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Outlook
‣ Parton distributions functions: 

‣ Some history. 
‣ How to compute them. 
‣ Technical details. 

‣ Using machine learning to learn about PDFs: 

‣ Motivation. 
‣ Accessing momentum fractions in p+p with ML 

(several methods and results). 

‣ Going greener with ML (preliminary results). 

‣ Summary
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“All” about parton 
distribution functions 



Q2 = − (k − k′ )2 x =
Q2

2P ⋅ q

d2σ
dxdQ2

∝ F2(x, Q2) −
y2

1 + (1 − y)2
FL(x, Q2)

y =
P ⋅ q
P ⋅ k

l(k) l(k′ )

h(P)

1960s: Deep(ly) Inelastic Scattering
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Bjorken Scaling Hypothesis (1967)

“If scattering is caused by point-like constituents (partons), the structure functions for 
fixed x must be independent of Q2.”

experimental observation: structure functions                      and                     do not 
depend on 

First evidence for point-like substructure of proton!

J.T. Friedman and H.W. Kendall, 
Ann.Rev.Nucl.Sci. 22 (1972) 203.

Q2 = − (k − k′ )2 x =
Q2

2P ⋅ q

d2σ
dxdQ2

∝ F2(x, Q2) −
y2

1 + (1 − y)2
FL(x, Q2)

y =
P ⋅ q
P ⋅ k

l(k) l(k′ )

h(P)

1960s: Deep(ly) Inelastic Scattering

3



‣ The scaling is expected if DIS is the incoherent scattering of partons 
(Feynman, 1969).

FLO
2 (x) = x 

nf

∑
i=1

 e2
i  fi/h(x)

‣  is the probability density of finding the parton i inside the hadron h 

with x. These are called Parton Distribution Functions (PDFs).

fi/h(x)

4



‣ The scaling is expected if DIS is the incoherent scattering of partons 
(Feynman, 1969).

FLO
2 (x) = x 

nf

∑
i=1

 e2
i  fi/h(x)

‣  is the probability density of finding the parton i inside the hadron h 

with x. These are called Parton Distribution Functions (PDFs).

fi/h(x)

‣ At higher orders in the expansion the scaling breaks down, a dependence 
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‣ The scaling is expected if DIS is the incoherent scattering of partons 
(Feynman, 1969).

FLO
2 (x) = x 

nf

∑
i=1

 e2
i  fi/h(x)

‣ At higher orders in the expansion the scaling breaks down, a dependence 
on the renormalisation scale μ appears.

μ2 d
dμ2

fa/h(x, μ) = ∫
1

x

dξ
ξ ∑

b

Pa/b( x
ξ

, αs(μ)) fb/h(ξ, μ)

‣ Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations give the 
evolution with  the scale, while mixing the partons.

‣  is the probability density of finding the parton i inside the hadron h 

with x. These are called Parton Distribution Functions (PDFs).

fi/h(x)
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‣ These objects are related to the ones in the parton model and we still call 
them “PDFs”, but the probabilistic interpretation is not 100% accurate.
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‣ These objects are related to the ones in the parton model and we still call 
them “PDFs”, but the probabilistic interpretation is not 100% accurate.

Without PDFs there is no prediction!

I will adhere the KISS principle and stick to collinear PDFs.

‣ They are universal, so any process that is an inclusive hard scattering can 
be written as  

                     

with the same PDFs.

dσDIS = ∑
i

dσl+i→l′ ⊗ fi dσDY = ∑
i,j
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fj/h(x, μ) =
1

4π ∫ dy−e−ixP+y−⟨P+, ⃗0 T ∣  ψ̄j(0,y−, ⃗0 T) γ+ 𝒪 ψj(0,0, ⃗0 T)  ∣ P+, ⃗0 T⟩M̄S

𝒪 = 𝒫 exp(ig∫
y−

0
dz−A+

a (0,z−, ⃗0 T) ta)

How to compute PDFs

‣ PDFs have formal definitions in terms of operators, for example

P± = (P0 ± P3)/ 2

6

D.E. Soper, Nucl.Phys.B 
(Proc.Suppl.) 53 (1997) 69
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fj/h(x, μ) =
1

4π ∫ dy−e−ixP+y−⟨P+, ⃗0 T ∣  ψ̄j(0,y−, ⃗0 T) γ+ 𝒪 ψj(0,0, ⃗0 T)  ∣ P+, ⃗0 T⟩M̄S

How to compute PDFs

‣ PDFs have formal definitions in terms of operators, for example

‣ So we can’t compute these from first principles in pQCD, we must resort 
to phenomenology. We do global fits.

𝒪 = 𝒫 exp(ig∫
y−

0
dz−A+

a (0,z−, ⃗0 T) ta) P± = (P0 ± P3)/ 2

‣  is the state of a hadron.  

‣   is the field operator of a quark.

|P⟩
ψ
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Steps for a “traditional” fit:

‣ Choose: 
‣ a factorisation scheme 
‣ an order in perturbation theory* 

‣ a starting scale  (so that above it pQCD is valid) 
‣ the data to be fitted 
‣ a heavy flavour scheme

Q0
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Steps for a “traditional” fit:

‣ Choose: 
‣ a factorisation scheme 
‣ an order in perturbation theory* 

‣ a starting scale  (so that above it pQCD is valid) 
‣ the data to be fitted 
‣ a heavy flavour scheme

Q0

‣ Parametrise the quark and gluon distribution (or a combination of them): 

 

‣ Solve the DGLAP equations for the measured kinematics. 
‣ Compute the hard cross sections for the observables. 
‣ Convolute PDFs and partonic cross-sections. 

xfi(x, Q2
0) = Aixαi(1 − x)βiP(x, ci)
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Ndata

∑
i,j=1

[σexp − σth]i
C−1

ij [σexp − σth]j
= χ2

test

‣ Compute this quantity and minimise it:
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Ndata

∑
i,j=1

[σexp − σth]i
C−1

ij [σexp − σth]j
= χ2

test

‣ Compute this quantity and minimise it:

‣ By the CLT, each term in the sum is distributed according to the square of 
a standard Gaussian. 

‣ If we use d parameters,  follows a  distribution with  

degrees of freedom. 

‣

χ2
test χ2 Ndata − d

E[χ2
test] = Ndata − d = Nd.o.f. ⟹ E[χ2

test]/Nd.o.f. = 1

8



Ndata

∑
i,j=1

[σexp − σth]i
C−1

ij [σexp − σth]j
= χ2

test

‣ Compute this quantity and minimise it:

‣ By the CLT, each term in the sum is distributed according to the square of 
a standard Gaussian. 

‣ If we use d parameters,  follows a  distribution with  

degrees of freedom. 

‣

χ2
test χ2 Ndata − d

E[χ2
test] = Ndata − d = Nd.o.f. ⟹ E[χ2

test]/Nd.o.f. = 1

‣ When we reach this point (the fit is “good enough”) we can be happy and 
store the final parameters. 

‣ Use some method to estimate theoretical error bands. 

‣ Create grids in x and , and provide an interpolator for the grid. Make it 

publicly available (LHAPDF).

Q2
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d2σ
dxdQ2

∝ F2(x, Q2) −
y2

1 + (1 − y)2
FL(x, Q2)

F2(x, Q2) =
+∞

∑
i=0

αi
s(Q2)[Ci,NS

2,q ⊗ fNS
q + Ci,S

2,q ⊗ f S
q + Ci

2,g ⊗ fg]
FL(x, Q2) =

+∞

∑
i=1

αi
s(Q2)[Ci,NS

L,q ⊗ fNS
q + Ci,S

L,q ⊗ f S
q + Ci

L,g ⊗ fg]

l(k) l(k′ )

h(P)

‣ The basic process is DIS with photon/Z boson exchange: 

Some details
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L,q ⊗ fNS
q + Ci,S

L,q ⊗ f S
q + Ci

L,g ⊗ fg]

fNS
q (x, Q2) =

nf

∑
i=1

e2
i fi(x, Q2)

f S
q(x, Q2) =

nf

∑
i=1

fi(x, Q2)

l(k) l(k′ )

h(P)

‣ The basic process is DIS with photon/Z boson exchange: 

Eur.Phys.J.C 75 (2015) 12, 580

Some details
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‣ For quarks, Neutral Current DIS is sensitive only to the non-singlet and 
singlet combination of the PDFs. 
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‣ For quarks, Neutral Current DIS is sensitive only to the non-singlet and 
singlet combination of the PDFs. 

l(k) l′ (k′ )

h(P)

W

q′ 

d2σ
dxdQ2

∝ F2(x, Q2) −
y2

1 + (1 − y)2
FL(x, Q2) ∓

1 − (1 − y)2

1 + (1 − y)2
xF3

‣  provides more PDF combinations, but it not 

enough (plus it is very complicated).

xF3

‣ We need to use other observables, such as Charged Current DIS to 
distinguish flavours.
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‣ For quarks, Neutral Current DIS is sensitive only to the non-singlet and 
singlet combination of the PDFs. 

l(k) l′ (k′ )

h(P)

W

q′ 

d2σ
dxdQ2

∝ F2(x, Q2) −
y2

1 + (1 − y)2
FL(x, Q2) ∓

1 − (1 − y)2

1 + (1 − y)2
xF3

‣ We need to use other observables, such as Charged Current DIS to 
distinguish flavours.

‣ We can use “neutrons”, but it is still to enough, 
due to the kinematic reach of the data…

‣ We use p+p!

‣  provides more PDF combinations, but it not 

enough (plus it is very complicated).

xF3
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‣ Let us see for example Drell-Yan: d2σ
dxFdQ2

=
d2σA

dxFdQ2
+

d2σC

dxFdQ2

d2σA

dxFdQ2
=

4πα2

9Q2s ∑
i

e2
i ∫

1

x1

dt1 ∫
1

x2

dt2
d2 ̂σA

dxFdQ2 [fi(t1, Q2)f̄i(t2, Q2) + f̄i(t1, Q2)fi(t2, Q2)]

d2σC

dxFdQ2
=

4πα2

9Q2s ∑
i

e2
i ∫

1

x1

dt1 ∫
1

x2

dt2[ d2 ̂σC

dxFdQ2
fg(t1, Q2)[fi(t2, Q2) + f̄i(t2, Q2)] + (1 ⟷ 2)]
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s
e±y
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‣ Now it is quadratic in the PDFs, therefore harder to extract.

‣ More importantly, beyond LO the  are not the momentum fractions 

of the partons in the hard interaction!

x1, x2

x1, x2 =
M2

s
e±y definition used beyond LO (🤫 but it is not true!)
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Machine learning for PDFs



Motivation

‣ Not being able to access the real  from measuring the kinematics is 

not exclusive of the Drell-Yan process. It happens for all p+p collisions. 

‣ And can have significant impact: e.g. in p+Pb collisions

x1, x2

x1, x2 =
M2

s
e±y
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‣ We want to use ML to find a link between the measurable quantities and 
the parton momentum fractions.

x1, x2 =
M2

s
e±y

‣ Not being able to access the real  from measuring the kinematics is 

not exclusive of the Drell-Yan process. It happens for all p+p collisions. 

‣ And can have significant impact: e.g. in p+Pb collisions

x1, x2



Accessing the kinematics using ML

‣ We looked at one particular process:          

‣ Reconstructed  and  from momenta of   

‣ For RHIC kinematics, so we could compare with previous results.

p + p → π+ + γ

x1, x2 z π+, γ

Renteria-Estrada et al., 
arXiv:2112.05043 [hep-ph]

D. de Florian and G. Sborlini, 
Phys.Rev.D 83 (2011) 074022
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First: check the dependences on the kinematics

‣ Transverse momentum dependence:

14



‣  dependences:x1 = x, z
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‣ x vs. pT

Second: check correlations

LO Kinematics x1,2 =
pγ

T

s
 (eη±π + eη±γ) z =

pπ
T

pγ
T

‣ z vs. pT
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x1,2 = ? z = ?

‣ x vs. pT ‣ z vs. pT

NLO Kinematics

Second: check correlations
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xrec.
1,2 =

pγ
T

s
 (e±ηπ + e±ηγ)Kinematics: LO

Kinematics: NLO xrec.
1,2 = ?
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Kinematics: LO

Kinematics: NLO xrec.
1,2 = ?

‣ Experimental collaborations used xrec.
1,2 =

pγ
Te±ηπ − cos(ϕπ − ϕγ)pγ

Te±ηγ

s

xrec.
1,2 =

pγ
T

s
 (e±ηπ + e±ηγ)
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Kinematics: LO

Kinematics: NLO xrec.
1,2 = ?

D. de Florian, G. Sborlini, PRD 83, 074022

xrec.
1,2 =

pγ
T

s
 (e±ηπ + e±ηγ)

‣ Experimental collaborations used xrec.
1,2 =

pγ
Te±ηπ − cos(ϕπ − ϕγ)pγ

Te±ηγ

s
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zrec. =
pπ

T

pγ
T

Kinematics: LO

Kinematics: NLO xrec.
1,2 = ? zrec. = ?

D. de Florian, G. Sborlini, PRD 83, 074022

zrec. = − cos(ϕπ − ϕγ)
pπ

T

pγ
T

xrec.
1,2 =

pγ
T

s
 (e±ηπ + e±ηγ)

‣ Experimental collaborations used
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zrec. =
pπ

T

pγ
T

Kinematics: LO

Kinematics: NLO xrec.
1,2 = ? zrec. = ?

D. de Florian, G. Sborlini, PRD 83, 074022

xrec.
1,2 =

pγ
T

s
 (e±ηπ + e±ηγ)

zrec. = − cos(ϕπ − ϕγ)
pπ

T

pγ
T

‣ Experimental collaborations used
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‣ In the last decade PDFs and FFs have changed significantly.

D. de Florian, R. Sassot, M. Epele, R.J. Hernández-Pinto and M. Stratmann, PRD 91, 014035.



‣ In the last decade PDFs and FFs have changed significantly.

‣ The code now includes QED corrections:

D. Rentería-Estrada, R. Hernández-Pinto, G. Sborlini, Symmetry 13 (2021) 6, 942

‣ New numerical methods/tools available with tutorials “for dummies”.
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‣ In the last decade PDFs and FFs have changed significantly.

‣ The code now includes QED corrections:

D. Rentería-Estrada, R. Hernández-Pinto, G. Sborlini, Symmetry 13 (2021) 6, 942

‣ New numerical methods/tools available with tutorials “for dummies”.

‣ We’re the dummies: we want to apply machine learning techniques to 
access the real momentum fractions and lower the assumptions.
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‣ At NLO we have real ( ) and virtual ( ) contributions and 

counterterms ( ).  

‣ Cancellations can only happen in the MC integration when histograming. 

2 → 3 2 → 2
2 → 2

{p̄γ
T, p̄π

T, η̄γ, η̄π, cos(ϕπ − ϕγ)} ∈ 𝒱̄EXP

σj(p̄γ
T, p̄π

T, η̄γ, η̄π, cos(ϕπ − ϕγ)) = ∫
(pγ

T)j,MAX

(pγ
T)j,MIN

dpγ
T ∫

(pπ
T)j,MAX

(pπ
T)j,MIN

dpπ
T ∫ dx1dx2dz dσ̄
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σj(p̄γ
T, p̄π

T, η̄γ, η̄π, cos(ϕπ − ϕγ)) = ∫
(pγ

T)j,MAX

(pγ
T)j,MIN

dpγ
T ∫

(pπ
T)j,MAX

(pπ
T)j,MIN

dpπ
T ∫ dx1dx2dz dσ̄

‣ We weight the momentum fractions  from the MC with the per-bin cross-
section

(x1)j = ∑
i

(x1)i
dσj

dx1
(pj; (x1)i) (z)j = ∑

i

(z)i
dσj

dz
(pj; (z)i)

20
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counterterms ( ).  

‣ Cancellations can only happen in the MC integration when histograming. 

2 → 3 2 → 2
2 → 2

{p̄γ
T, p̄π

T, η̄γ, η̄π, cos(ϕπ − ϕγ)} ∈ 𝒱̄EXP

σj(p̄γ
T, p̄π

T, η̄γ, η̄π, cos(ϕπ − ϕγ)) = ∫
(pγ

T)j,MAX

(pγ
T)j,MIN

dpγ
T ∫

(pπ
T)j,MAX

(pπ
T)j,MIN

dpπ
T ∫ dx1dx2dz dσ̄

‣ We weight the momentum fractions  from the MC with the per-bin cross-
section

(x1)j = ∑
i

(x1)i
dσj

dx1
(pj; (x1)i)

‣ With this we search for the mapping

X1,REC : 𝒱̄EXP → X1,REAL = {(x1)j}

(z)j = ∑
i

(z)i
dσj

dz
(pj; (z)i)



‣ In general, in ML

X ⟶ Y
training set, each entry 
is a d-dimensional vector 
(d = number of features)

target

target function, we estimate it 
using an algorithm that 
minimises a cost function
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X ⟶ Y
training set, each entry 
is a d-dimensional vector 
(d = number of features)

target function, we estimate it 
using an algorithm that 
minimises a cost function

target

̂y = θ0 + θ1x(1)
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‣ In general, in ML

X ⟶ Y
training set, each entry 
is a d-dimensional vector 
(d = number of features)

target function, we estimate it 
using an algorithm that 
minimises a cost function

target

‣ “cheat”: linear means linear in the parameters.

[x(1)]2 = x(2) ̂y = θ0 + θ1x(1) + θ2x(2)

Linear regression ̂y = θ0 + θ1x(1)

‣ the parameters minimise min
θ

∥ ̂y − y∥2
2
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‣ Let us start with LO and use linear regression:

‣ Basis:   

xrec.
1,2 =

pγ
T

s
 (eη±π + eη±γ) zrec. =

pπ
T

pγ
T

ℬLO = {pγ
Teηπ

s
,

pγ
Teηγ

s
,

pγ
Te−ηπ

s
,

pγ
Te−ηγ

s
,

pπ
T

pγ
T }
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Linear regression

‣ We used three bases: “LO inspired”, “general”, “physically motivated”

ℬX1
NLO = { pγ

T

SCM
exp(ηγ),

pγ
T

SCM
exp(ηπ),

pπ
T

SCM
exp(ηγ),

pπ
T

SCM
exp(ηπ),

pγ
T𝒦5

SCM
exp(ηγ),

pγ
T𝒦5

SCM
exp(ηπ),

pπ
T𝒦5

SCM
exp(ηγ),

pπ
T𝒦5

SCM
exp(ηπ)}

ℬLO = {pγ
Teηπ

s
,

pγ
Teηγ

s
,

pγ
Te−ηπ

s
,

pγ
Te−ηγ

s
,

pπ
T

pγ
T }

𝒦5 = cos(ϕπ − ϕγ)

xprop.
1 =

pγ
Teηπ − cos(ϕπ − ϕγ)pγ

Teηγ

s

xLO
1 =

pγ
Teηπ + pγ

Teηγ

s
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Linear regression

‣ We used three bases: “LO inspired”, “general”, “physically motivated”

𝒦 = { pγ
T

s
,

pπ
T

s
, eηγ, eηπ, cos(ϕπ − ϕγ)}

XREC =
9

∑
i=1,i≠5

(ai + bi 𝒦5) 𝒦i + ∑
i≤ j,{i, j}≠5, j−i≠5

(cij + dij 𝒦5) 𝒦i𝒦j

‣ 81 parameters in total.
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Linear regression

‣ We used three bases: “LO inspired”, “general”, “physically motivated”

𝒦 = { pγ
T

s
,

pπ
T

s
, eηγ, eηπ, cos(ϕπ − ϕγ)}

XREC =
9

∑
i=1,i≠5

(ai + bi 𝒦5) 𝒦i + ∑
i≤ j,{i, j}≠5, j−i≠5

(cij + dij 𝒦5) 𝒦i𝒦j

‣ Remove contributions w.r.t. which we 
see no dependence (~40 parameters).
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Linear regression

‣ For z:

26



The Radial Basis Function

X = (1,x1, x2)T X̃ = (1,x1, x2, x2
1 , x1x2, x2

2)T

‣ How to pick ? Before we did it  by intuition.X̃

‣ We replace  by x(i) fi(x) = e− ∥x − x(i)∥2
2

2l2

‣ This Radial Basis Function  

‣ requires less elements (one per feature in the basis). 
‣ effectively considers infinite terms. 
‣ is a popular form of the kernel method.
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‣ Similar results for the 
reconstruction of z.
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Neural networks: the basics image from scikit-learn.org

‣ Pass from one layer to the 
next by applying a non-linear 
activation function to a 
w e i g h t e d s u m o f t h e 
previous layers.  

‣ Pros: no need to play with 
the basis, less human bias 
(but not zero!) 

‣ Cons: the complexity of the 
architecture requires more 
time for training. 

‣ Also, one needs to choose 
the architecture.

29
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Neural networks

‣ For LO the complexity of the NN greatly surpasses the complexity of the 
problem.

30



Going greener with ML

‣ All the running of MC codes takes a long time to reach good precision.  

‣ Apart from boring, they carry a significant environmental impact (and to 
our pockets given the cost of electricity). 

‣ What  can we do to make things faster using current available resources? 

‣ Improve the codes: has to be done code by code. 
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Going greener with ML

‣ Can we speed up the running  time without touching the code?

Perhaps.

‣ All the running of MC codes takes a long time to reach good precision.  

‣ Apart from boring, they carry a significant environmental impact (and to 
our pockets given the cost of electricity). 

‣ What  can we do to make things faster using current available resources? 

‣ Improve the codes: has to be done code by code. 
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‣ Most codes require non perturbative inputs (e.g. PDFs). 

‣ PDFs are provided as grids and functions that read the grids and 
interpolate over them (e.g. LHAPDF). 

‣ And this is quite efficient, as long as we don’t need to run millions and 
millions of calculations.
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‣ Most codes require non perturbative inputs (e.g. PDFs). 

‣ PDFs are provided as grids and functions that read the grids and 
interpolate over them (e.g. LHAPDF). 

‣ And this is quite efficient, as long as we don’t need to run millions and 
millions of calculations.

Goal: find an analytical x and Q2 form for a set of proton PDFs.

‣ A quick exploration shows that the time spent on the interpolation could 
be reduced 40-50% if we had analytical expressions for the PDFs.

‣ We are working (for now) with HERAPDF2.0
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Idea and first results

‣ For most PDFs the x dependence at some initial scale is written as 

 

‣ We propose 

  

with  

In particular, for now, we’re exploring 

fi(x, Q2
0) = Ni xαi(1 − x)βiP(x, cij)

fi(x, Q2
0 , Q2) = (Ni+gi,1(Q2, Q2

0))xαi+gi,2(Q2,Q2
0)(1 − x)βi+gi,3(Q2,Q2

0)P(x, cij+gi,4(Q2, Q2
0))

gi, j(Q2
0 , Q2

0) = 0

gi,4(Q2, Q2
0) = 0
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‣ With that simplification, the ratio of the same flavour PDF at different 
scales is 

 

‣ Taking logarithm 

 

Ri(x, Q2
0 , Q2) ∝ xgi,2(Q2,Q2

0)(1 − x)gi,3(Q2,Q2
0)

ln(Ri) = ln( N′ i(Q2, Q2
0)

Ni ) + gi,2(Q2, Q2
0)ln(x) + gi,3(Q2, Q2

0)ln(1 − x)
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‣ With that simplification, the ratio of the same flavour PDF at different 
scales is 

 

‣ Taking logarithm 

 

Ri(x, Q2
0 , Q2) ∝ xgi,2(Q2,Q2

0)(1 − x)gi,3(Q2,Q2
0)

ln(Ri) = ln( N′ i(Q2, Q2
0)

Ni ) + gi,2(Q2, Q2
0)ln(x) + gi,3(Q2, Q2

0)ln(1 − x)

‣ Now we only have to find the missing functions.
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First results: valence up
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First results: valence up

Q0 < Q < mc
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First results: valence up

Q0 < Q < mc

mc < Q < mb
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The GAPP Initiative 
‣ This work is part of the GAPP Initiative. 

‣ We aim to quantify the carbon footprint of HEP research and study ways 
of reducing it. 

‣ If you are doing phenomenological studies and would like to contribute to 
the project, please send an email to gapp-initiative@googlegroups.com 
with: 

‣ brief description of the simulation 
‣ time needed to run  
‣ hardware used

37
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Summary
‣ We have explored the applicability of ML techniques to better 

understand the underlying kinematics of a p+p collision. 

‣ The methodology can be used for any process by non-experts. 

‣ The methods applied can result in a better reconstruction than in the 
original work, but physical intuition can play a relevant role.



exact relation known

‣ Higher sophistication of the method does not always translate into better 
results. E.g.:
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‣ Higher sophistication of the method does not always translate into better 
results. E.g.:

few minutes to train several hours to train 
exploration of “good” architecture

‣ Promising steps in speeding up the calculation of codes using PDFs.
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Thank you for 
your attention!


