so any process that is an inclusive hard scattering can be written as

$$d\sigma^{DIS} = \sum_{i} d\sigma^{l+i \to l'} \otimes f_i \qquad \qquad d\sigma^{DY} = \sum_{i,j} d\sigma^{i+j \to l+\bar{l}} \otimes f_i \otimes f_j$$

with the same PDFs.

- These objects are related to the ones in the parton model and we still call them "PDFs", but the probabilistic interpretation is not 100% accurate.
- The PDFs contain the long distance structure of hadrons.
- They are universal, so any process that is an inclusive hard scattering can be written as

$$d\sigma^{DIS} = \sum_{i} d\sigma^{l+i \to l'} \otimes f_i \qquad d\sigma^{DY} = \sum_{i,j} d\sigma^{i+j \to l+\bar{l}} \otimes f_i \otimes f_j$$

with the same PDFs.

Without PDFs there is no prediction!

- These objects are related to the ones in the parton model and we still call them "PDFs", but the probabilistic interpretation is not 100% accurate.
- The PDFs contain the long distance structure of hadrons.
- They are universal, so any process that is an inclusive hard scattering can be written as

$$d\sigma^{DIS} = \sum_{i} d\sigma^{l+i \to l'} \otimes f_i \qquad d\sigma^{DY} = \sum_{i,j} d\sigma^{i+j \to l+\bar{l}} \otimes f_i \otimes f_j$$

with the same PDFs.

Without PDFs there is no prediction!

I will adhere the KISS principle and stick to collinear PDFs.

How to compute PDFs

D.E. Soper, Nucl.Phys.B (Proc.Suppl.) 53 (1997) 69

PDFs have formal definitions in terms of operators, for example

$$f_{j/h}(x,\mu) = \frac{1}{4\pi} \int dy^- e^{-ixP^+y^-} \langle P^+, \overrightarrow{0}_T \mid \overline{\psi}_j(0,y^-, \overrightarrow{0}_T) \gamma^+ \mathcal{O} \psi_j(0,0, \overrightarrow{0}_T) \mid P^+, \overrightarrow{0}_T \rangle_{\overline{MS}}$$

$$\mathcal{O} = \mathscr{P} \exp\left(ig \int_0^{y^-} dz^- A_a^+(0, z^-, \overrightarrow{0}_T) t_a\right)$$

$$P^{\pm} = (P^0 \pm P^3)/\sqrt{2}$$

How to compute PDFs

D.E. Soper, Nucl.Phys.B (Proc.Suppl.) 53 (1997) 69

PDFs have formal definitions in terms of operators, for example

$$f_{j/h}(x,\mu) = \frac{1}{4\pi} \int dy^- e^{-ixP^+y^-} \langle P^+, \overrightarrow{0}_T \mid \overline{\psi}_j(0,y^-, \overrightarrow{0}_T) \gamma^+ \mathcal{O} \psi_j(0,0, \overrightarrow{0}_T) \mid P^+, \overrightarrow{0}_T \rangle_{\overline{MS}}$$

$$\mathcal{O} = \mathscr{P} \exp\left(ig \int_{0}^{y^{-}} dz^{-} A_{a}^{+}(0, z^{-}, \overrightarrow{0}_{T}) t_{a}\right) \qquad P^{\pm} = (P^{0} \pm P^{3})/\sqrt{2}$$

- $|P\rangle$ is the state of a **hadron**.
- ψ is the field operator of a **quark**.

How to compute PDFs

D.E. Soper, Nucl.Phys.B (Proc.Suppl.) 53 (1997) 69

PDFs have formal definitions in terms of operators, for example

$$f_{j/h}(x,\mu) = \frac{1}{4\pi} \int dy^- e^{-ixP^+y^-} \langle P^+, \overrightarrow{0}_T \mid \overline{\psi}_j(0,y^-, \overrightarrow{0}_T) \gamma^+ \mathcal{O} \psi_j(0,0, \overrightarrow{0}_T) \mid P^+, \overrightarrow{0}_T \rangle_{\overline{MS}}$$

$$\mathcal{O} = \mathscr{P} \exp\left(ig \int_{0}^{y^{-}} dz^{-} A_{a}^{+}(0, z^{-}, \overrightarrow{0}_{T}) t_{a}\right) \qquad P^{\pm} = (P^{0} \pm P^{3})/\sqrt{2}$$

- $|P\rangle$ is the state of a **hadron**.
- ψ is the field operator of a **quark**.
- So we can't compute these from first principles in pQCD, we must resort to phenomenology. We do **global** fits.

Steps for a "traditional" fit:

- Choose:
- a factorisation scheme
- an order in perturbation theory*
- a starting scale Q_0 (so that above it pQCD is valid)
- the data to be fitted
- a heavy flavour scheme

Steps for a "traditional" fit:

- Choose:
- a factorisation scheme
- an order in perturbation theory*
- a starting scale Q_0 (so that above it pQCD is valid)
- the data to be fitted
- a heavy flavour scheme
- Parametrise the quark and gluon distribution (or a combination of them):

$$xf_i(x, Q_0^2) = A_i x^{\alpha_i} (1-x)^{\beta_i} P(x, c_i)$$

- Solve the DGLAP equations for the measured kinematics.
- Compute the hard cross sections for the observables.
- Convolute PDFs and partonic cross-sections.

• Compute this quantity and minimise it:

$$\sum_{i,j=1}^{N_{data}} \left[\sigma_{exp} - \sigma_{th} \right]_i C_{ij}^{-1} \left[\sigma_{exp} - \sigma_{th} \right]_j = \chi^2_{test}$$

• Compute this quantity and minimise it:

$$\sum_{i,j=1}^{N_{data}} \left[\sigma_{exp} - \sigma_{th} \right]_{i} C_{ij}^{-1} \left[\sigma_{exp} - \sigma_{th} \right]_{j} = \chi^{2}_{test}$$

- By the CLT, each term in the sum is distributed according to the square of a standard Gaussian.
- If we use *d* parameters, χ^2_{test} follows a χ^2 distribution with $N_{data} d$ degrees of freedom.

•
$$E[\chi^2_{test}] = N_{data} - d = N_{d.o.f.} \implies E[\chi^2_{test}]/N_{d.o.f.} = 1$$

• Compute this quantity and minimise it:

$$\sum_{i,j=1}^{N_{data}} \left[\sigma_{exp} - \sigma_{th} \right]_i C_{ij}^{-1} \left[\sigma_{exp} - \sigma_{th} \right]_j = \chi^2_{test}$$

- By the CLT, each term in the sum is distributed according to the square of a standard Gaussian.
- If we use *d* parameters, χ^2_{test} follows a χ^2 distribution with $N_{data} d$ degrees of freedom.

•
$$E[\chi^2_{test}] = N_{data} - d = N_{d.o.f.} \implies E[\chi^2_{test}]/N_{d.o.f.} = 1$$

- When we reach this point (the fit is "good enough") we can be happy and store the final parameters.
- Use some method to estimate theoretical error bands.
- Create grids in x and Q^2 , and provide an interpolator for the grid. Make it publicly available (LHAPDF).

Some details

• The basic process is DIS with photon/Z boson exchange:

$$\frac{d^2\sigma}{dxdQ^2} \propto F_2(x,Q^2) - \frac{y^2}{1 + (1-y)^2} F_L(x,Q^2)$$

$$F_2(x, Q^2) = \sum_{i=0}^{+\infty} \alpha_s^i(Q^2) \left[C_{2,q}^{i,NS} \otimes f_q^{NS} + C_{2,q}^{i,S} \otimes f_q^S + C_{2,g}^i \otimes f_g \right]$$
$$F_L(x, Q^2) = \sum_{i=1}^{+\infty} \alpha_s^i(Q^2) \left[C_{L,q}^{i,NS} \otimes f_q^{NS} + C_{L,q}^{i,S} \otimes f_q^S + C_{L,g}^i \otimes f_g \right]$$

Some details

The basic process is DIS with photon/Z boson exchange:

$$\frac{d^2\sigma}{dxdQ^2} \propto F_2(x,Q^2) - \frac{y^2}{1 + (1-y)^2} F_L(x,Q^2)$$

$$F_{2}(x,Q^{2}) = \sum_{i=0}^{+\infty} \alpha_{s}^{i}(Q^{2}) \left[C_{2,q}^{i,NS} \otimes f_{q}^{NS} + C_{2,q}^{i,S} \otimes f_{q}^{S} + C_{2,g}^{i} \otimes f_{g} \right]$$
$$F_{L}(x,Q^{2}) = \sum_{i=1}^{+\infty} \alpha_{s}^{i}(Q^{2}) \left[C_{L,q}^{i,NS} \otimes f_{q}^{NS} + C_{L,q}^{i,S} \otimes f_{q}^{S} + C_{L,g}^{i} \otimes f_{g} \right]$$

$$f_q^{NS}(x, Q^2) = \sum_{i=1}^{n_f} e_i^2 f_i(x, Q^2)$$

$$f_q^S(x, Q^2) = \sum_{i=1}^{n_f} f_i(x, Q^2)$$

 $\sigma_{r, NC} \ge 2^{i}$

9

 For quarks, Neutral Current DIS is sensitive only to the non-singlet and singlet combination of the PDFs.

- For quarks, Neutral Current DIS is sensitive only to the non-singlet and singlet combination of the PDFs.
- We need to use other observables, such as Charged Current DIS to distinguish flavours.

$$\frac{d^2\sigma}{dxdQ^2} \propto F_2(x,Q^2) - \frac{y^2}{1+(1-y)^2} F_L(x,Q^2) \mp \frac{1-(1-y)^2}{1+(1-y)^2} F_3$$

 xF_3 provides more PDF combinations, but it not enough (plus it is very complicated).

- For quarks, Neutral Current DIS is sensitive only to the non-singlet and singlet combination of the PDFs.
- We need to use other observables, such as Charged Current DIS to distinguish flavours.

$$\frac{d^2\sigma}{dxdQ^2} \propto F_2(x,Q^2) - \frac{y^2}{1+(1-y)^2} F_L(x,Q^2) \mp \frac{1-(1-y)^2}{1+(1-y)^2} F_3$$

- xF_3 provides more PDF combinations, but it not enough (plus it is very complicated).
- We can use "neutrons", but it is still to enough, due to the kinematic reach of the data...

- For quarks, Neutral Current DIS is sensitive only to the non-singlet and singlet combination of the PDFs.
- We need to use other observables, such as Charged Current DIS to distinguish flavours.

$$\frac{d^2\sigma}{dxdQ^2} \propto F_2(x,Q^2) - \frac{y^2}{1+(1-y)^2} F_L(x,Q^2) \mp \frac{1-(1-y)^2}{1+(1-y)^2} F_3$$

- xF_3 provides more PDF combinations, but it not enough (plus it is very complicated).
- We can use "neutrons", but it is still to enough, due to the kinematic reach of the data...
- We use **p+p**!

$$\frac{d^2\sigma}{dx_F dQ^2} = \frac{d^2\sigma^A}{dx_F dQ^2} + \frac{d^2\sigma^C}{dx_F dQ^2}$$

$$\frac{d^2 \sigma^A}{dx_F dQ^2} = \frac{4\pi\alpha^2}{9Q^2 s} \sum_i e_i^2 \int_{x_1}^1 dt_1 \int_{x_2}^1 dt_2 \frac{d^2 \hat{\sigma}^A}{dx_F dQ^2} \left[f_i(t_1, Q^2) \bar{f}_i(t_2, Q^2) + \bar{f}_i(t_1, Q^2) f_i(t_2, Q^2) \right]$$

$$\frac{d^2 \sigma^C}{dx_F dQ^2} = \frac{4\pi\alpha^2}{9Q^2 s} \sum_i e_i^2 \int_{x_1}^1 dt_1 \int_{x_2}^1 dt_2 \left[\frac{d^2 \hat{\sigma}^C}{dx_F dQ^2} f_g(t_1, Q^2) \left[f_i(t_2, Q^2) + \bar{f}_i(t_2, Q^2) \right] + (1 \leftrightarrow 2) \right]$$

$$\frac{d^2\sigma}{dx_F dQ^2} = \frac{d^2\sigma^A}{dx_F dQ^2} + \frac{d^2\sigma^C}{dx_F dQ^2}$$

$$\frac{d^2 \sigma^A}{dx_F dQ^2} = \frac{4\pi\alpha^2}{9Q^2 s} \sum_i e_i^2 \int_{x_1}^1 dt_1 \int_{x_2}^1 dt_2 \frac{d^2 \hat{\sigma}^A}{dx_F dQ^2} \left[f_i(t_1, Q^2) \bar{f}_i(t_2, Q^2) + \bar{f}_i(t_1, Q^2) f_i(t_2, Q^2) \right]$$

$$\frac{d^2 \sigma^C}{dx_F dQ^2} = \frac{4\pi\alpha^2}{9Q^2 s} \sum_i e_i^2 \int_{x_1}^1 dt_1 \int_{x_2}^1 dt_2 \left[\frac{d^2 \hat{\sigma}^C}{dx_F dQ^2} f_g(t_1, Q^2) \left[f_i(t_2, Q^2) + \bar{f}_i(t_2, Q^2) \right] + (1 \leftrightarrow 2) \right]$$

Now it is quadratic in the PDFs, therefore harder to extract.

$$\frac{d^2\sigma}{dx_F dQ^2} = \frac{d^2\sigma^A}{dx_F dQ^2} + \frac{d^2\sigma^C}{dx_F dQ^2}$$

$$\frac{d^2 \sigma^A}{dx_F dQ^2} = \frac{4\pi\alpha^2}{9Q^2 s} \sum_i e_i^2 \int_{x_1}^1 dt_1 \int_{x_2}^1 dt_2 \frac{d^2 \hat{\sigma}^A}{dx_F dQ^2} \left[f_i(t_1, Q^2) \bar{f}_i(t_2, Q^2) + \bar{f}_i(t_1, Q^2) f_i(t_2, Q^2) \right]$$

$$\frac{d^2 \sigma^C}{dx_F dQ^2} = \frac{4\pi\alpha^2}{9Q^2 s} \sum_i e_i^2 \int_{x_1}^1 dt_1 \int_{x_2}^1 dt_2 \left[\frac{d^2 \hat{\sigma}^C}{dx_F dQ^2} f_g(t_1, Q^2) \left[f_i(t_2, Q^2) + \bar{f}_i(t_2, Q^2) \right] + (1 \leftrightarrow 2) \right]$$

- Now it is quadratic in the PDFs, therefore harder to extract.
- More importantly, beyond LO the x_1, x_2 are not the momentum fractions of the partons in the hard interaction!

$$x_1, x_2 = \sqrt{\frac{M^2}{s}} e^{\pm y}$$

$$\frac{d^2\sigma}{dx_F dQ^2} = \frac{d^2\sigma^A}{dx_F dQ^2} + \frac{d^2\sigma^C}{dx_F dQ^2}$$

$$\frac{d^2 \sigma^A}{dx_F dQ^2} = \frac{4\pi\alpha^2}{9Q^2 s} \sum_i e_i^2 \int_{x_1}^1 dt_1 \int_{x_2}^1 dt_2 \frac{d^2 \hat{\sigma}^A}{dx_F dQ^2} \left[f_i(t_1, Q^2) \bar{f}_i(t_2, Q^2) + \bar{f}_i(t_1, Q^2) f_i(t_2, Q^2) \right]$$

$$\frac{d^2 \sigma^C}{dx_F dQ^2} = \frac{4\pi\alpha^2}{9Q^2 s} \sum_i e_i^2 \int_{x_1}^1 dt_1 \int_{x_2}^1 dt_2 \left[\frac{d^2 \hat{\sigma}^C}{dx_F dQ^2} f_g(t_1, Q^2) \left[f_i(t_2, Q^2) + \bar{f}_i(t_2, Q^2) \right] + (1 \leftrightarrow 2) \right]$$

- Now it is quadratic in the PDFs, therefore harder to extract.
- More importantly, beyond LO the x_1, x_2 are not the momentum fractions of the partons in the hard interaction!

$$x_1, x_2 = \sqrt{\frac{M^2}{s}}e^{\pm y}$$

definition used beyond LO (🛞 but it is not true!)

Machine learning for PDFs

Not being able to access the real x_1, x_2 from measuring the kinematics is not exclusive of the Drell-Yan process. It happens for all p+p collisions.

 $x_1, x_2 = \sqrt{\frac{M^2}{s}}e^{\pm y}$

And can have significant impact: e.g. in p+Pb collisions

- Not being able to access the real x_1, x_2 from measuring the kinematics is not exclusive of the Drell-Yan process. It happens for all p+p collisions.
- And can have significant impact: e.g. in p+Pb collisions

data from e+A DIS

- Not being able to access the real x_1, x_2 from measuring the kinematics is not exclusive of the Drell-Yan process. It happens for all p+p collisions.
- And can have significant impact: e.g. in p+Pb collisions

data from e+A DIS

ratio of proton to nuclear PDF

 x_1 ,

Not being able to access the real x_1, x_2 from measuring the kinematics is not exclusive of the Drell-Yan process. It happens for all p+p collisions.

data from e+A DIS

ratio of proton to nuclear PDF

• We want to use ML to find a link between the measurable quantities and the parton momentum fractions.
Accessing the kinematics using ML

Renteria-Estrada et *al.,* arXiv:2112.05043 [hep-ph]

- We looked at one particular process: $p + p \rightarrow \pi^+ + \gamma$
- Reconstructed x_1, x_2 and z from momenta of π^+, γ
- For RHIC kinematics, so we could compare with previous results.

D. de Florian and G. Sborlini, Phys.Rev.D 83 (2011) 074022

First: check the dependences on the kinematics

Transverse momentum dependence:

•
$$x_1 = x, z$$
 dependences:

Second: check correlations

LO Kinematics

$$x_{1,2} = \frac{p_T^{\gamma}}{\sqrt{s}} \left(e^{\eta^{\pm \pi}} + e^{\eta^{\pm \gamma}} \right)$$

$$z = \frac{p_T^{\pi}}{p_T^{\gamma}}$$

• $x \text{ vs. } p_T$

$$z$$
 vs. p_T

Second: check correlations

NLO Kinematics $x_{1,2} = ?$ z = ?

• $x \text{ vs. } p_T$

• $z \text{ vs. } p_T$

17

$$x_{1,2}^{rec.} = \frac{p_T^{\gamma}}{\sqrt{s}} \left(e^{\pm \eta^{\pi}} + e^{\pm \eta^{\gamma}} \right)$$

$$x_{1,2}^{rec.} = ?$$

$$x_{1,2}^{rec.} = \frac{p_T^{\gamma}}{\sqrt{s}} \left(e^{\pm \eta^{\pi}} + e^{\pm \eta^{\gamma}} \right)$$

Kinematics: NLO $x_{1,2}^{rec.} = ?$

Experimental collaborations used

$$x_{1,2}^{rec.} = \frac{p_T^{\gamma} e^{\pm \eta^{\pi}} - \cos(\phi^{\pi} - \phi^{\gamma}) p_T^{\gamma} e^{\pm \eta^{\gamma}}}{\sqrt{s}}$$

$$x_{1,2}^{rec.} = \frac{p_T^{\gamma}}{\sqrt{s}} \left(e^{\pm \eta^{\pi}} + e^{\pm \eta^{\gamma}} \right)$$

Kinematics: NLO $x_{1,2}^{rec.} = ?$

Experimental collaborations used

$$x_{1,2}^{rec.} = \frac{p_T^{\gamma} e^{\pm \eta^{\pi}} - \cos(\phi^{\pi} - \phi^{\gamma}) p_T^{\gamma} e^{\pm \eta^{\gamma}}}{\sqrt{s}}$$

D. de Florian, G. Sborlini, PRD 83, 074022

$$x_{1,2}^{rec.} = \frac{p_T^{\gamma}}{\sqrt{s}} \left(e^{\pm \eta^{\pi}} + e^{\pm \eta^{\gamma}} \right) \qquad z^{rec.} = \frac{p_T^{\pi}}{p_T^{\gamma}}$$

Kinematics: NLO $x_{1,2}^{rec.} = ?$ $z^{rec.} = ?$

Experimental collaborations used

$$z^{rec.} = -\cos(\phi^{\pi} - \phi^{\gamma})\frac{p_T^{\pi}}{p_T^{\gamma}}$$

D. de Florian, G. Sborlini, PRD 83, 074022

$$x_{1,2}^{rec.} = \frac{p_T^{\gamma}}{\sqrt{s}} \left(e^{\pm \eta^{\pi}} + e^{\pm \eta^{\gamma}} \right) \qquad z^{rec.} = \frac{p_T^{\pi}}{p_T^{\gamma}}$$

Kinematics: NLO $x_{1,2}^{rec.} = ?$ $z^{rec.} = ?$

Experimental collaborations used

$$z^{rec.} = -\cos(\phi^{\pi} - \phi^{\gamma})\frac{p_T^{\pi}}{p_T^{\gamma}}$$

D. de Florian, G. Sborlini, PRD 83, 074022

In the last decade PDFs and FFs have changed significantly.

D. de Florian, R. Sassot, M. Epele, R.J. Hernández-Pinto and M. Stratmann, PRD 91, 014035.

In the last decade PDFs and FFs have changed significantly.

• The code now includes QED corrections:

D. Rentería-Estrada, R. Hernández-Pinto, G. Sborlini, Symmetry 13 (2021) 6, 942

New numerical methods/tools available with tutorials "for dummies".

In the last decade PDFs and FFs have changed significantly.

• The code now includes QED corrections:

D. Rentería-Estrada, R. Hernández-Pinto, G. Sborlini, Symmetry 13 (2021) 6, 942

New numerical methods/tools available with tutorials "for dummies".

We're the dummies: we want to apply machine learning techniques to access the real momentum fractions and lower the assumptions.

- At NLO we have real $(2 \rightarrow 3)$ and virtual $(2 \rightarrow 2)$ contributions and counterterms $(2 \rightarrow 2)$.
- Cancellations can only happen in the MC integration when histograming.

 $\left\{\bar{p}^{\gamma}_{T}, \bar{p}^{\pi}_{T}, \bar{\eta}^{\gamma}, \bar{\eta}^{\pi}, \overline{\cos}(\phi^{\pi} - \phi^{\gamma})\right\} \in \bar{\mathcal{V}}_{EXP}$

$$\sigma_{j}(\bar{p}_{T}^{\gamma},\bar{p}_{T}^{\pi},\bar{\eta}^{\gamma},\bar{\eta}^{\pi},\overline{\cos}(\phi^{\pi}-\phi^{\gamma})) = \int_{(p_{T}^{\gamma})_{j,MIN}}^{(p_{T}^{\gamma})_{j,MAX}} dp_{T}^{\gamma} \int_{(p_{T}^{\pi})_{j,MIN}}^{(p_{T}^{\pi})_{j,MAX}} dp_{T}^{\pi} \int dx_{1} dx_{2} dz \, d\bar{\sigma}$$

- At NLO we have real $(2 \rightarrow 3)$ and virtual $(2 \rightarrow 2)$ contributions and counterterms $(2 \rightarrow 2)$.
- Cancellations can only happen in the MC integration when histograming.

 $\left\{\bar{p}_{T}^{\gamma}, \bar{p}_{T}^{\pi}, \bar{\eta}^{\gamma}, \bar{\eta}^{\pi}, \overline{\cos}(\phi^{\pi} - \phi^{\gamma})\right\} \in \bar{\mathcal{V}}_{EXP}$

$$\sigma_{j}(\bar{p}_{T}^{\gamma},\bar{p}_{T}^{\pi},\bar{\eta}^{\gamma},\bar{\eta}^{\pi},\overline{\cos}(\phi^{\pi}-\phi^{\gamma})) = \int_{(p_{T}^{\gamma})_{j,MIN}}^{(p_{T}^{\gamma})_{j,MAX}} dp_{T}^{\gamma} \int_{(p_{T}^{\pi})_{j,MIN}}^{(p_{T}^{\pi})_{j,MAX}} dp_{T}^{\pi} \int dx_{1} dx_{2} dz \, d\bar{\sigma}$$

 We weight the momentum fractions from the MC with the per-bin crosssection

$$(x_1)_j = \sum_i (x_1)_i \frac{d\sigma_j}{dx_1} (p_j; (x_1)_i) \qquad (z)_j = \sum_i (z)_i \frac{d\sigma_j}{dz} (p_j; (z)_i)$$

- At NLO we have real $(2 \rightarrow 3)$ and virtual $(2 \rightarrow 2)$ contributions and counterterms $(2 \rightarrow 2)$.
- Cancellations can only happen in the MC integration when histograming.

 $\left\{\bar{p}_{T}^{\gamma},\bar{p}_{T}^{\pi},\bar{\eta}^{\gamma},\bar{\eta}^{\pi},\overline{\cos}(\phi^{\pi}-\phi^{\gamma})\right\}\in\bar{\mathcal{V}}_{EXP}$

$$\sigma_{j}(\bar{p}_{T}^{\gamma},\bar{p}_{T}^{\pi},\bar{\eta}^{\gamma},\bar{\eta}^{\pi},\overline{\cos}(\phi^{\pi}-\phi^{\gamma})) = \int_{(p_{T}^{\gamma})_{j,MIN}}^{(p_{T}^{\gamma})_{j,MAX}} dp_{T}^{\gamma} \int_{(p_{T}^{\pi})_{j,MIN}}^{(p_{T}^{\pi})_{j,MAX}} dp_{T}^{\pi} \int dx_{1} dx_{2} dz \, d\bar{\sigma}$$

 We weight the momentum fractions from the MC with the per-bin crosssection

$$(x_1)_j = \sum_i (x_1)_i \frac{d\sigma_j}{dx_1} (p_j; (x_1)_i) \qquad (z)_j = \sum_i (z)_i \frac{d\sigma_j}{dz} (p_j; (z)_i)$$

With this we search for the mapping

$$X_{1,REC}: \ \bar{\mathscr{V}}_{EXP} \to \overline{X}_{1,REAL} = \{(x_1)_j\}$$

▶ In general, in ML

▶ In general, in ML

Linear regression

$$\hat{y} = \theta_0 + \theta_1 x^{(1)}$$

In general, in ML

Linear regression

$$\hat{y} = \theta_0 + \theta_1 x^{(1)}$$

"cheat": linear means linear in the parameters.

$$[x^{(1)}]^2 = x^{(2)} \longrightarrow \hat{y} = \theta_0 + \theta_1 x^{(1)} + \theta_2 x^{(2)}$$

• the parameters minimise $\min_{\theta} \|\hat{y} - y\|_2^2$

• Let us start with LO and use linear regression:

Basis:

s:
$$\mathscr{B}_{LO} = \left\{ \frac{p_T^{\gamma} e^{\eta^{\pi}}}{\sqrt{s}}, \frac{p_T^{\gamma} e^{\eta^{\gamma}}}{\sqrt{s}}, \frac{p_T^{\gamma} e^{-\eta^{\pi}}}{\sqrt{s}}, \frac{p_T^{\gamma} e^{-\eta^{\gamma}}}{\sqrt{s}}, \frac{p_T^{\pi}}{p_T^{\gamma}} \right\}$$

We used three bases: "LO inspired", "general", "physically motivated"

 $\mathcal{K}_5 = \cos(\phi^{\pi} - \phi^{\gamma})$

• We used three bases: "LO inspired", "general", "physically motivated"

$$\mathscr{K} = \left\{ \frac{p_T^{\gamma}}{\sqrt{s}}, \frac{p_T^{\pi}}{\sqrt{s}}, e^{\eta^{\gamma}}, e^{\eta^{\pi}}, \cos(\phi^{\pi} - \phi^{\gamma}) \right\}$$

$$X_{\text{REC}} = \sum_{i=1, i \neq 5}^{9} (a_i + b_i \mathcal{K}_5) \mathcal{K}_i + \sum_{i \leq j, \{i, j\} \neq 5, j-i \neq 5} (c_{ij} + d_{ij} \mathcal{K}_5) \mathcal{K}_i \mathcal{K}_j$$

81 parameters in total.

We used three bases: "LO inspired", "general", "physically motivated"

$$\mathscr{K} = \left\{ \frac{p_T^{\gamma}}{\sqrt{s}}, \frac{p_T^{\pi}}{\sqrt{s}}, e^{\eta^{\gamma}}, e^{\eta^{\pi}}, \cos(\phi^{\pi} - \phi^{\gamma}) \right\}$$

$$X_{\text{REC}} = \sum_{i=1, i \neq 5}^{9} (a_i + b_i \mathcal{K}_5) \mathcal{K}_i + \sum_{i \leq j, \{i, j\} \neq 5, j-i \neq 5} (c_{ij} + d_{ij} \mathcal{K}_5) \mathcal{K}_i \mathcal{K}_j$$

Remove contributions w.r.t. which we see no dependence (~40 parameters).

For z:

The Radial Basis Function

• How to pick $\tilde{\mathbf{X}}$? Before we did it by intuition.

• We replace
$$x^{(i)}$$
 by $f_i(x) = e^{-\frac{\|x - x^{(i)}\|_2^2}{2l^2}}$

- This Radial Basis Function
 - requires less elements (one per feature in the basis).
 - effectively considers infinite terms.
 - is a popular form of the kernel method.

Similar results for the reconstruction of *z*.

image from <u>scikit-learn.org</u>

Neural networks: the basics

- Pass from one layer to the next by applying a non-linear activation function to a weighted sum of the previous layers.
- Pros: no need to play with the basis, less human bias (but not zero!)
- Cons: the complexity of the architecture requires more time for training.
- Also, one needs to choose the architecture.

Neural networks

 For LO the complexity of the NN greatly surpasses the complexity of the problem.

Going greener with ML

- All the running of MC codes takes a long time to reach good precision.
- Apart from boring, they carry a significant environmental impact (and to our pockets given the cost of electricity).
- What can we do to make things faster using current available resources?
 - Improve the codes: has to be done code by code.

Going greener with ML

- All the running of MC codes takes a long time to reach good precision.
- Apart from boring, they carry a significant environmental impact (and to our pockets given the cost of electricity).
- What can we do to make things faster using current available resources?
 - Improve the codes: has to be done code by code.

• Can we speed up the running time without touching the code?

Going greener with ML

- All the running of MC codes takes a long time to reach good precision.
- Apart from boring, they carry a significant environmental impact (and to our pockets given the cost of electricity).
- What can we do to make things faster using current available resources?
 - Improve the codes: has to be done code by code.

• Can we speed up the running time without touching the code?

Perhaps.

- Most codes require non perturbative inputs (e.g. PDFs).
- PDFs are provided as grids and functions that read the grids and interpolate over them (e.g. LHAPDF).
- And this is quite efficient, as long as we don't need to run millions and millions of calculations.

- Most codes require non perturbative inputs (e.g. PDFs).
- PDFs are provided as grids and functions that read the grids and interpolate over them (e.g. LHAPDF).
- And this is quite efficient, as long as we don't need to run millions and millions of calculations.
- A quick exploration shows that the time spent on the interpolation could be reduced 40-50% if we had analytical expressions for the PDFs.

- Most codes require non perturbative inputs (e.g. PDFs).
- PDFs are provided as grids and functions that read the grids and interpolate over them (e.g. LHAPDF).
- And this is quite efficient, as long as we don't need to run millions and millions of calculations.
- A quick exploration shows that the time spent on the interpolation could be reduced 40-50% if we had analytical expressions for the PDFs.

Goal: find an analytical x and Q² form for a set of proton PDFs.

We are working (for now) with HERAPDF2.0

Idea and first results

• For most PDFs the x dependence at some initial scale is written as

$$f_i(x, Q_0^2) = N_i x^{\alpha_i} (1 - x)^{\beta_i} P(x, c_{ij})$$

• We propose

 $f_i(x, Q_0^2, Q^2) = (N_i + g_{i,1}(Q^2, Q_0^2)) x^{\alpha_i + g_{i,2}(Q^2, Q_0^2)} (1 - x)^{\beta_i + g_{i,3}(Q^2, Q_0^2)} P(x, c_{ij} + g_{i,4}(Q^2, Q_0^2))$

with $g_{i,j}(Q_0^2, Q_0^2) = 0$

In particular, for now, we're exploring $g_{i,4}(Q^2, Q_0^2) = 0$

 With that simplification, the ratio of the same flavour PDF at different scales is

$$R_i(x, Q_0^2, Q^2) \propto x^{g_{i,2}(Q^2, Q_0^2)} (1-x)^{g_{i,3}(Q^2, Q_0^2)}$$

Taking logarithm

$$\ln(R_i) = \ln\left(\frac{N_i'(Q^2, Q_0^2)}{N_i}\right) + g_{i,2}(Q^2, Q_0^2)\ln(x) + g_{i,3}(Q^2, Q_0^2)\ln(1-x)$$
With that simplification, the ratio of the same flavour PDF at different scales is

$$R_i(x, Q_0^2, Q^2) \propto x^{g_{i,2}(Q^2, Q_0^2)} (1-x)^{g_{i,3}(Q^2, Q_0^2)}$$

Taking logarithm

$$\ln(R_i) = \ln\left(\frac{N_i'(Q^2, Q_0^2)}{N_i}\right) + g_{i,2}(Q^2, Q_0^2)\ln(x) + g_{i,3}(Q^2, Q_0^2)\ln(1-x)$$

Now we only have to find the missing functions.

First results: valence up

First results: valence up

First results: valence up

The GAPP Initiative

- This work is part of the GAPP Initiative.
- We aim to quantify the carbon footprint of HEP research and study ways of reducing it.
- If you are doing phenomenological studies and would like to contribute to the project, please send an email to <u>gapp-initiative@googlegroups.com</u> with:
 - brief description of the simulation
 - time needed to run
 - hardware used

The GAPP Initiative

- This work is part of the GAPP Initiative.
- We aim to quantify the carbon footprint of HEP research and study ways of reducing it.
- If you are doing phenomenological studies and would like to contribute to the project, please send an email to <u>gapp-initiative@googlegroups.com</u> with:
 - brief description of the simulation
 - time needed to run
 - hardware used

Join the GAPP!

- We have explored the applicability of ML techniques to better understand the underlying kinematics of a p+p collision.
- The methodology can be used for any process by non-experts.
- The methods applied can result in a better reconstruction than in the original work, but physical intuition can play a relevant role.

 Higher sophistication of the method does not always translate into better results. E.g.:

exact relation known

 Higher sophistication of the method does not always translate into better results. E.g.:

few minutes to train

several hours to train exploration of "good" architecture

1.0

- 0.8

- 0.6

- 0.4

-0.2

0.0

 Higher sophistication of the method does not always translate into better results. E.g.:

few minutes to train

several hours to train exploration of "good" architecture

Promising steps in speeding up the calculation of codes using PDFs.

Thank you for your attention!