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These lecture notes are a slightly extended version of my course on stabil-
ity theory given at the Münster Model Theory Month in May of 2016. The
course is based on the �rst section of Pillay's book [3] and it covers funda-
mental notions of stability theory such as de�nable types, forking calculus
and canonical bases, as well as, stable groups and homogeneous spaces. The
approach followed here is originally due to Hrushovski and Pillay [2], who
presented stability from a local point of view.

Through the notes some general knowledge of model theory is assumed.
I recommend the book of Tent and Ziegler [4] as an introduction to model
theory. Furthermore, the texts of Casanovas [1] and Wagner [5] may also be
useful to the reader to obtain a di�erent approach to stability theory.
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1. Preliminaries

Throughout the text T is a complete �rst-order theory with in�nite models
in a language L. We shall be working inside a monster model M of the
theory, i.e. a su�ciently saturated and homogeneous model. Thus tuples of
elements and sets consist of elements from this model, and we assume that
they have a small size compared to the monster model. We use the letters
a, b, c, . . . to denote tuples (not necessarily �nite) of elements and A,B,C, . . .
for sets, while x, y, z, . . . are for tuples of variables. Types over small sets of
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parameters are denoted by p, q, . . . and global types (i.e. types over M) are
written in Fraktur p, q, . . .

We shall recall Shelah's construction of imaginaries, which allow us to
deal with equivalence classes. Given a model M of the theory, we construct
M eq as follows: We add a new sort Mn/E for every formula E(x, y) in
the language de�ning an equivalence relation on a �nite power Mn and
additionally, we extend the language L to Leq by adding an n-ary function
symbol πE for the projection map πE :Mn →Mn/E that maps an n-tuple a
onto its equivalence class πE(a) = [a]E . We identifyM withM/ =. Observe
that all symbols of L are in the expanded language Leq. The theory T eq is
the complete Leq-theory of the model M eq. It can be checked that T eq does
not depend on the choice of our initial model. In particular, the many-sorted
structure Meq is indeed a monster model of T eq, whose elements are called
imaginaries. Furthermore, observe that every automorphism of M extends
uniquely to an automorphism of Meq.

The main di�erence while working with T eq instead of T is that now
variables, functions and relations must specify the sorts they live on.

Lemma 1.1. For every formula ψ(x, xE1
1 , . . . , xEnn ) in Leq, where x is a

tuple from the home sort and each xEii is of sort Ei, there is a formula
φ(x, y1, . . . , yn), with yi having the length of the arity of Ei, such that for all
tuples a, a1, . . . , an in M of the right length we have that:

Meq |= ψ(a, πE1(a1), . . . , πEn(an)) ⇔ M |= ψ(a, a1, . . . , an).

Now, given a formula ψ(x, a), consider the equivalence relation Eψ(y, z)
given by ∀x(ψ(x, y) ↔ ψ(x, z)), and de�ne the canonical parameter ⌜ψ(x, a)⌝
of ψ(x, a) as the imaginary [a]Eψ . Notice that Eψ(y, z) is equivalent to say
ψ(M, y) = ψ(M, z). By a canonical parameter ⌜X⌝ of a de�nable set X we
mean the canonical parameter of a formula de�ning X. Observe that any
two canonical parameters are interde�nable. Thus we shall talk about the
canonical parameter of a de�nable set.

Canonical parameters are useful when dealing with automorphisms:

Lemma 1.2. Let X be a de�nable subset of Mn. Then the following are
equivalent:

(1) The set X is de�nable over A.
(2) The set X is A-invariant, i.e. for any σ ∈ Aut(M/A), σ(X) = X.
(3) The canonical parameter of X belongs to dcleq(A).

Proof. We �rst show (2) and (3) are equivalent. For this, let φ(x, y) be a
formula, let c be a tuple and let x be a tuple of variables of length n such
that φ(M, c) = X. Now, let E(y, z) be the equivalence relation φ(M, y) =
φ(M, z). Thus [c]E = ⌜φ(x, c)⌝. Now, we have

σ([c]E) = [c]E ⇔ E(c, σ(c)) ⇔ φ(M, c) = φ(M, σ(c)) ⇔ σ(X) = X
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and so we obtain the equivalence.

To see that (1) implies (2). Suppose that X is de�ned by a formula ψ(x, b)
with b a tuple in A, and x a tuple of variables of length n, i.e. X = ψ(M, b).
Now, given an automorphism σ ∈ Aut(M/A) we have that σ(b) = b and so:

a ∈ X ⇔ ϕ(a, b) holds ⇔ ϕ(σ(a), b) holds ⇔ σ(a) ∈ X.

Finally, to see that (2) yields (1), suppose that X is A-invariant and
consider a formula ϕ(x, y), a tuple b in M and a tuple of variables x of length
n such that X = ϕ(M, b). Set p(y) = tp(b/A). By invariance notice that

p(y) ⊢ ∀x
(
ϕ(x, y) ↔ ϕ(x, b)

)
.

By compactness there exists a formula θ(y) ∈ p(y) witnessing this, and set
χ(x) be the formula ∃z(θ(z)∧ϕ(x, z)). It is easy to see that χ(M) = X. □

Similarly, we have the following:

Lemma 1.3. Let X be a de�nable subset of Mn. Then the following are
equivalent:

(1) The set X has a �nite (bounded) orbit under Aut(M/A).
(2) The canonical parameter of X belongs to acleq(A).

Proof. By the previous lemma we know that a set is unequivocally deter-
mined by its canonical parameter. Hence, a setX has a �nite orbit if and only
if so does ⌜X⌝. Moreover, by compactness an imaginary element has �nite
orbit if and only if it has a bounded orbit. This yields the statement. □

2. Forking, dividing and satisfiability

De�nition 2.1. A collection I of de�nable sets in a �xed variable x is an
ideal if it is closed under subsets and �nite unions, and additionally ∅ ∈ I.

Lemma 2.2. If a partial type π(x) over A does not imply a formula from
an ideal I, then for any set B ⊇ A there is a complete type p(x) over B
extending π(x) which does not contain any formula from I.

Proof. Given a partial type π(x) and a set B, it is enough to show the
consistency of the following set of formulas

π(x) ∪ {¬φ(x, b) : b ∈ B and φ(x, b) ∈ I}.

If it is inconsistent, then by compactness there are �nitely many formulas
in I whose disjunction is implied by π(x). As I is an ideal, we obtain a
contradiction. Therefore, this set is consistent. Furthermore, if the formula
φ(x, b) is in I, then its negation does not belong to I, as neither does the
formula x = x by assumption. Hence, it follows that any completion of the
set above satis�es the requirements. □
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De�nition 2.3. A partial type π is said to be �nitely satis�able in a set A
if any �nite conjunction of formulas from π is realized by a tuple in A.

As the collection of formulas which are not satis�ed in a �xed set form
an ideal, an easy application of Lemma 2.2 yields that any partial type π(x)
which is �nitely satis�able in A, has a complete extension over any set B ⊇ A
which is �nitely satis�able in A as well. In particular, any complete type
over a model M has a global extension which is �nitely satis�able in M .

Lemma 2.4. The following holds:

(1) If p is �nitely satis�able in A, then it is A-invariant.
(2) If p is A-invariant, and (ai)i<α is a sequence such that ai realizes

p|A∪{aj}j<i, then (ai)i<α is A-indiscernible.

Proof. If (1) does not hold, then there are some tuples b and c having the
same type over A and the formula ϕ(x, b) ∧ ¬ϕ(x, c) belongs to p. However,
as p is �nitely satis�able we get a contradiction.

To prove (2), we show by induction on n that a0 . . . an ≡A ai0 . . . ain
for i0 < . . . < in. By induction, assume that there is an automorphism
σ ∈ Aut(M/A) such that σ(a0 . . . an−1) = ai0 . . . ain−1 . Thus

tp(ain/A, (aij )j<n)
σ = (p|A∪{aij }j<n)

σ = p|A∪{aj}j<n = tp(an/A, (aj)j<n)

and so
ai0 . . . ain ≡A σ(ai0 . . . ain) ≡A a0 . . . an,

as desired. □

De�nition 2.5. A formula ψ(x, a) divides over a set A if there is an A-
indiscernible sequence (ai)i<ω with each ai ≡A a such that {ψ(x, ai)}i<ω
is inconsistent. We say that a formula forks over A if it implies a �nite
disjunction of formulas, each of which divides over A.

Observe that any inconsistent formula divides over any set, and that if
a formula φ(x, a) forks over A, then so does any formula ψ(x, b) implying
φ(x, a). Therefore, forking over A means that the formula belongs to the
ideal generated by the formulas that divide over A. In general there are
formulas that fork but do not divide as is exhibited in the next example.

Example 2.6. Let T be the theory of the circle S1 with a ternary rela-
tion R(x, y, z) interpreted as �y lies on the arc between x and z, ordered
clockwise�. It is an exercise to see that

(1) This theory has quanti�er elimination and so, there is a unique 2-type
p(x, y) without parameters consistent with the formula x ̸= y.

(2) The formula R(a, y, b) divides over ∅ for any elements a, b.

Therefore, the formula x = x forks over ∅ but it does not divide (notice that
to divide parameters are essential).
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De�nition 2.7. A partial type divides (forks) over A if it implies a formula
that does it.

Remark 2.8. The following holds:

(1) If π(x) divides over A, then it divides over some model containing A
and so over acleq(A).

(2) If π(x) forks (divides) over A, then it forks (divides) over any subset
of A.

(3) If π(x) forks (divides) over A, then so does some conjunction of
formulas from π.

(4) If π(x) does not fork over A, then it has an extension over any set of
parameters which does not fork over A.

(5) If π(x) is �nitely satis�able in A, then it does not fork over A.

Proof. Only the �rst point requires some checking. For this, we recall the
following fact: An indiscernible sequence over a set A is indeed indiscernible
over some model containing A. This fact is shown using Erd®s-Rado. We
refer to [1, Corollary 1.7] for a detailed proof. Using this, the statement is
immediate. □

3. Local stability

We shall be working in the imaginary monster model of the theory.

Let ϕ(x, y) be a formula. By a ϕ-formula we mean a formula of the form
ϕ(x, a) or ¬ϕ(x, a), and by a complete ϕ-type over a set of parameters A we
mean a maximal consistent collection of ϕ-formulas with parameters over A.
We denote the space of complete ϕ-types over A by Sϕ(A).

De�nition 3.1. Let ϕ(x, y) be a formula. A complete ϕ-type p(x) over A
is de�nable over a set B if there exists a formula ψ(y) with parameters over
B such that for any tuple a in A, we obtain

ϕ(x, a) ∈ p ⇔ ψ(a) holds.

We denote the formula ψ(y) as dpxϕ(x, y) and we say that p is de�nable if it
is de�nable over its domain. Furthermore, if q is a complete type we denote
by q|ϕ its corresponding complete ϕ-type and by dqxϕ(x, y) the de�nition of
q|ϕ.

Lemma 3.2. If p ∈ Sϕ(M) is �nitely satis�able in A and de�nable, then it
is de�nable over dcleq(A).

Proof. Let p be a global complete ϕ-type which is �nitely satis�able in A.
By Lemma 2.4(i), or its proof, we obtain that p is A-invariant. Thus, by
Lemma 1.2 we obtain that the canonical parameter of dpxϕ(x, y) belongs to
dcleq(A) and hence p is de�nable over dcleq(A). □
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De�nition 3.3. A formula ϕ(x, y) is stable if there is no sequence (ai, bi)i<ω
such that ϕ(ai, bj) holds if and only if i < j.

Remark 3.4. Observe that by compactness we may replace (ω,<) by any
in�nite linear order. Consequently, the following holds:

(1) If ϕ(x, y) is stable, then so is ¬ϕ(x, y).
(2) If ϕ1(x, y) and ϕ2(x, z) are stable, then so is the formula χ(x, yz)

given by ϕ1(x, y) ∨ ϕ2(x, z).
(3) If ϕ(x, y) is stable, then so is the formula ϕ∗(y, x) consisting of switch-

ing the roles of x and y.

In particular, it follows from (1) and (2) that a Boolean combination of stable
formulas is stable.

Proof. To see (3) it is enough to consider the reverse order ω∗ of ω. Similarly,
and replacing bi by b

′
i = bi+1 we obtain (1). Finally (2) follows by an appli-

cation of Ramsey's theorem. If χ(x, yz) is not stable and this is witnessed
by a sequence (ai, b

1
i b

2
i )i<ω, then set

Xk = {(i, j) ∈ N× N : i < j and ϕk(ai, b
k
j )} for k = 1, 2.

By Ramsey's theorem, there is an in�nite set I of N such that all increas-
ing pairs from I belong to X1, in which case ϕ1(x, y) is not stable, or all
increasing pairs belong to X2 showing that ϕ2(x, y) is not stable, a contra-
diction. □

Lemma 3.5. Let ϕ(x, y) be stable and let p(x) ∈ Sϕ(A) and B a subset of
A. Then:

(1) For any global type q containing p, there is a �nite sequence (ci)i<n
with ci realizing the type q|B∪{cj}j<i such that p is de�ned by a positive

Boolean combination of the formulas ϕ∗(y, ci) = ϕ(ci, y).
(2) If p is �nitely satis�able in a subset B of A, then p is de�nable and the

de�nition is given as a positive Boolean combination of the formulas
ϕ∗(y, b) = ϕ(b, y) with b in B.

Proof. We �rst show (1). Consider a complete ϕ-type p(x) ∈ Sϕ(A) and let q
be a global completion of p. Suppose, towards a contradiction, that there is
no �nite sequence (ci)i<n with ci realizing q|A∪{cj}j<i such that p = (q|A)|ϕ is

de�nable by a positive Boolean combination of the formulas ϕ(ci, y). Follow-
ing Erd®s-Makkai, we construct inductively on n a sequence of parameters
(bn, b

′
n)n<ω in A and another sequence (cn)n<ω with cn realizing q|B∪{ci}i<n

such that:

(i) ϕ(x, bi) and ¬ϕ(x, b′i) belong to p for every i < ω,
(ii) ϕ(ci, bj) → ϕ(ci, b

′
j) holds for every i < j, and

(iii) ϕ(ci, bj) and ¬ϕ(ci, b′j) hold when i ≥ j.
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To do so, assume that we have already obtained (bi, b
′
i)i<n and (ci)i<n. As

p is not de�nable by a positive Boolean combination of the formulas ϕ(ci, y)
for i < n, there are tuples bn and b′n with ϕ(x, bn) ∈ p and ϕ(x, b′n) ̸∈ p
such that if ϕ(ci, bn) holds, then so does ϕ(ci, b

′
n)

1. Thus, setting cn to be a
realization of q|B∪{bi,b′i}i≤n∪{ci}i<n we obtain the desired sequence.

Now, by Ramsey's theorem we may assume that either ϕ(ci, bj) holds for
all i < j or ¬ϕ(ci, bj) for all i < j. In the �rst case, the sequence (ci, b

′
i)i<ω

witnesses that ϕ(x, y) is not stable, and in the second case the sequence
(ci, bi+1)i<ω, a contradiction.

To prove (2) notice that the same construction works, but now taking cn
to be a tuple in B realizing the �nite set {ϕ(x, bi)}i≤n ∪{ϕ(x, b′i)}i≤n, which
is a subset of formulas from p. □

Corollary 3.6. If ϕ(x, y) is stable, then any complete ϕ-type over a model
M is de�nable by a positive Boolean combination of ϕ∗-formulas over M .

It then follows that any complete ϕ-type over a model has a de�nable
global extension. De�nable extensions over arbitrary sets is given by the
next lemma:

Lemma 3.7. Let ϕ(x, y) be stable and let p(x) ∈ S(A). Then there is some
q(x) ∈ Sϕ(M) such that p(x) ∪ q(x) is consistent and q is de�nable over
acleq(A).

Proof. Let X be the space of ϕ-types over M which are consistent with p,
i.e.

X = {q(x) ∈ Sϕ(M) : p(x) ∪ q(x) is consistent}.
Observe that X is the image under the restriction map Sx(M) → Sϕ(M)
of the closed space formed by global types in Sx(M) extending p(x). Since
the restriction map is closed, the space X is closed in Sϕ(M). Recall that
the space Sϕ(M) is endowed with a compact Hausdor� totally disconnected
topology, where a basis of clopen sets is given by all sets of the form [ψ] =
{q ∈ Sϕ(M) : q ⊢ ψ} for any Boolean combination ψ of ϕ-formulas.

Now, setX(0) = X and for each natural number i setX(i+1) to be the set of
accumulation points in X(i), i.e. the collection of global ϕ-types q(x) ∈ X(i)

which are not isolated within X(i) by a Boolean combination of ϕ-formulas.
That is, the set X(i+1) is formed by types q(x) ∈ X(i) such that for any
Boolean combination ψ(x) of formulas of the form ϕ(x, a) or ¬ϕ(x, a), if
q ⊢ ψ then there is a distinct q′ ∈ X(i) with q′ ⊢ ψ. Inductively, it is easy to
see that each X(i) is closed in Sϕ(M).

1Let X be a proper subset of A. Then X is a positive Boolean combination of sets
X0, . . . , Xn if and only if for any elements x, y in A the following holds: If x ∈ X and for
any i ≤ n it holds that if x ∈ Xi then y ∈ Xi, then y ∈ X. Apply this with X being
{b ∈ A : ϕ(x, b) ∈ p} and Xi = {b ∈ A : ϕ(ci, b) holds}.
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We claim that some X(n+1) is empty. Otherwise, for any natural number
n, there is some ϕ-type p in X(n) such that given a Boolean combination
ψ(x) of ϕ-formulas with p ⊢ ψ, there is a distinct global ϕ-type p′ in X(n)

implying ψ. Thus, we can �nd an instance ϕ(x, a) with ϕ(x, a) ∈ p and
¬ϕ(x, a) ∈ p′. It then follows that ψ(x) ∧ ϕ(x, a) and ψ(x) ∧ ¬ϕ(x, a) are
consistent and obviously contradictory. This argument yields the existence of
a binary tree {ϕ(x, aη|i)η(i)}η∈2n,i<n such that each branch is consistent but

the conjunction of any two branches is inconsistent, where ϕ0 = ϕ and ϕ1 =
¬ϕ. Now, let µ be the smallest cardinal such that 2µ > |T | and note that

|2<µ| ≤ |T |. By compactness, we obtain a binary tree {ϕ(x, bη|i)η(i)}η∈2µ,i<λ
with each branch being consistent but the conjunction of any two branches
is inconsistent, where as before ϕ0 = ϕ and ϕ1 = ¬ϕ. As there are only
|2<µ| many bη|i's, we can �nd a model M of size |T | containing all these
parameters. Thus |Sϕ(M)| = 2µ as each branch of the tree yields a complete
ϕ-type. However, as ϕ(x, y) is stable, all ϕ-types over M are de�nable by
Corollary 3.6 and so |Sϕ(M)| ≤ |M | since there are only |M | many formulas
with parameters over M , a contradiction.

As X(n+1) is empty, all types in X(n) are isolated and so by (topological)
compactness we obtain that it is �nite.

Now, let q be a ϕ-type from X(n) and note that it is de�nable by Corollary
3.6. Thus, as X(n) is an A-invariant set, the orbit of q under Aut(M/A) is
�nite and hence, the canonical parameter of the de�nition of q belongs to
acleq(A). □

Lemma 3.8 (Harrington). Let ϕ(x, y) be a stable formula and let p(x) and
q(y) be complete global types. Then

dpxϕ(x, y) ∈ q(y) ⇔ dqyϕ(x, y) ∈ p(x).

Proof. Assume that dqyϕ(x, y) and dpxϕ(x, y) are both over A. We construct
recursively on n a sequence (an, bn)n<ω such that bn realizes q|A∪{aj}j<n and
then we take an realizing p|A∪{bj}j≤n . Thus, for i ≥ j we obtain that

ϕ(ai, bj) ⇔ ϕ(x, bj) ∈ p ⇔ dpxϕ(x, y) ∈ q

and similarly for i < j we get

ϕ(ai, bj) ⇔ ϕ(ai, y) ∈ q ⇔ dqyϕ(x, y) ∈ p.

As ϕ(x, y) is stable, we obtain the result. □

Next, we shall prove uniqueness of de�nable extension over algebraically
closed sets. To do so, we need to consider the following more robust notion
of ϕ-type. A generalized ϕ-type over a set A is maximal consistent collection
of formulas which are equivalent to a Boolean combination of ϕ-formulas,
possibly with parameters not in A. Notice that over a model M a general-
ized ϕ-type is equivalent to a ϕ-type over M . Hence, we do not make any
distinction over models between ordinary and generalized ϕ-types.



9

Corollary 3.9. Let ϕ(x, y) be stable. A complete generalized ϕ-type over an
acleq-closed set has a unique global ϕ-type extension.

Proof. Let A = acleq(A) and let p be a complete generalized ϕ-type over A.
Existence follows from Lemma 3.7 applied to any completion of p over A. To
show uniqueness, consider two global complete ϕ-types p1 and p2 extending
p and assume that both are de�nable over A. Let ϕ(x, b) be a formula and
let q(y) = tp(b/A). By Lemma 3.7 there is a global complete ϕ∗-type q(y)
which is de�nable over A and such that q(y)∪ q(y) is consistent. Let q′ be a
completion of q(y) ∪ q(y); note that q′|ϕ∗ = q. As the ϕ∗-type of q′, and the

ϕ-types of p1 and p2 are de�nable over A, by Harrington's lemma we obtain:

ϕ(x, b) ∈ pi ⇔ dpixϕ(x, y) ∈ q′ ⇔ dq′yϕ(x, y) ∈ p′i,

where p′1 and p′2 are arbitrary completions of p1 and p2 respectively. On the
other hand, by Lemma 3.5 the de�nition dq′yϕ(x, y) of q

′
|ϕ∗ is equivalent to

a positive Boolean combination of ϕ-formulas. Thus, since both p′1 and p′2
extend the generalized ϕ-type p, we have that

dq′yϕ(x, y) ∈ p′i ⇔ dq′yϕ(x, y) ∈ p.

Hence, putting everything together we obtain that the condition ϕ(x, b) ∈ pi
does not depend on i and as ϕ(x, b) was arbitrary, the ϕ-types of p1 and p2
coincide. □

Lemma 3.10. Let ϕ(x, y) be a stable formula. If p is a global complete ϕ-
type which is de�nable over a model M and consistent with a partial type
π(x) over M , then π(x) ∪ p(x) is �nitely satis�able in M .

Proof. (Due to I. Kaplan) Let p and π be given, and note that π(x)∪p|M (x)
is �nitely satis�able in M . Thus, there is some global type q extending π
and p|M which is also �nitely satis�able in M and hence, its restriction q|ϕ
is de�nable over M by Lemma 3.2 and Corollary 3.6.

To conclude, it su�ces to see that q|ϕ is precisely p. To do so, assume
that ϕ(x, c) belongs to p but it does not belong to q|ϕ. Thus, the formulas
dpxϕ(x, c) and ¬dq|ϕxϕ(x, c) hold, and so the sentence

∃y
(
dpxϕ(x, y) ∧ ¬dq|ϕxϕ(x, y)

)
is true of the ambient theory. However, this yields the existence of some
element d in M such that ¬ϕ(x, d) belongs to q|ϕ and ϕ(x, d) belongs to p,
a contradiction since q|ϕ and p agree over M by construction. □

Proposition 3.11. Let ϕ(x, y) be a stable formula. Then the following are
equivalent for a formula ϕ(x, a):

(1) it is satis�able in every model containing A.
(2) it does not fork over any model containing A.
(3) it does not divide over A.
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(4) there is a positive Boolean combination of A-conjugates of ϕ(x, a)
which is equivalent to a consistent formula with parameters over A.

(5) there is a global complete ϕ-type p containing ϕ(x, a) which is de�n-
able over acleq(A).

Proof. We already know that (1) implies (2) and it is clear that (2) yields
(3) since a formula divides over a set if and only if it divides over a model
containing such a set.

Now, we show that (3) implies (4). Suppose that ϕ(x, a) does not divide
over A, set q(y) = tp(a/A) and let q′(y) be a global ϕ∗-type such that
q(y) ∪ q′(y) is consistent and q′ is de�nable over acleq(A). In particular, it
is de�nable over a model M and so q(y) ∪ q′(y) is �nitely satis�able in M
by Lemma 3.10. Thus, there is a global type q(y) extending q(y) ∪ q′(y)
which is �nitely satis�able in M ; note that q|ϕ∗ = q′. On the other hand, by
Lemma 3.5, there is a sequence (ci)i<n with ci realizing q|M∪{cj}j<i such that

q|ϕ∗ = q′ is de�nable by a positive Boolean combination ψ(x) of the formulas
ϕ(x, ci). Note that we can extend such a sequence to a sequence (ci)i<ω of
realizations of q|M such that each ci realizes q|M∪{cj}j<i , and so (ci)i<ω isM -

indiscernible. In particular, it is A-indiscernible. Moreover, as q(y) extends
q(y) = tp(a/A), each ci ≡A a and so ψ(x) is consistent since ϕ(x, a) does
not divide over A. On the other hand, as q|ϕ∗ = q′ we obtain that ψ(x) is
equivalent to a formula φ(x) with parameters over acleq(A) since any two
de�nitions of q|ϕ∗ must be equivalent. Now, let χ(x) be the disjunction of all
the �nitely many A-conjugates of such a formula. Hence χ(x) is equivalent
to a �nite positive Boolean combination of A-conjugates of ϕ(x, a).

Now, we show that (4) yields (5). Let χ(x) be a consistent formula with
parameters over A which is equivalent to a positive Boolean combination
of A-conjugates of ϕ(x, a). By Lemma 3.7, there is a global ϕ-type q(x)
consistent with χ(x) (in fact, with any completion of it) which in addition
is de�nable over acleq(A). Thus, some A-conjugates of ϕ(x, a) belongs to q
and hence, the formula ϕ(x, a) belongs to an A-conjugate of q. Therefore,
the formula ϕ(x, a) belongs to global ϕ-type which is de�nable over acleq(A).

Finally, observe that (1) follows from (5) since a type p given by (5) is
de�nable over any model containing A and so it is �nitely satis�able in any
model containing A by Lemma 3.10. This �nishes the proof. □

To conclude this section we consider the following more general situation.
Let ∆ be a �nite set of formulas {ϕi(x, yi)}i≤n. By a ∆-formula over A we
mean a formula of the form ϕi(x, a) or ¬ϕi(x, a) with a in A and i ≤ n, and
a complete ∆-type over A is nothing other than a maximal consistent set of
∆-formulas over A.

The following lemma allows us to code ∆-types in terms of local ψ-types
for a suitable formula.
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Lemma 3.12. There is a formula ψ∆(x, y0 . . . ynzz0 . . . z2n) such that

(1) If A has at least two elements, then each ∆-formula over A is equiv-
alent to a positive ψ∆-formula over A.

(2) Any consistent positive ψ∆-formula over A is equivalent to a ∆-
formula over A.

Furthermore, if all formulas in ∆ are stable, then so is ψ.

Proof. Set ψ∆(x, y0 . . . ynzz0 . . . z2n) as∧
i≤n

(
(z = zi → ϕi(x, yi)

)
∧
(
z = zn+i → ¬ϕi(x, yi)

)
∧

∨
i≤2n

z = zi∧
∧
i<j

zi ̸= zj .

It is easy to see that this formula satis�es the requirements. □

As a consequence observe that global complete ∆-types are equivalent to
complete ψ∆-types.

Corollary 3.13. Let ϕ(x, y) and φ(x, z) be stable formulas and suppose that
ϕ(x, a) and φ(x, b) divide over A. Then so does ϕ(x, a) ∨ φ(x, b).

Proof. Assume, as we may, that A = acleq(A). Set χ(x, yz) be the stable
formula ϕ(x, y) ∨ φ(x, z) and set ∆ to be {ϕ(x, y), φ(x, z), χ(x, yz)}. Now,
let ψ∆ be the stable formula given by Lemma 3.12. If the formula χ(x, ab)
does not divide over A, then by Proposition 3.11 there exists a global χ-type
p containing χ(x, ab) which is de�nable over acleq(A). Recall that a ϕ-type
over a model is equivalent to a generalized ϕ-type. Seeing p as a generalized
ϕ-type, consider its restriction p|A over A, a generalized ϕ-type over A. By
Lemma 3.7 applied to (a completion of) p|A, we �nd some global ψ∆-type q
which is consistent with p|A and is de�nable over A. Note that q is equivalent
to a ∆-type q′ which of course is A-invariant, as q is. Thus, its restriction q′|χ
is also A-invariant and so it is de�nable over A by Lemma 3.2 and Corollary
3.6. Again, seeing q′|χ as a generalized ϕ-type, note that q′|χ and p extend p.

Hence uniqueness of de�nable extensions over algebraically closed sets (i.e.
Corollary 3.9) yields that q′|χ = p and so χ(x, ab) ∈ q′. Thus, we have that

either ϕ(x, a) ∈ q′ or φ(x, b) ∈ q′. Hence, one of these formulas does not
divide over A by Proposition 3.11, a contradiction. □

As a consequence we obtain:

Corollary 3.14. Let ϕ(x, y) be a stable formula. Then for any tuple a and
any set A, either ϕ(x, a) or ¬ϕ(x, a) does not divide over A.

4. Stable theories

In this section we present the general theory of (global) stability theory.

De�nition 4.1. A theory is stable if all formulas are stable.
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Remark 4.2. The imaginary expansion of a stable theory is again stable.

Remark 4.3. In a stable theory, a formula ϕ(x, a) forks over A if and only
if it divides over A.

Proof. It su�ces to show that if ϕ(x, a) forks over A, then it divides over A.
Suppose that ϕ(x, a) forks over A and this is exempli�ed by φi(x, bi) with
i < n. By Corollary 3.13, the disjunction of all φi(x, bi) divides over A and
so does ϕ(x, a). □

From now on, we say that a type q is a non-forking extension of p if p ⊆ q
and q does not fork over the parameters over p. Therefore, the previous
remark yields that a (complete) type over a set A does not fork over A and
so, any type has non-forking extensions. As a consequence we obtain:

Proposition 4.4. Assume that the theory is stable, let p ∈ S(A) and let B
be a subset of A. The following are equivalent:

(1) The type p does not fork over B.
(2) There is a global type extending p which is invariant over acleq(B)
(3) There is a global type extending p which is de�nable over acleq(B).

Proof. The equivalence between (2) and (3) is given by Lemma 1.2 and the
fact that any complete ϕ-type is de�nable. Now, suppose that p does not
fork over B and let p be a global type extending p which does not fork over
B. Thus, by Proposition 3.11 this type is �nitely satis�able in any model
containing B. As for any formula ϕ(x, y), the ϕ-type p|ϕ is de�nable, Lemma
3.2 yields that p is de�nable over acleq(B). For the converse, consider a global
type p extending p which is acleq(B)-invariant. Thus, since a formula divides
over B if and only if it divides over acleq(B), we obtain the result. □

Corollary 4.5 (Local Character). In a stable theory, any type p ∈ S(A)
does not fork over a subset B of A with |B| ≤ |T |.

Proof. As forking equals dividing, the type p does not fork over A and so it
has a global extension p which does not fork over A. Hence, it is de�nable
over acleq(A) by Proposition 4.4. Thus, there is a subset B of A of size at
most |T | which contain all canonical parameters of the de�nition of p, so p is
de�nable over acleq(B) and therefore p does not fork over B by Proposition
4.4. □

Now we aim to analyse those types with a unique global non-forking ex-
tension.

De�nition 4.6. A type is stationary if it has a unique global non-forking
extension.

By a strong type we mean a type with parameters over an imaginary alge-
braically closed set. We denote the strong type tp(a/acleq(A)) as stp(a/A).
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Lemma 4.7. In a stable theory, any strong type is stationary. In particular,
any type over a model is stationary.

Proof. The existence of non-forking extensions is clear since any type does
not fork over its set of parameters. To show uniqueness, observe that if p
is a complete type over acleq(A), then for any two non-forking extensions p1
and p2 of p we have by Corollary 3.9 that their ϕ-types agree for any formula
ϕ(x, y). Thus, they must coincide. □

Lemma 4.8. In a stable theory, any two non-forking global extensions of a
common type over A are A-conjugate.

Proof. Let p be a complete type over A and consider two global non-
forking extensions p and q. Set B = acleq(A) and observe that there is
an automorphism σ ∈ Aut(M/A) mapping a realization of p|B to a realiza-
tion of q|B. Namely, �x a realization a of p|B, a realization b of q|B and
take σ ∈ Aut(M/A) with σ(a) = b. Thus, as σ �xes B setwise we get
pσ|B = (p|B)

σ = q|B. By Lemma 4.7, the type q|B is stationary and so its

non-forking extensions q and pσ coincide. This �nishes the proof. □

Corollary 4.9 (Transitivity). Assume the theory is stable and let A ⊆ B.
Then a global type p does not fork over A if and only if it does not fork over
B and also p|B does not fork over A.

Proof. Observe that right to left is immediate from the properties of forking.
For the other direction, let q be a global extension of p|B which does not fork
over A, and note that it also does not fork over B. Thus p is a B-conjugate
of q by Lemma 4.8 and so it does not fork over A. □

De�nition 4.10. Let p be a de�nable global type. The canonical base of
p, denoted by Cb(p), is the de�nable closure of the collection of canonical
parameters for the de�nitions dpxϕ(x, y).

Observe that an automorphism of Aut(M) �xes the canonical parameter
of dpxϕ(x, y) if and only if it permutes the set p|ϕ. Hence, it is immediate
to see the following using Lemma 1.2.

Remark 4.11. Let p be a de�nable global type. The type p is A-invariant
if and only if Cb(p) is contained in dcleq(A). In particular, the canonical
base Cb(p) is the smallest de�nably closed set over which p is invariant (or
equivalently, de�nable).

Lemma 4.12. Assume that the theory is stable and let p be a global type.
The following holds:

(1) The type p does not fork over A if and only if Cb(p) is contained in
acleq(A).

(2) The type p does not fork over A and p|A is stationary if and only if
Cb(p) is contained in dcleq(A).
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Proof. As we pointed out in Remark 4.11, the canonical base Cb(p) is con-
tained in a set B if and only if p is invariant over B. Thus, (1) is an immediate
consequence of Proposition 4.4. For (2), observe that p does not fork over
A and p|A is stationary if and only if p is the unique non-forking extension
of p|A, and the latter is equivalent to saying that p is A-invariant by Lemma
4.8. Hence, by Remark 4.11 we obtain the result. □

De�nition 4.13. The set A is independent from B over C if for every �nite
tuple a in A, the type tp(a/BC) does not fork over C. We write A |⌣C

B
for this.

Theorem 4.14. Assume that the theory is stable. Then the ternary relation
|⌣ satis�es the following properties:

(1) Invariance: If A |⌣C
B and f ∈ Aut(M), then f(A) |⌣f(C)

f(B).

(2) Finite character: A |⌣C
B if and only if A0 |⌣C

B0 for any �nite
subset A0 of A and B0 of B.

(3) Extension: If A |⌣C
B, then for any set D there is an automorphism

f ∈ Aut(M/CB) such that f(A) |⌣C
BD.

(4) Local character: If A is �nite and B is any set, there is a subset C
of B with |C| ≤ |T | such that A |⌣C

B.

(5) Transitivity: A |⌣C
B and A |⌣CB

D if and only if A |⌣C
BD.

(6) Symmetry: If A |⌣C
B, then B |⌣C

A.

(7) Algebraicity: If A |⌣C
A, then A ⊆ acleq(C).

(8) Stationarity: If a and b have the same strong type over A with
a |⌣A

B and b |⌣A
B , then stp(a/AB) = stp(b/AB).

Proof. (1) and (2) follow from the de�nition and (3) by basic properties of
forking noticing that the argument given in Lemma 2.2 works also when x
an in�nite tuple of variables. Observe that (4) is nothing else than Lemma
4.5. For (7), use the fact that the algebraic formula x = a with a an element
in A divides over any set C unless a ∈ acleq(C). This can be seen using
indiscernible sequences or for instance Proposition 4.4. Moreover, property
(8) is a mere translation of uniqueness of non-forking extensions for strong
types.

To prove (5), by �nite character we may assume that A is a �nite set
enumerated by the tuple a. Then the statement follows easily applying twice
Corollary 4.9. Namely, let p be a global non-forking extension of tp(a/BCD).
Then p does not fork over C if and only if p does not fork over BC and p|BC
does not fork over C which, since p does not fork over BCD, is equivalent
to say that p|BCD does not fork over BC and p|BC does not fork over C.

For (6), suppose that A |⌣C
B and assume �rst that C = acleq(C). Ob-

serve that by de�nition we may assume that C ⊆ B. Moreover, if for a
formula φ(x, y, z) we have that φ(x, b, z) divides over C and c ∈ C, then
φ(x, b, c) also divides over C. Thus A |⌣C

B implies AC |⌣C
B and so we
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may assume that C ⊆ A. Now, suppose towards a contradiction that there
is a formula ϕ(x, y) such that ϕ(a, b) holds for some �nite tuples a ∈ A and
b ∈ B and ϕ(a, y) forks over C. Now, as tp(a/C, b) does not fork over C,
there exists a global type p(x) extending tp(a/C, b) which is de�nable over
C by Proposition 4.4. Let q(y) be a non-forking extension of tp(b/C) which
of course is also de�nable over C by Proposition 4.4. Hence, we have that

ϕ(a, b) holds ⇔ ϕ(x, b) ∈ p ⇔ dpxϕ(x, y) ∈ q,

and so dqyϕ(x, y) ∈ p by Harrington's lemma. As dqyϕ(x, y) has parameters
over C, it belongs to tp(a/C) and thus ϕ(a, y) ∈ q. However, this implies
that q forks over C, a contradiction. For the general case, observe that for
any �nite tuple a in A, the strong type stp(a/BC) does not fork over C;
this can be easily seen using extension: take a′ ≡BC a with a

′ |⌣C
acleq(BC)

and then apply invariance. Thus, transitivity and �nite character yield that
A |⌣acleq(C)

B. □

Remark 4.15. In fact, the result above characterises stable theories. More
precisely, a theory is stable if and only if there is a ternary relation de�ned
among imaginary sets satisfying the properties (1)− (8) from Theorem 4.14
is stable. See [4, Theorem 36.10] or [1, Chapter 12] for a proof.

De�nition 4.16. Let p(x) ∈ S(A) be a stationary type in a stable theory.
The canonical base of p is the canonical base of its unique global non-forking
extension. We denote it by Cb(p). If p = stp(a/A) we simply write Cb(a/A).

Observe that Cb(a/A) is always contained in acleq(A) by Lemma 4.12 since
the unique non-forking extension of stp(a/A) does not fork over acleq(A) nor
over A.

Lemma 4.17. For a tuple a and set A ⊆ B, the following are equivalent:

(1) a |⌣A
B.

(2) Cb(a/B) ⊆ acleq(A).
(3) Cb(a/A) = Cb(a/B).

Proof. Observe that (1) is equivalent to the statement that stp(a/B) does
not fork over A. Hence (1) holds if and only if stp(a/A) and stp(a/B) have
the same non-forking extension, which by de�nition implies (3). Moreover,
(3) implies (2) by the remarks above and �nally (1) follows from (2) by
Lemma 4.12. □

De�nition 4.18. A sequence (ai)i∈I is said to be a Morley sequence in
p(x) ∈ S(A) if the sequence is indiscernible over A with ai realizing p and
ai |⌣A

(aj)j<i for any i ∈ I.

Lemma 4.19. Given a type p(x) ∈ S(A) and an ordinal α, there exists
a Morley sequence (ai)i<α in p. Moreover, if p is stationary then any two
Morley sequences in p are A-conjugated.
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Proof. Set B = acleq(A). As p does not fork over A, there is a global type p
extending p which is B-invariant by Proposition 4.4. Then take (ai)i<α in a
way that ai realizes p|B∪{aj}j<i and note that this sequence is indiscernible

over A by Lemma 2.4. Moreover, as p does not fork over A (by Proposition
4.4), neither does p|B∪{aj}j<i and so ai |⌣A

(aj)j<i.

For the second part, consider two Morley sequences (ai)i<α and (bi)i<α
in p. We show inductively on β that (ai)i<β ≡A (bi)i<β ; the initial case
is obvious and the limit case is clear by induction. Let (ai)i<β be an A-
conjugate of (bi)i<β , i.e. there is some σ ∈ Aut(M/A) mapping bi 7→ ai. Let
c = σ(bβ) and note that c |⌣A

(ai)i<β by invariance since bβ |⌣A
(bi)i<β . As

p has a unique non-forking extension over A∪{ai}i<β we obtain that aβ and
c are realizations of such a unique non-forking extension of p and so they
have the same type over A ∪ {ai}i<β . Thus

(ai)i<βaβ ≡A (ai)i<βc ≡A (bi)i<βbβ,

as desired. □

Proposition 4.20. Let p be a stationary type and let (ai)i<ω be a Morley
sequence in p. Then, the canonical base of p is contained in dcleq((ai)i<ω).

Proof. Let p be a complete type over A and let (ai)i≤ω be a Morley sequence
in p. Thus aω |⌣A

(ai)i<ω and hence there is a global type p containing

tp(aω/A, (ai)i<ω) which does not fork over A. Hence p is a non-forking ex-
tension of p by Corollary 4.9. On the other hand, the type tp(aω/A, (ai)i<ω)
is �nitely satis�able in {ai}i<ω, so there exists a global type q extend-
ing tp(aω/A, (ai)i<ω) which is �nitely satis�able in {ai}i<ω and hence it
is {ai}i<ω-invariant. Thus q does not fork over {ai}i<ω and so it is a non-
forking extension of tp(aω/A, (ai)i<ω). By Corollary 4.9 we obtain that q is
a non-forking extension of p = tp(aω/A) and so p = q since p is stationary.
Therefore, as q is {ai}i<ω-invariant, we get Cb(p) = Cb(p) ⊆ dcleq((ai)i<ω)
by Remark 4.11. □

Lemma 4.21. If (ai)i<α is independent over A, i.e. for each i < α we have
that ai |⌣A

(aj)j<i then for any two disjoint subsets of subindexes I and J

we have that (ai)i∈I |⌣A
(ai)i∈J .

Proof. Left to the reader. □

Corollary 4.22. Let p be a stationary type and let (ai)i<ω+ω be a Morley
sequence in p. Then

acleq(Cb(p)) = acleq((ai)i<ω) ∩ acleq((aω+i)i<ω).

Proof. Let p(x) ∈ S(A) be a stationary type; thus its unique global non-
forking extension is A-invariant and so Cb(p) ⊆ dcleq(A). Hence, for each
i < ω + ω we have that ai |⌣Cb(p)

A and so ai |⌣Cb(p)
(aj)j<i by transi-

tivity. Whence the sequence (ai)i<ω+ω is independent over Cb(p) and so
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(ai)i<ω |⌣Cb(p)
(aω+i)i<ω. Therefore

acleq((ai)i<ω) ∩ acleq((aω+i)i<ω) ⊆ acleq(Cb(p)).

The other direction follows from Proposition 4.20. □

5. Superstable theories

De�nition 5.1. A theory is superstable if it is stable and for any �nite tuple
a and any set B, there is some �nite subset C of B such that a |⌣C

B.

De�nition 5.2. We de�ne U(p) ≥ α for a type p by recursion on α:

• U(p) ≥ 0
• U(p) ≥ α+ 1 if there is a forking extension q of p with U(q) ≥ α.
• U(p) ≥ γ for a limit ordinal γ if U(p) ≥ α for all α < γ.

We de�ne the U-rank of p (also called Lascar rank) as the maximal α such
that U(p) ≥ α. If there is no maximum we set U(p) = ∞. To ease notation,
we write U(a/A) for U(tp(a/A)).

Remark 5.3. A type p has U-rank 0 if and only if it is algebraic.

Lemma 5.4. Assume the theory is stable and let q ∈ S(B) be an extension
of p ∈ S(A). Then:

(1) If q is a non-forking extension of p, then U(p) = U(q).
(2) If U(p) = U(q) <∞, then q is a non-forking extension of p.

Proof. For (1) observe �rst that U(p) ≥ U(q) by de�nition since a forking
extension of q is also a forking extension of p. For the other inequality, we
proceed by induction on α. We show that if U(p) ≥ α then U(q) ≥ α.
Observe that the initial and the limit cases are clear. Suppose now that
U(p) ≥ α + 1 and let p′ be a forking extension of p with U(p′) ≥ α. As
p′|A = q|A, there is an automorphism σ ∈ Aut(M/A) mapping a realization

of p′ to a realization of q and so p′σ and q have a common realization. Let
b be a realization of p′σ ∪ q and suppose that p′σ and q are complete types
over C ′ and B respectively. Observe by invariance that p′σ is also a forking
extension of p. Thus, in terms of forking calculus we have that b |⌣A

B and

b ̸ |⌣A
C ′. By extension, there is some C ′′ ≡Ab C

′ with C ′′ |⌣Ab
B; notice

that tp(b/C ′′) forks over A by invariance and U(b/C ′′) = U(p′) ≥ α. Thus
C ′′b |⌣A

B and so b |⌣C′′ B by transitivity and invariance. Therefore, as

tp(b/BC ′′) is a non-forking extension of tp(b/C ′′) and the latter has U-rank
at least α, the induction hypothesis yields that U(b/BC ′′) ≥ α. On the other
hand, observe that b ̸ |⌣B

C ′′ as otherwise we would have that b |⌣A
C ′′ by

transitivity and �nite character, contradicting the fact that tp(b/C ′′) forks
over A. Hence U(b/B) ≥ α+ 1, as desired.

To conclude, note that (2) follows from the de�nition. □
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Remark 5.5. Since every type does not fork over a subset of cardinality at
most |T |, there are at most 2|T | di�erent U-ranks. As they form an initial

segment of ordinals, all ordinal ranks are smaller than (2|T |)+. Hence, there
is an ordinal α such that U(p) ≥ α implies U(p) = ∞.

Proposition 5.6. A stable theory is superstable if and only if the U-rank of
any type is ordinal-valued.

Proof. If there is a type p with U(p) = ∞, then in particular U(p) ≥ α + 1
with α given by the remark. Thus there is a forking extension q of p with
U(q) = ∞. Iterating this process, we obtain an in�nite sequence (pi(x))i<ω
of types such that their union is consistent (by compactness) and each pi+1

is a forking extension of pi. However, by construction
⋃
i<ω pi forks over any

�nite subset of its domain, a contradiction.

For the other direction, given a complete type tp(a/A) let B be a �nite
subset of A such that U(a/B) is minimal. It then follows that U(a/BA′) =
U(a/B) for any �nite subset A′ of A and so a |⌣B

A′ by Proposition 5.4.

Thus by �nite character we get a |⌣B
A. □

Recall that every ordinal α can be written in the Cantor normal form as
a �nite sum ωα1 · n1 + . . .+ ωαk · nk for ordinals α1 > . . . > αk and natural
numbers n1, . . . , nk. Moreover, this sum is unique if we require all summands
to be non-zero. If β = ωα1 ·m1 + . . .+ ωαk ·mk, then α⊕ β is de�ned to be
ωα1 · (n1+m1)+ . . .+ω

αk · (nk+mk). In fact, the function ⊕ is the smallest
symmetric strictly increasing function f among pairs of ordinals such that
f(α, β + 1) = f(α, β) + 1.

Theorem 5.7 (Lascar Inequalities).

U(a/Ab) + U(b/A) ≤ U(ab/A) ≤ U(a/Ab)⊕U(b/A).

Proof. We �rst prove by induction on α that U(b/A) ≥ α implies that
U(ab/A) ≥ U(a/Ab) + α. The case α = 0 is left to the reader and the limit
case is obvious. Thus, assume that the inequality holds for α and suppose
that U(b/A) ≥ α + 1. Thus, we can �nd some set B extending A such
that b ̸ |⌣A

B and U(b/B) ≥ α. By extension there is some B′ ≡Ab B with

B′ |⌣Ab
a and so U(a/Ab) = U(a/B′b). Moreover, note by invariance that

U(b/B′) ≥ α and so, the inductive hypothesis yields that

U(ab/B′) ≥ U(a/B′b) + α = U(a/Ab) + α.

On the other hand, as B′ ̸ |⌣A
ab by transitivity we obtain that U(ab/A) ≥

U(ab/B′) + 1 by Lemma 5.4 and hence U(ab/A) ≥ U(a/Ab) + α + 1, as
desired.

Now, to show the second part we prove by induction on α that U(ab/A) ≥
α implies that U(a/Ab)⊕U(b/A) ≥ α. This is clear for α = 0 and the limit
case, so assume that it holds for α and suppose that U(ab/A) ≥ α+1. Thus,
we can �nd some superset B of A such that U(ab/B) ≥ α and ab ̸ |⌣A

B. By
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induction U(a/Bb) ⊕ U(b/B) ≥ α. Now, if b ̸ |⌣A
B then using Lemma 5.4

we obtain that

U(a/Ab)⊕U(b/A) ≥ U(a/Bb)⊕U(b/B) + 1 ≥ α+ 1.

Otherwise b |⌣A
B and so a ̸ |⌣Ab

B by transitivity. Thus, we get U(a/Ab) ≥
U(a/Bb) + 1 and so U(a/Ab)⊕U(b/A) ≥ α+ 1. □

6. Stable groups and homogeneous spaces

A set is type-de�nable if it is given as the intersection of de�nable sets,
and it is relatively de�nable in a superset X if it is the intersection of a
de�nable set with X. A type-de�nable group (G, ·) is a type-de�nable set G
together with a relatively de�nable subset of G×G×G which is the graph
of the group operation. A subgroup H of a group G is relatively de�nable
if the underlying set H is relatively de�nable in G. Note that the quotient
of a type-de�nable group by a relatively de�nable normal subgroup is still
type-de�nable.

We assume the ambient theory to be stable.

Let G be a type-de�nable group acting transitively and de�nably on a
type-de�nable set S, i.e. there is a relatively de�nable subset of G× S × S
which is the graph of the action · of G on S. Assume that everything is
de�ned without parameters in a stable theory. We denote by G(x) and
S(x) the partial types type-de�ning G and S respectively. Observe that the
group G acts naturally on the collection of partial types π(x) extending S(x).
Namely, if π(x) is a partial type extending S(x) we write

g · π(x) = {φ(g−1 · x) : φ(x) ∈ π(x)}.
Hence, for an element a ∈ S we have that a realizes π(x) if and only if g · a
realizes g · π(x). Formally, observe that the formula φ(g−1 · x) corresponds
to a formula ψ(x, g) with ψ(x, y) = ∃z(α(y, z, x) ∧ φ(z)), where α(u, v, w)
is a formula which induces the graph the action of G on S, i.e. for g ∈ G,
s1, s2 ∈ S we have that g · s1 = s2 if and only if α(g, s1, s2).

6.1. Generic sets and types.

De�nition 6.1. A relatively de�nable subset X of S is generic if there are
elements g1, . . . , gn of G such that S is contained in the union of all giX.
We say that a partial type π(x) extending S(x) is generic if any relatively
de�nable subset of S containing the realizations of π is generic.

Lemma 6.2. Let X be a relatively de�nable subset of S given by a formula
φ(x, b). Then the following holds:

(1) Either X or S \X is generic.
(2) The set X is generic if and only if for any element g ∈ G the set

S(x) ∪ {g · φ(x, b)} does not fork over ∅.
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Proof. We �rst introduce an auxiliary two-sorted structure M0 = (S,G,R)
where R(x, y) is a binary relation interpreted in M0 as follows: R(x, y) if
x ∈ S, y ∈ G and y−1 · x ∈ X. Let T0 be the theory of M0 and observe
that R(x, y) is a stable formula in T0; otherwise by saturation of M there is a
sequence (ai, gi)i<ω with ai ∈ S, gi ∈ G and in the original theory φ(g−1

j ·ai, b)
holds if and only if i < j. However, the sequence (ai, bgi)i<ω would witness
that the formula ψ(x, yz) = φ(z−1 · x, y) is not stable, a contradiction.

Given an element g ∈ G let σg be the map taking s ∈ S 7→ g · s and
h ∈ G 7→ gh. It is easy to see that σg ∈ Aut(M0) and so, since G acts on S
transitively there is a unique type without parameters in T0 implying S(x).
Now, let 1 be the identity element of G. Note that R(x, 1) de�nes X in the
structure M0 and that ¬R(x, 1) de�nes S \X. Moreover, any ∅-conjugate of
R(x, 1) and ¬R(x, 1) under the action of Aut(M0) has the form R(x, g) and
¬R(x, g) respectively.

Now, by Corollary 3.14 either R(x, 1) or ¬R(x, 1) does not divide over
∅. Assume �rst that R(x, 1) does not divide and so by Proposition 3.11,
some positive Boolean combination of ∅-conjugates (with respect to the au-
tomorphism group of some elementary extension M′

0 of M0) of R(x, 1) is
consistent and ∅-de�nable. Consequently, since S(x) determines the unique
type without parameters in T0, we have that S(x) is equivalent to a positive
Boolean combination of formulas of the form R(x, g) with g in G(M′

0) and so
we can �nd elements g1, . . . , gn in G such that S(x) implies the disjunction∨
i≤nR(x, gi). Therefore, the set X is generic. Similarly, we can get that

S \ X is generic whenever ¬R(x, 1) does not divide over ∅ and hence, we
deduce that either X or S \X is generic. This shows (1).

For (2), assume �rst that X is not generic but for any g ∈ G the partial
type S(x) ∪ {g · φ(x, b)} does not fork over ∅. Thus, in T0 the formula
R(x, 1) divides over ∅ by the paragraph above and so, there is an in�nite
∅-indiscernible sequence (g′i)i<ω in some elementary extension of M0 such
that {R(x, g′i)}i<ω is inconsistent. Thus, there is some natural number k
for which this set of formulas is k-inconsistent. Hence, by compactness it
is consistent with the ambient theory that there is a sequence (gi)i<κ with

κ > 2|T | such that S(x) ∪ {gi · φ(x, b)} is k-inconsistent. As our model M is
saturated, we may take such a sequence inside M. By assumption each of the
sets S(x)∪{gi ·φ(x, b)} does not fork over ∅ and so, each of them is contained
in a global type pi which does not fork over ∅. By Lemma 4.7, each pi is
determined by its restriction to acleq(∅). However, as S(x)∪{gi ·φ(x, b)}i<κ
is k-inconsistent we obtain that there are κ many types pi. However, there
are only 2|T | many types over acleq(∅), a contradiction.

To show the other direction in point (2), we introduce another auxiliary
structure M1 which we de�ne as follows: �rst let Γ be the collection of sets
S ∩ g · φ(M, a) where a is a tuple of parameters and g ∈ G, and ϵ(x, u)
is a binary relation on S × Γ given by the membership relation. Let M1



21

be the two-sorted structure (S,Γ, ϵ). Let T1 be its theory and observe that
ϵ(x, u) is stable as otherwise there is a sequence (si, Yi)i<ω with si ∈ S
and Yi = S ∩ gi · φ(M, ai) such that si ∈ S ∩ gj · φ(M, aj) if and only
if i < j. However, the sequence (si, giai)i<ω witnesses that the formula
ψ(x, yz) = φ(z−1 ·x, y) is not stable, yielding a contradiction. Moreover, for
each g ∈ G the map τg which takes s ∈ S 7→ g · s and Y ∈ Γ 7→ g · Y is an
automorphism of M1.

Now, let p1 ∈ Sϵ(M1) be a ϵ-type in T1 extending S(x) which is de�nable
over acleq(∅) in the sense of T1. Observe that such a type exists by Lemma
3.7. As X is generic, there are some elements h0, . . . , hn ∈ G such that in T1
we have that S(x) implies

∨
i≤n ϵ(x, Yi), where each Yi ∈ Γ corresponds to

the set S∩hi ·φ(M, b). So, some formula ϵ(x, Yj) must belong to p1 and thus
it does not divide in T1 over ∅, by Proposition 3.11. Hence, for any Y ∈ Γ
we have that ϵ(x, Y ) does not divide over ∅: indeed, if Y ∈ Γ corresponds to
the set S ∩h ·φ(M, b), then setting h′ = hh−1

j we have that Y = τh′(Yj) and

so the formula ϵ(x, Y ) does not divide over ∅, by invariance.

Given an arbitrary element g ∈ G, let Z be the element of Γ corresponding
to S∩g ·φ(M, b). As we have just remarked, the formula ϵ(x, Z) does not di-
vide over ∅. Suppose to get a contradiction that {S(x)}∪{g ·φ(x, b)} divides
over ∅, in the sense of T . So, working in T , there is an indiscernible sequence
(gi, bi)i<ω such that the set {S(x)} ∪ {gi · φ(x, bi)}i<ω is k-inconsistent for
some k. Now, note that any automorphism from Aut(M) induces an auto-
morphism from Aut(M1), by considering the natural action of Aut(M) on
S × Γ. So, the sequence (Zi)i<ω in Γ, where each Zi corresponds to the set
S ∩ gi · φ(M, bi), is again indiscernible and {ϵ(x, Zi)}i<ω is k-inconsistent.
Thus, the formula ϵ(x, Z) divides over ∅, which is a contradiction. This
�nishes the proof. □

Lemma 6.3. The set of relatively de�nable subsets of S which are non-
generic form an ideal.

Proof. It is clear that such a set contains the empty-set and it is closed under
subsets. To check that it is closed under unions, consider two non-generic
subsets X and Y of S. If X ∪Y is generic, then there are elements g0, . . . , gn
in G such that

S =
⋃
i≤n

gi(X ∪ Y ) =
⋃
i≤n

giX ∪
⋃
i≤n

giY.

As X is non-generic, the union
⋃
i≤n giX cannot be generic and so, its com-

plement S \
⋃
i≤n giX is generic by Lemma 6.2. However, the latter is clearly

contained in
⋃
i≤n giY . It then follows that

⋃
i≤n giY and so Y are generic,

a contradiction. □

Consequently, by Lemma 2.2 we obtain:



22 DANIEL PALACÍN

Corollary 6.4. Let π(x) be a partial type extending S(x). If π is generic
then there is a generic type extending π. In particular, there are generic
global types.

Proposition 6.5. Let p(x) be a complete type over A extending S(x). The
following are equivalent:

(1) The complete type p is generic.
(2) For any element g in G we have that g · p(x) does not fork over ∅.
(3) For any element g in G we have that g · p(x) does not fork over A.
(4) For any element g ∈ G and a realizing p, if a |⌣A

g then g ·a |⌣A, g.

Proof. The equivalence between (1) and (2) is given by Lemma 6.2. More-
over, the equivalence between (1) and (3) follows from the equivalence be-
tween (1) and (2) after naming A as constants. Additionally, it is clear that
(4) implies (2): as p(x) does not fork over A, there is some realization a of
p with a |⌣A

g. Thus g · a |⌣A, g by assumption and hence g · p does not

fork over ∅ since g · a realizes it. Finally, to see that (1) yields (4), let q be
a generic global type extending p and note that it does not fork over A by
point (3). If a |⌣A

g, then tp(a/A, g) has a global extension p which does
not fork over A and hence p and q must be A-conjugates by Lemma 4.8. In
particular, it follows that p is generic and so is tp(a/A, g). Hence, by the
second point we get that tp(g · a/A, g) does not fork over ∅ which means
g · a |⌣A, g. □

We say that an element a is generic in S over A if a ∈ S and tp(a/A) is
a generic type (for the action of G on S). Similarly, we say that g is generic
in G over A if g ∈ G and tp(g/A) is a (left or right) generic type of G.

Remark 6.6. Using Proposition 6.5 one can easily see that the following
properties hold for any element a of S:

(1) For any B: a is generic over AB i� a is generic over A and a |⌣A
B.

(2) If g ∈ G and a is generic over A, g, then g · a is generic over A, g as
well.

Observe that all previous results apply when S = G and G acts on itself
regularly by left (or right) translation. A priori we shall distinguish between
the notion of being left generic (as de�ned before) and right generic, i.e.
�nitely many right translates cover the group. Nevertheless, it turns out
that both notions agree.

Lemma 6.7. The following holds for any element g of G and any set of
parameters A:

(1) If g is left generic over A, then so is g−1.
(2) The element g is left generic over A i� it is right generic over A.

Proof. We use Proposition 6.5(4) to characterise genericity.
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(1) Suppose that g is left generic over A, and let h be a realization of
tp(g/A) independent from g over A. Then gh |⌣A, g since g is generic over

A and so (gh)−1 |⌣A
g. Now, using the previous remark, we see that g is left

generic over A, (gh)−1, and so is h−1 = (gh)−1g. Thus h−1 is generic over A
and so is g−1 by invariance.

(2) Assume that g is left generic over A. Let h be such that g |⌣A
h;

thus g−1 |⌣A
h−1. By (1), we have that g−1 is left generic over A and so

h−1g−1 |⌣A,h−1. Hence gh |⌣A,h, yielding that g is right generic over A.
The other direction is similar. □

Lemma 6.8. Let a be an element in S and let g ∈ G be generic in G over
A, a then g · a is generic in S over A.

Proof. To ease notation, assume that A = ∅. Let h ∈ G be such that h |⌣ g ·a
and by extension we can �nd some h′ ≡g·a h with h′ |⌣ g, a. Thus h′ |⌣a

g

and so g |⌣a
h′. Hence, genericity of g over a yields that h′ · g |⌣ a, h′. But

h′ |⌣ a so h′ · g, a |⌣ h′ by transitivity and so h′ · g · a |⌣ h′. Therefore, we
obtain the result by invariance. □

6.2. Stabilizers and connected components.

Proposition 6.9. There is a minimal type-de�nable subgroup of G which
has bounded index in G.

Proof. Set S = G and let H be a type-de�nable subgroup of bounded index
in G. By compactness, any relatively de�nable set containing H is generic
in G and so H is generic as a partial type. Thus, there is global generic type
p extending the partial type H(x). Observe that g · p extends the partial
type de�ning the coset gH and so the index of H in G is bounded by the
number of translates of p. As generic types do not fork over ∅, there are
at most 2|T | many of them (namely, at most as many as there are types
over acleq(∅)) and thus we have an absolute bound on the index of H in
G. Thus, the intersection of all type-de�nable subgroups (over any set of

parameters) is indeed a small intersection (of size at most 2|T |) and so it is
type-de�nable. □

Let G0 denote the intersection of all relatively de�nable �nite index sub-
groups of G, which we call the connected component of G. We say that the
group is connected when it is equal to its connected component. Observe
that G0 has bounded index in G and it is generic as a partial type.

De�nition 6.10. Let p be a global type extending S(x). By the stabilizer
of p we mean the group

Stab(p) = {g ∈ G : g · p = p}.
Remark 6.11. Let p be a global type extending S(x) de�nable over A.
Then g ∈ Stab(p) i� whenever a realizes p|A,g then g · a realizes p|A,g.
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Remark 6.12. The stabilizer of a complete type is an intersection of rela-
tively de�nable subgroups. Namely, let the ϕ-stabilizer of p be de�ned as

Stab(p, ϕ) = {g ∈ G : ∀y
(
dpxϕ(x, y) ↔ dpxϕ(g

−1 · x, y)
)
},

which is a relatively de�nable subgroup. Therefore, we obtain that

Stab(p) =
⋂

ϕ(x,y)∈L

Stab(p, ϕ)

and so the stabilizer of p is equal to the intersection of relatively de�nable
subgroups.

Proposition 6.13. The following holds:

(1) The connected component G0 of G acts trivially on the set of generic
types (for the action of G on S). That is, for any global generic type
p we have that G0 is contained in Stab(p).

(2) The group G acts transitively on the set of generic global types.
(3) Suppose that G acts regularly on S and let p be a global type extending

S(x). Then, the type p is generic if and only if G0 = Stab(p).

Proof. Through the proof we use without notice properties of generic ele-
ments and types.

(1) Let F be the intersection of all stabilizers of global generic types. Thus
G/F acts faithfully on the set of generic global types, and since there is only
a bounded number many of them, the group G/F has bounded cardinality.
As each stabilizer is equal to an intersection of relatively de�nable subgroups,
and each of these relatively de�nable subgroups has �nite index by compact-
ness, the subgroup G0 is contained in any stabilizer. Thus, it acts trivially
on the set of generic global types.

(2) Let p and q be two generic global types and let a and b be two real-
izations of their restriction to some model M , respectively. By transitivity
of the action, choose some element g of G such that g · a = b. Pick some
generic element h of G0 for the action of G on itself by right translation,
which in addition is independent from M,a, b, g. Thus hg |⌣M

a (using the

fact that h is generic over M,a and h |⌣M,a
g−1), so a realizes p|M,hg and

hence hg · a realizes hg · (p|M,hg) = (hg · p)|M,hg. Now, note that h ∈ Stab(q)
by (1). Thus, as b realizes q|M,h since h |⌣M

b, the element hg · a = h · b
realizes q|M by Remark 6.11. Consequently, we have that (hg · p)|M = q|M
and so hg · p = q by stationarity, as desired. In fact, note also that g · p = q
since h ∈ Stab(g · p) by (1).

(3) Suppose �rst that p is generic. By (1) it remains to show that Stab(p) is
contained in G0. To do so, note that for each relatively de�nable subgroup
H of �nite index in G, the generic type p must imply that x ∈ H · a for
some element a in S since H has only �nitely many orbits. A compactness
argument yields the existence of some element b in S such that p implies
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x ∈ G0 · b. Thus, the type g ·p implies x ∈ g · (G0 · b). Normality of G0 yields
that g · (G0 · b) = G0 · (g · b). Hence, assuming that g belongs to Stab(p), we
obtain that b and g · b belongs to the same orbit. Whence, we can �nd some
h1, h2 in G

0 such that (h1g) · b = h2 · b and so g belongs to G0 by regularity.
This shows that Stab(p) = G0.

To prove the other direction, let M be a small model such that p does not
fork over M . By Remark 6.6 it su�ces to show that p|M is generic. Let a be
a realization of p|M and let g be a generic element of G over M,a which in

addition belongs to G0; note that this element exists since G0 is generic as
partial type. The assumption implies that (g · p)|M,g = p|M,g. Now, as g is
generic over M,a, we have that g |⌣M

a, and so a realizes (g ·p)|M,g = p|M,g.

In particular, it satis�es g · p|M and so g−1 · a realizes p|M . Therefore, we

obtain the result since p|M = tp(g−1 · a/M) is generic by Lemma 6.8. □

Corollary 6.14. There is a unique generic in every coset of G0. In partic-
ular, the group G is connected if and only if it has a unique generic type.
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