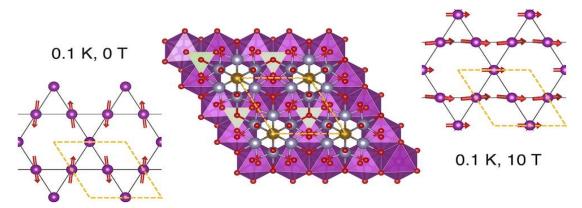


FeMn₃Ge₂Sn₇O₁₆ : a "Partial" Spin-liquid Candidate with a Perfectly Isotropic 2-D Kagomé Lattice


Chris D. Ling The University of Sydney, Australia

MARTES 31 DE MAYO A LAS 12:00

SALA DE GRADOS, FACULTAD DE CIENCIAS FÍSICAS, UCM

FeMn₃Ge₂Sn₇O₁₆ [1] is a fully ordered stoichiometric phase containing an undistorted hexagonal kagomé lattice of Mn²⁺cations. It represents not only an important expansion of the chemistry of the complex composite FeFe₃Si₂Sn₇O₁₆ structure type,[2,3] by replacing silicon with germanium, but also an improvement on the perfection of the kagomé lattice by replacing anisotropic high-spin Fe²⁺ (d⁶, L = 2) with isotropic high-spin Mn²⁺ (d⁵, L = 0), controlled by the size-matched replacement of SiO₄⁴⁻ with GeO₄⁴⁻ bridging units. This anisotropy was suspected of playing a role in the unique "striped" magnetic structure of FeFe₃Si₂Sn₇O₁₆ below T_N = 3.5 K,[4,5] which breaks hexagonal symmetry and leaves one-third of the magnetic moments geometrically frustrated and fluctuating. We observe the same striped magnetic structure in FeMn₃Ge₂Sn₇O₁₆ down to at least 40 mK, ruling out single-ion anisotropy as the driving force for the apparent 'partial spin-liquid' nature of these compounds. Furthermore, conventional and polarised neutron powder diffraction data show that for both FeFe₃Si₂Sn₇O₁₆ and FeMn₃Ge₂Sn₇O₁₆, one-third of the paramagnetic scattering persists below T_N; while an applied magnetic field can relieve the geometric frustration, induce a canted ferromagnetic state with ordered moments on all the magnetic sites.

- [1] Allison, M.C., et al., Chem. Mater. **34**, 1369–1375 (2022).
- [2] Söhnel, T., et al., Z. Anorg. und Allg. Chemie 624, 708–714 (1998).
- [3] Allison, M.C., et al., Dalton Trans. 45, 9689–9694 (2016).
- [4] Ling, C.D., et al., Phys. Rev. B 9, 180410 (2017).
- [5] Dengre, S., et al., Phys. Rev. B 103, 064425 (2021).

Structure of $FeMn_3Ge_2Sn_7O_{16}$ (Fe = gold, $MnO_6 = purple$, Sn = grey, $GeO_4 = green$, O = red) with its zero-field and in-field magnetic structures.