





## SEMINARIO DE ANÁLISIS MATEMÁTICO Y MATEMÁTICA APLICADA

## Miguel Lacruz Universidad de Sevilla

## The double commutant property for composition operators on Hardy space

## Abstract

The commutant of a family  $\mathcal{F}$  of operators on a Hilbert space is defined as the family  $\mathcal{F}'$  of all the operators that commute with every element of  $\mathcal{F}$ . It turns out that  $\mathcal{F}'$  is a unital algebra, closed in the weak operator topology. The double commutant of the family  $\mathcal{F}$  is defined as  $\mathcal{F}'' = (\mathcal{F}')'$ . It follows immediately from this definition that  $\mathcal{F} \subseteq \mathcal{F}''$ .

John von Neumann proved in 1930 that the double commutant of a unital, selfadjoint algebra  $\mathcal{A}$  of operators on a Hilbert space coincides with the closure of  $\mathcal{A}$  in the weak operator topology.

A non-selfadjoint algebra  $\mathcal{A}$  of operators on a Hilbert space is said to enjoy the double commutant property provided that  $\mathcal{A}''$  coincides with the closure of  $\mathcal{A}$  in the weak operator topology. We are interested in the double commutant property for singly generated algebras, that is, operator algebras of the form  $\mathcal{A} = \{p(A) : p \text{ is a polynomial}\}$ , where A is a non-selfadjoint operator.

We consider composition operators  $C_{\varphi}$  defined on the Hardy space  $H^2(\mathbb{D})$ by the formula  $C_{\varphi}f = f \circ \varphi$ ,  $f \in H^2(\mathbb{D})$ , where the symbol  $\varphi$  is an analytic selfmap of the open unit disc  $\mathbb{D}$ .

A typical source of symbols is the family of linear fractional transformations  $\varphi$  of the Riemann sphere that satisfy  $\varphi(\mathbb{D}) \subseteq \mathbb{D}$ . Such symbols may have either one or two fixed points. There is a classification of the composition operators  $C_{\varphi}$  according to the fixed point configuration of the symbol  $\varphi$ .

Those with only one fixed point (that must lie on  $\partial \mathbb{D}$ ) are called parabolic. It turns out that a composition operator corresponding to a parabolic symbol  $\varphi$  is similar to a multiplication operator on the Sobolev algebra  $W^{1,2}[0, +\infty)$ . This representation allows us to prove that the algebra generated by  $C_{\varphi}$  has the double commutant property if and only if  $\varphi$  fails to be automorphic.

Joint work with Fernando León-Saavedra (UCA), John S. Petrovic (WMU) and Luis Rodríguez-Piazza (US).

Organized by: Departamento de Análisis Matemático y Matemática Aplicada and Instituto de Matemática Interdisciplinar (IMI)

Date: Tuesday, may 28, 2024,13:00h Place: Seminario Alberto Dou (Room 209) Facultad de CC. Matemáticas, UCM