

DEPARTAMENTO DE ANÁLISIS MATEMÁTICO Y MATEMÁTICA APLICADA

SEMINARIO DE ANÁLISIS MATEMÁTICO Y MATEMÁTICA APLICADA

Facultad de Ciencias MATEMÁTICAS

Bruce Hanson Saint Olaf College

An introduction to the big and little lip functions

Given a continuous function $f:R \to R$ with $M_f(x,r) = \sup_{|x-y| \le r} |f(x) - f(y)|$, the socalled `Big Lip" and `Little Lip" functions are defined as follows: $Lip f(x) = \lim \sup_{r \to 0^+} \frac{M_f(x,r)}{r} = \lim \inf_{r \to 0^+} \frac{M_f(x,r)}{r}$. The behavior of these functions is intimately related to the differentiability of f. The Rademacher-Stepanov Theorem tells us that f is differentiable almost everywhere on the set $L_f = \{x: Lip f(x) < \infty\}$. On the other hand, as Balogh and Csörnyei showed, this theorem no longer holds if we replace L_f with $l_f = \{x: lip f(x) < \infty\}$. They give an example where lip f(x) = 0 a.e. but $Lip f(x) = \infty$ for all $x \in R$ so L_f is the empty set and f is nowhere differentiable. However, they also show that if $l_f = R$ then fis differentiable on a set of positive measure and thus L_f has positive measure as well. In this talk, I explore the relationship between lip f and Lip fas well as between L_f and l_f . I will also pose a number of open problems.

Organizado por el Departamento de Análisis Matemático y Matemática Aplicada y el Instituto de Matemática Interdisciplinar (IMI)

> Fecha: Jueves 23 de febrero de 2023 a las 13:00 horas Lugar: Aula Alberto Dou (209) Facultad de CC Matemáticas, UCM