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1. Introduction. The design of institutions to be used by rational agents has been an impor-

tant research agenda in economic theory. As captured by the notion of Nash equilibrium, rationality

is encapsulated in two aspects: these are (i) the best responses of agents to their beliefs, and (ii) that

those beliefs are correct, the so-called rational expectations assumption. One can drop the latter

and retain the former, moving then into the realm of rationalizability. One would conjecture that

the design of institutions under rationalizable behavior, i.e., without insisting on rational expecta-

tions, should leave room for significantly different results than the theory based on equilibrium.1

Settling this important question is our task in this paper. We show that dropping rational expec-

tations significantly expands the class of rules that can be decentralized by communication-based

institutions designed by the Central Authority for participating agents in the system.

The theory of Nash implementation has uncovered the conditions under which one can design

a mechanism (or game form) such that the set of its Nash equilibrium outcomes coincides with a

given social choice correspondence (henceforth, SCC). Indeed, Maskin [15] proposes a well-known

1 On the one hand, from the existence point of view, since rationalizability is a weaker solution concept, one would
conjecture a more permissive theory. On the other hand, uniqueness would be harder to establish. Hence, the answer,
a priori, is far from clear.

1

mailto:tkunimoto@smu.edu.sg
mailto:roberto_serrano@brown.edu


Kunimoto and Serrano: Rationalizable Implementation of Correspondences
2 Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

monotonicity condition, which we refer to as Maskin monotonicity. Maskin’s [15] main result shows
that Maskin monotonicity is necessary and almost sufficient for Nash implementation.2

Nash implementation is concerned with complete information environments, in which all agents
know the underlying state and this fact is commonly certain among them. As a foundation of
Nash equilibrium, Aumann and Brandenburger [4] delineate a set of epistemic conditions under
which the agents’ strategic interaction always leads to a Nash equilibrium. Furthermore, Polak [21]
shows that when the agents’ payoffs are commonly certain, as complete information environments
prescribe, the Aumann-Brandenburger epistemic conditions imply common certainty of rationality.

Bernheim [6] and Pearce [20] independently propose rationalizability, a weaker solution concept
than Nash equilibrium, by asking what are the strategic implications that come solely from common
certainty of rationality. Brandenburger and Dekel [7] allow for the agents’ beliefs to be correlated
and propose an even weaker version of rationalizability. Lipman [14] extends the concept of ratio-
nalizability to games with infinite action sets. In this case, the set of all rationalizable strategies is
fully characterized in terms of the strategies that survive the (possibly transfinite) iterative deletion
of never best responses, taking limits as needed. Throughout the current paper, our discussion is
entirely based upon Lipman’s [14] extension of correlated rationalizability of Brandenburger and
Dekel [7].

In a paper that was our starting point and motivation, Bergemann, Morris, and Tercieux [5]
–BMT in the sequel– recently consider the implementation of social choice functions (henceforth,
SCFs) under complete information in rationalizable strategies. By an SCF we mean a single-valued
SCC. They show that Maskin monotonicity is necessary and almost sufficient for rationalizable
implementation. This essentially would imply that rationalizable implementation is similar to Nash
implementation. However, their result has one important caveat: BMT focus only on SCFs in their
analysis (we note that rationalizability and single-valuedness amount to uniqueness of Nash equi-
librium). In any attempt to extend their result, one should ponder the following observations: (1)
Maskin’s characterization on Nash implementation holds true regardless of whether we consider
SCFs or SCCs; (2) Maskin monotonicity can be quite restrictive in the case of SCFs (see, e.g.,
Mueller and Satterthwaite [18] and Saijo [22]); and (3) Many interesting SCCs are Maskin mono-
tonic, including the Pareto, Core, envy-free, constrained Walrasian or Lindhal correspondences,
while any SCF selected from a Maskin monotonic SCC no longer inherits the property.3

Therefore, what we set out to resolve here is the question of how close rationalizable implementa-
tion really is to Nash implementation, without imposing the straightjacket of single-valuedness. We
interpret characterizations of implementable correspondences as descriptions of all that is feasible
for the mechanism designer, and in this sense, multivaluedness strikes us as being quite plausible.
In dealing with correspondences, we identify a new condition, which we call uniform monotonicity,
basically closing the gap between necessity and sufficiency.4 We show that uniform monotonicity
is necessary (Theorem 1) and almost sufficient (Theorem 2) for rationalizable implementation of
SCCs.5

2 Maskin [15] uses deterministic mechanisms, but allows mixed-strategy equilibria in an ex post sense (each outcome
in the support of the equilibrium must be in the SCC). For us, given the importance of disagreements in beliefs,
random outcomes are central in our mechanisms, but see footnote 15 as a point of comparison.

3 The results in BMT [5] contrasts with the much more permissive findings in Abreu and Matsushima [2] for imple-
mentation in iterative elimination of weakly dominated strategies, or those in Abreu and Matsushima [1], even though
the latter are obtained for virtual or approximate implementation.

4 A weaker version of this condition, based on the strict lower contour sets, first surfaced in
Cabrales and Serrano [8] under the name weak quasimonotonicity; see also its corrigendum, posted at
http://www.econ.brown.edu/faculty/serrano/pdfs/2011GEB73-corrigendum.pdf.

5 Theorem 2 assumes at least three agents and three additional conditions, “strong no worst alternative,” “minimal
conflict-of-interests” and “responsiveness” (See definitions in Section 6 below).
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A comparison between Maskin monotonicity and uniform monotonicity is instructive. Our uni-
form monotonicity requires the lower contour sets to be nested across states “uniformly” over all
outcomes in the range of the SCC. This setwise definition of monotonicity exhibits a clear con-
trast with Maskin monotonicity, which is a “pointwise” condition, in the sense that it requires the
nestedness of the lower contour sets across states at any fixed outcome in the range of the SCC
(see Subsection 4.1). Uniform monotonicity is logically weaker than Maskin monotonicity, and it
is likely to be much weaker if the SCC contains many values in its range. However, both become
equivalent in the case of SCFs. We also construct an example in which an SCC is rationalizably
implementable by a finite mechanism, while it violates Maskin monotonicity at almost any out-
come in the range of the SCC. In this sense, the SCC in the example is “very far from” being
Nash implementable. Of course, as expected from our necessity result, we confirm that uniform
monotonicity is satisfied for this SCC (Lemma 1).

Thus, rationalizable implementation is generally quite different from Nash implementation, and
their alleged resemblance in BMT arose as an artifact of the assumption that only SCFs were
being considered. This allows us to conclude that the design of economic institutions that rely on
agents as best-responders, but which drop the rational expectations assumption, is possible for a
significantly wider class of socially desirable rules.

In drawing that landscape of possibilities, we have relied on a canonical mechanism that heavily
exhibits the violation of rational expectations. The mechanism features a novel use of a modulo
game. In it, the election of a king is conducted, and the task of the king is to dictate the outcome.
However, agents have different beliefs about who the elected king will be; for instance, agent i
hopes for agent (i+1) to be a generous king that will award agent i her most preferred outcome in
the SCC, which implies in particular that agent i can announce that she would implement agent
(i−1)’s most preferred outcome were agent i elected. It turns out that the messages involved, with
the corresponding beliefs, can be made consistent with rationalizability. We remark that we do not
require the existence of Nash equilibrium in the mechanism, unlike BMT; see footnote 15 again.

The rest of the paper is organized as follows. In Section 2, we introduce the general notation for
the paper. Section 3 introduces rationalizability as our solution concept and defines the concept
of rationalizable implementation. In Section 4, we propose and discuss uniform monotonicity, and
show it to be necessary for rationalizable implementation. Section 5 illustrates by an example the
conditions for rationalizable implementation and Nash implementation. In Section 6, we propose
sufficient conditions for full implementation in rationalizable strategies, and provide a sketch of
the proof to highlight the intuition behind our mechanism. Section 7 concludes. In the online
companion, we provide the proof of a claim (omitted from the main body of the paper), discuss the
ordinal approach to rationalizable implementation as well as the role of finite mechanisms, extend
our results to the case of weak implementation, and evaluate the roles of the additional sufficient
conditions used.

2. Preliminaries. Let N = {1, . . . , n} denote the finite set of agents and Θ be the finite
set of states. It is assumed that the underlying state θ ∈ Θ is common knowledge among the
agents. Let A denote the set of social alternatives, which are assumed to be independent of the
information state. We shall assume that A is countable, and denote by ∆(A) the set of probability
distributions over A.6 Note that ∆(A) has a countable support because A is countable. For any
arbitrary set X (countable or not), we denote by ∆(X) the set of all Borel-measurable probability
distributions over X endowed with the weak-* topology, and by ∆∗(X) its subset of distributions
with countable support. Agent i’s state dependent von Neumann-Morgenstern utility function is

6 It is easy to see that one can extend our arguments to a separable metric space of alternatives, focusing on its
countable dense subset.
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denoted ui : ∆(A)×Θ→ R. We can now define an environment as E = (A,Θ, (ui)i∈N), which is
implicitly understood to be common knowledge among the agents.

A (stochastic) social choice correspondence F : Θ⇒∆(A) is a mapping from Θ to a nonempty
compact subset of ∆(A).7 The mapping F is called a social choice function if it is a single-valued
social choice correspondence. In this case, we denote it by f : Θ→∆(A). We henceforth use the
acronyms SCC and SCF for both objects, respectively.

A mechanism (or game form) Γ = ((Mi)i∈N , g) describes a nonempty message space Mi for each
agent i∈N and an outcome function g :M →∆(A) where M =M1× · · ·×Mn.

3. Implementation in Rationalizable Strategies. We adopt correlated rationalizability,
allowing the agents’ beliefs to be correlated, as a solution concept and investigate the implications
of implementation in rationalizable strategies. We fix a mechanism Γ = (M,g) and define a message
correspondence profile S = (S1, . . . , Sn), where each Si ∈ 2Mi , and we write S for the collection
of message correspondence profiles. The collection S is a lattice with the natural ordering of set
inclusion: S ≤ S′ if Si ⊆ S

′
i for all i ∈N . The largest element is S̄ = (M1, . . . ,Mn). The smallest

element is S = (∅, . . . ,∅).
We define an operator bθ : S → S to iteratively eliminate never best responses with bθ =

(bθ1, . . . , b
θ
n) and bθi is now defined as:

bθi (S)≡

mi ∈Mi

∣∣∣∣∣∣
∃λi ∈∆∗(M−i) such that
(1)λi(m−i)> 0⇒mj ∈ Sj ∀j 6= i;
(2)mi ∈ arg maxm′i

∑
m−i

λi(m−i)ui(g(m′i,m−i);θ)


Recall that ∆∗(M−i) denotes the set of all Borel-measurable probability distributions over M−i

with countable support, endowed with the weak-* topology. Here we argue how we obtain ∆∗(M−i).
We define the weak-* topology on M as follows: mk→m as k→∞ if g(mk) converges to g(m)
pointwise. Since the set of lotteries ∆(A) has a countable dense subset, we can define an equivalence
class on M such that for any m,m

′ ∈M , we say that m ∼m′ if the closest lottery to g(m) is
equivalent to the closest lottery to g(m

′
) within the countable dense subset of ∆(A). Since expected

utility is continuous on ∆(A), this equivalence class on M can be taken and not affect the agents’
behavior. Therefore, we can assume without loss of generality that the agents’ beliefs have a
countable support.

Observe that bθ is increasing by definition: i.e., S ≤ S′⇒ bθ(S)≤ bθ(S′). By Tarski’s fixed point
theorem, there is a largest fixed point of bθ, which we label SΓ(θ). Thus, (i) bθ(SΓ(θ)) = SΓ(θ) and
(ii) bθ(S) = S⇒ S ≤ SΓ(θ). We can also construct the fixed point SΓ(θ) by starting with S̄ – the
largest element of the lattice – and iteratively applying the operator bθ. If the message sets are
finite, we have

S
Γ(θ)
i ≡

⋂
k≥1

bθi

([
bθ
]k

(S̄)
)

In this case, the solution coincides with iterated deletion of strictly dominated strategies. But
because the mechanism Γ may be infinite, transfinite induction may be necessary to reach the fixed
point. It is useful to define

S
Γ(θ)
i,k ≡ bθi

([
bθ
]k−1

(S̄)
)
,

7 The compact-valuedness of the SCC is used in our sufficiency results. We note, for instance, that it is consistent
with the environment in Mezzetti and Renou [17], who consider Nash implementation in terms of the support of the
equilibrium, with finite A and deterministic SCCs. In their footnote 4 (p. 2360), they argue that their results extend
to the case in which A is a separable metric space and the SCC maps Θ into a countable dense subset of A.
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using transfinite induction if necessary. Thus, S
Γ(θ)
i is the set of messages surviving (transfinite)

iterated deletion of never best responses of agent i. We refer the reader to Lipman [14] for the
formal treatment.

This is the central definition of implementability that we use in this paper:

Definition 1 (Full Rationalizable Implementation). An SCC F is fully implementable in
rationalizable strategies if there exists a mechanism Γ = (M,g) such that for each θ ∈Θ,⋃

m∈SΓ(θ)

{g(m)}= F (θ).

Remark: This is the definition of implementability that Maskin [15] adopts for Nash implemen-
tation. We believe that this is the right paradigm if we want to compare the permissiveness of
Nash implementation theory versus a theory based on rationalizability. However, we also consider
a weaker notion of implementation: an SCC F is weakly implementable in rationalizable strategies
if there exists a mechanism Γ = (M,g) such that for each θ ∈ Θ, we have (i) SΓ(θ) 6= ∅ and (ii)
g(m) ∈ F (θ) for each m ∈ SΓ(θ). The reader is referred to Section A.4 of the online companion for
the details of the analysis in this case.

4. Uniform Monotonicity. In this section, we introduce a central condition to our results,
which we term uniform monotonicity. We motivate it by comparing it to Maskin monotonicity,
and we later show that uniform monotonicity is necessary for rationalizable implementation.

For the domain of complete information environments, Maskin [15] proposes a monotonicity
condition for Nash implementation where the set of Nash equilibrium outcomes is required to
coincide with the SCC. This condition is often called Maskin monotonicity.

Definition 2. An SCC F satisfies Maskin monotonicity if, for any states θ, θ
′ ∈ Θ and any

a∈ F (θ), if
ui(a, θ)≥ ui(z, θ)⇒ ui(a, θ

′
)≥ ui(z, θ

′
) ∀i∈N, ∀z ∈∆(A),

then a∈ F (θ
′
).

The formal definition of uniform monotonicity is now given.

Definition 3. An SCC F satisfies uniform monotonicity if, for every pair of states θ, θ
′ ∈Θ,

if
ui(a;θ)≥ ui(z;θ)⇒ ui(a;θ

′
)≥ ui(z;θ

′
) ∀a∈ F (θ), ∀i∈N, ∀z ∈∆(A),

then F (θ)⊆ F (θ
′
).

Remark: When we consider SCFs, F (θ) becomes a singleton set. Therefore, in this case, the
condition just defined reduces to Maskin monotonicity.

4.1. Intuition and Examples. The comparison between Maskin monotonicity and uniform
monotonicity is instructive. Maskin monotonicity always implies uniform monotonicity. The former
checks for the “pointwise” inclusion, at an alternative a∈ F (θ), of the lower contour sets of agents’
preferences in state θ into those in θ

′
, in order to determine whether that same alternative a should

still remain in F (θ
′
). The latter takes the entire set of alternatives F (θ) and checks “uniformly”

whether, for each agent and a ∈ F (θ), his lower contour set at a in θ is contained in the lower
contour set of a at θ

′
, in order to determine that all outcomes in F (θ) should still be in F (θ

′
). In

other words, for an outcome a ∈ F (θ) to fall out of the SCC at θ
′

a preference reversal involving
outcome a and another outcome b∈∆(A) is required if the SCC is Maskin monotonic. If the SCC
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x1

x2

O

ui(ai;θ
′
) = const

ui(bi;θ
′
) = const

ui(ai;θ) = const

bi1

bi2ai1

ai2
ai

bi

Figure 1. The Permissiveness of Uniform Monotonicity

is uniformly monotonic, for a ∈ F (θ) and a /∈ F (θ
′
) to happen, all that is required is a preference

reversal involving some pair x ∈ F (θ) and y ∈∆(A) and, importantly, x need not be the same as

a. In this sense, uniform monotonicity is likely to be extremely weak in many settings because

such “uniform inclusions” of lower contour sets will just be impossible, and the condition will

be vacuously satisfied: for example, in a standard convex exchange economy (before extending

it to expected utility preferences), if an SCC contains outcomes in which each agent is assigned

bundles on different indifference curves (say ai and bi), it will generally be very difficult that the

indifference curve through ai at θ be nested into the one through the same bundle at θ
′
, and at the

same time, that the same nestedness happens for the indifference curves through bundle bi. The

reader is referred to Figure 1 for an illustration of this difficulty. In the figure, one can see that the

nestedness of the lower contour sets at ai from θ to θ
′

is satisfied, whereas the nestedness of the

lower contour sets at bi from θ to θ
′

is violated.

The same logic applies if one uses the probability simplex of lotteries over alternatives. With

expected utility, the indifference map under any state consists of parallel straight lines. Maskin

monotonicity is a trivial condition at points in the interior of the simplex, as the lower contour

sets at any point are never nested (this was the key insight behind the very permissive results of

virtual implementation (Abreu and Sen [3], Matsushima [16]), for instance). Thus, to make the

argument of the relative permissiveness of uniform monotonicity, one should consider SCC’s whose

outcomes are at the boundaries of the simplex. Again, it will not be generally easy to have that

all the lower contour sets at multiple boundary points in the simplex at state θ be nested into the

corresponding lower contour sets at θ
′
.

This is not to say that uniform monotonicity is universally satisfied by all SCCs. Indeed, some

SCCs may violate it. For instance, consider the egalitarian-equivalent allocation correspondence

(henceforth, the EEA rule) in an exchange economy with continuous, convex, and strictly mono-

tone preferences (define feasible allocations with equality between total consumption and aggregate
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endowment).8 Pazner and Schmeidler [19] originally propose such an allocation rule and character-
ize it as the subset of feasible allocations for each of which there is a “reference” bundle on the ray
that goes from the origin to the aggregate endowment vector such that each agent is indifferent
between his assigned bundle and the reference bundle. Given the assumptions we imposed on the
economy, the EEA rule is always nonempty, as the equal-division rule is egalitarian-equivalent.
First we confirm that the EEA rule violates Maskin monotonicity. Let aθ be an allocation specified
by the EEA rule in state θ. Even if the nestedness of lower contour sets at aθ across states is
satisfied, as long as an agent’s indifference curves at aθ are not identical between two states, the
original allocation aθ no longer remains egalitarian-equivalent in the new state. Second, we argue
that the EEA rule even violates uniform monotonicity (recall that uniform monotonicity is logi-
cally weaker than Maskin monotonicity). For the sake of expositional simplicity, consider the case
where there are two agents and two commodities, each with the same aggregate amount. Assume
further that agents have different Cobb-Douglas utility functions so that the contract curve (i.e.,
the set of Pareto efficient allocations) always lies either above or below the diagonal of the Edge-
worth box. Then, we know that the equal-division rule is “not” Pareto efficient but as Pazner and
Schmeidler [19] show, there is a unique egalitarian equivalent allocation that is Pareto efficient.
This implies that the EEA rule is genuinely a multi-valued correspondence consisting of these two
allocations. Suppose the nestedness of the lower contour sets across states “over both outcomes in
the EEA rule” needed for uniform monotonicity is satisfied. Note that the equal-division allocation
continues to be egalitarian equivalent in the new state trivially. Let z̄θ be the reference bundle that
corresponds to the unique Pareto efficient and egalitarian-equivalent allocation in state θ. In order
for uniform monotonicity to hold, one must have that, given the reference bundle z̄θ′ , all agents’
indifference curves through the assigned bundle in the new state θ

′
must continue to intersect at z̄θ′ .

However, this cannot be guaranteed by the monotonic transformation of preferences we have for
the hypothesis of uniform monotonicity. Therefore, the EEA rule violates uniform monotonicity.9

4.2. Necessity for Rationalizable Implementation. We proceed to state and prove our
first result, which identifies a necessary condition for rationalizable implementation10:

Theorem 1. If an SCC F is fully implementable in rationalizable strategies, it satisfies uniform
monotonicity.

Proof : Suppose F is fully implementable in rationalizable strategies by a mechanism Γ = (M,g).
Fix two states θ, θ

′ ∈Θ satisfying the following property:

ui(a;θ)≥ ui(z;θ)⇒ ui(a;θ
′
)≥ ui(z;θ

′
) ∀a∈ F (θ), ∀i∈N, ∀z ∈∆(A) (∗)

8 An allocation (xi)i∈N is said to be egalitarian-equivalent if there is a bundle z such that z is indifferent to xi for
every i∈N .

9 Dutta and Vohra [10] show in their Theorem 2 that the EEA rule satisfies a condition of weak positive association,
denoted by WPAh, which is weaker than Maskin monotonicity. Clarifying the connection between WPAh and uniform
monotonicity might be an interesting open question, left for future research.

10 Our first working paper version dates back to May 2016. On necessity, the contents of that version and the current
version are identical. In a related model, using an implementability notion based on Mezzetti and Renou [17], Jain –
draft dated June 2016 – independently proves a necessity result that is close to our result in this section. That draft,
however, contained a sufficiency result that was far from closing the gap between necessary and sufficient conditions.
In a recent draft dated May 2017, Jain [13] produces a sufficiency result that comes closer to closing that gap in his
framework. On the other hand, both drafts by Jain employ for sufficiency a weakening of responsiveness, whereas our
original draft provided a sufficiency result without it. As pointed out to us by Ritesh Jain, that result was relying
on an incorrect proof and we are very grateful to him for suggesting responsiveness as a way to fix it. Hence, the
amended sufficiency result in the current version.
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We first show that SΓ(θ) ⊆ SΓ(θ
′
). Because bθ(SΓ(θ)) = SΓ(θ), SΓ(θ) has the best response property in

state θ. That is, for each i∈N and m∗i ∈ S
Γ(θ)
i , there exists λ

m∗i ,θ
i ∈∆∗(M−i) satisfying the following

two properties: (i) λ
m∗i ,θ
i (m−i) > 0 ⇒ m−i ∈ SΓ(θ)

−i ; and (ii)
∑

m−i
λ
m∗i ,θ
i (m−i)ui(g(m∗i ,m−i);θ) ≥∑

m−i
λ
m∗i ,θ
i (m−i)ui(g(m

′
i,m−i);θ) for each m

′
i ∈Mi.

We want to show that m∗i is also a best response against λ
m∗i ,θ
i in state θ

′
. Since i and m∗i ∈ S

Γ(θ)
i

have been fixed arbitrarily, this will prove that SΓ(θ) has the best-response property in state θ
′

so

that SΓ(θ) ⊆ SΓ(θ
′
).

We focus on the best response property of m∗i summarized by inequality (ii). Due to the construc-

tion of λ
m∗i ,θ
i and the implementability of F , we have that for any m−i ∈M−i with λ

m∗i ,θ
i (m−i)> 0,

g(m∗i ,m−i)∈ F (θ) and ui(g(m∗i ,m−i);θ)≥ ui(g(m
′

i,m−i);θ) for any m
′
i ∈Mi

Thus, using Property (∗), we also have that for any m−i ∈M−i with λ
m∗i ,θ
i (m−i)> 0,

ui(g(m∗i ,m−i);θ
′
)≥ ui(g(m

′

i,m−i);θ
′
) for any m

′
i ∈Mi.

Due to the expected utility property, we also have∑
m−i

λ
m∗i ,θ
i (m−i)ui(g(m∗i ,m−i);θ

′
)≥
∑
m−i

λ
m∗i ,θ
i (m−i)ui(g(m

′

i,m−i);θ
′
) for any m

′
i ∈Mi.

This shows that m∗i is a best response against λ
m∗i ,θ
i in state θ

′
. Since the choice of agent i and

m∗i ∈ S
Γ(θ)
i is arbitrary, we can conclude that SΓ(θ) ⊆ SΓ(θ

′
). Finally, by full implementability, this

implies that

F (θ) =
⋃

m∈SΓ(θ)

{g(m)} ⊆
⋃

m∈SΓ(θ
′
)

{g(m)}= F (θ
′
).

The proof is thus complete. �

5. An Example. In this section, we show by example that rationalizable implementation
can be very different from Nash implementation. We consider the following example. There are
two agents N = {1,2}; two states Θ = {α,β}; and a finite number K of pure outcomes A =
{a1, a2 . . . , aK} where K ≥ 4.11 Assume that it is commonly certain that both agents know the
state, i.e., it is a complete information environment. Agent 1’s utility function is given as follows:
for each k= 1, . . . ,K,

u1(ak, α) = u1(ak, β) =

{
1 +Kε if k=K,

1 + (K − k)ε if k 6=K,

where ε ∈ (0,1). Hence, agent 1 has state-uniform preferences over A and aK is the best outcome
in both states; a1 is the second best outcome in both states; ...; and aK−1 is the worst outcome in
both states for agent 1.

Agent 2’s utility function in state α is defined as follows: for each k= 1, . . . ,K,

u2(ak, α) =

 1 + (K + 1)ε if k=K,
1 +Kε if k= 2,
1 + kε otherwise.

11 This example builds upon the one discussed in the Concluding Remarks section of BMT [5].
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In state β, agent 2’s utility function is defined as follows: for each k= 1, . . . ,K,

u2(ak, β) =

 1 + (K + 1)ε if k=K,
1 if k= 2,

1 + kε otherwise.

Note that aK is the best outcome for agent 2 in both states; a2 is his second best outcome in state
α but it is his worst outcome in state β; and aK−1 is his third best outcome in state α and it is his
second best outcome in state β.

We consider the following SCC F : F (α) = {a1, a2, . . . , aK} and F (β) = {aK}.

Claim 1. For every outcome ak ∈A with ak 6= a2,

ui(ak, α)≥ ui(y,α)⇒ ui(ak, β)≥ ui(y,β) ∀i= {1,2}, ∀y ∈∆(A).

Proof : Since agent 1 has state-uniform preferences, this claim is trivially true for agent 1. Thus,
in what follows, we focus on agent 2. Take any lottery in the lower contour set of ak ∈A \ {a2} in
state α. If that lottery did not contain a2 in its support, it is still in the lower contour set of ak in
state β as no utilities have changed, and if it did contain a2 in its support, since the utility of a2

has decreased, it will also be in the lower contour set at β. This completes the proof. �

Fix ak ∈A\{a2, aK} arbitrarily. If F were to satisfy Maskin monotonicity, we would have ak ∈
F (β), which is not the case. Therefore, we confirm the violation of Maskin monotonicity by the SCC
F at every ak ∈A\{a2, aK}. As is clear from the construction, we can choose K arbitrarily large.
Therefore, the violation of Maskin monotonicity is severe, measured by the number of alternatives
that should remain in the social choice in state β given the relevant nestedness of agents’ preferences
across the two states. In this sense, this correspondence is “very far” from being Maskin monotonic.

Nevertheless, we claim that the SCC F is implementable in rationalizable strategies using a finite
mechanism. Consider the following mechanism Γ = (M,g) where Mi = {m1

i ,m
2
i , . . . ,m

K
i } for each

i= 1,2 and the deterministic outcome function g(·) is given in the table below:

g(m) Agent 2
m1

2 m2
2 m3

2 m4
2 · · · mK−1

2 mK
2

m1
1 a1 a1 aK−2 aK−3 · · · a2 aK−1

m2
1 a2 a1 a1 aK−2 · · · a3 aK−1

m3
1 a3 a2 a1 a1 · · · a4 aK−1

Agent 1 m4
1 a4 a3 a2 a1 · · · a5 aK−1

...
...

...
...

...
. . .

...
...

mK−1
1 a1 aK−2 aK−3 aK−4 · · · a1 aK−1

mK
1 aK−1 aK−1 aK−1 aK−1 · · · aK−1 aK

Claim 2. The SCC F is fully implementable in rationalizable strategies by the mechanism Γ.

Proof : In state α, all messages can be best responses. Therefore, no message can be discarded
via the iterative elimination of never best responses. That is, the set of rationalizable message
profiles SΓ(α) = M . This implies that the set of rationalizable outcomes in state α is F (α) =
{a1, a2, . . . , aK}.

In state β, message mK
2 strictly dominates all other messages, m1

2, . . . ,m
K−1
2 for agent 2. On the

other hand, all messages for agent 1 can be a best response. In the second round of elimination of
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never best responses, mK
1 strictly dominates all other messages m1

1, . . . ,m
K−1
1 for agent 1. Thus,

we have SΓ(β) = {(mK
1 ,m

K
2 )}. This implies that we have F (β) = {aK} as the unique rationalizable

outcome in state β. This completes the proof. �

BMT [5] show in their Proposition 1 that strict Maskin monotonicity is necessary for implemen-
tation in rationalizable strategies under complete information. It follows from the previous example
that this crucially relies on the assumption that only SCFs were considered in BMT’s main result.
More specifically, we show that, while the failure of Maskin monotonicity is severe, implementation
in rationalizable strategies is still possible by a finite mechanism. For completeness, we provide the
following lemma.

Lemma 1. The SCC F satisfies uniform monotonicity.

Proof : Since agent 1 has state-uniform preferences, we only focus on agent 2 in the following
argument. First, we set θ = α and θ

′
= β in the definition of uniform monotonicity. We know

that F (α) = {a1, . . . , aK} and by Claim 1, for any a ∈ F (α)\{a2, aK} and i ∈ {1,2}, we have the
corresponding monotonic transformation from α to β. For a2 ∈ F (α) and a3 ∈A, however, we have

u2(a2;α)>u2(a3;α) and u2(a2;β)<u2(a3;β).

Therefore, the condition needed for the monotonic transformation from α to β under uniform
monotonicity is not satisfied. Hence, in this case, uniform monotonicity imposes no conditions on
SCCs.

Second, we set θ = β and θ
′
= α in the definition of uniform monotonicity. Since F (β) = {aK}

and aK is the best outcome for agent 2 in both states, we have that for any y ∈∆(A),

u2(aK ;β)≥ u2(y;β)⇒ u2(aK ;α)≥ u2(y;α).

In this case, uniform monotonicity implies that aK ∈ F (α), which is indeed the case. Thus, F
satisfies uniform monotonicity. �

6. Sufficient Conditions for Full Implementation in Rationalizable Strategies. We
turn in this section to our general sufficiency result. Before that, we introduce three additional
conditions, the first of which follows immediately.

Definition 4. An SCC F satisfies the strong no-worst-alternative condition (henceforth,
SNWA) if, for each θ ∈Θ and i∈N , there exists zθi ∈∆(A) such that, for each a∈ F (θ),

ui(a;θ)>ui(z
θ
i ;θ).

Remark: This condition is introduced by Cabrales and Serrano [8]. In words, SNWA says that
the SCC never assign the worst outcome to any agent at any state. BMT [5] use its SCF-version
and call it the no-worst-alternative condition (NWA).

Lemma 2. If an SCC F satisfies SNWA, then for each i∈N , there exists a function zi : Θ×Θ→
∆(A) such that for all θ, θ

′ ∈Θ:

ui(a;θ
′
)>ui(zi(θ, θ

′
);θ
′
) ∀a∈ F (θ

′
)

and whenever θ 6= θ
′
,

ui(zi(θ, θ
′
);θ)>ui(zi(θ

′
, θ
′
);θ).
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Proof : The proof is an appropriate extension of Lemma 2 of BMT [5]. For any agent i∈N , by
SNWA, we are given the set of lotteries {zθi }θ∈Θ. Then, define the average lottery as

zi ≡
1

|Θ|
∑
θ∈Θ

zθi .

Fix i∈N . For all θ
′ ∈Θ, we define

zi(θ
′
, θ
′
)≡ (1− ε)zθ

′

i + εzi,

where ε∈ (0,1). For all θ, θ
′ ∈Θ with θ 6= θ

′
:

zi(θ, θ
′
)≡ (1− ε)zθ

′

i +
ε

|Θ|

∑
θ̂ 6=θ

zθ̂i + a

 ,

where a ∈ F (θ). By SNWA and the finiteness of Θ, we can choose ε ∈ (0,1) sufficiently small so
that ui(a

′
;θ
′
)>ui(zi(θ, θ

′
);θ
′
) for all θ, θ

′ ∈Θ and a
′ ∈ F (θ

′
). This establishes the first inequality.

Observe that the only difference between zi(θ
′
, θ
′
) and zi(θ, θ

′
) lies in the fact that the lottery zθi

is replaced by some lottery a∈ F (θ). But by SNWA, this is clearly increasing the expected utility
of agent i in state θ, and hence we have that for all θ, θ

′ ∈Θ with θ 6= θ
′
:

ui(zi(θ, θ
′
);θ)>ui(zi(θ

′
, θ
′
);θ).

This establishes the second inequality. This completes the proof. �

We introduce next a second additional condition for the sufficiency result:

Definition 5. An SCC F satisfies the minimal conflict-of-interests condition (henceforth,
MCI) if there do not exist θ, θ

′ ∈ Θ with θ 6= θ
′

and a ∈ ∆(A) such that |F (θ
′
)| ≥ 2 and a ∈

arg maxb∈F (θ
′
) ui(b;θ) for all i∈N .

Remark: Note that MCI becomes a vacuous constraint when we consider SCFs. As the example
in Section 5 shows, the outcome aK is the best outcome for both agents in state α and F (α) =
{a1, . . . , aK}. Therefore, the SCC F does not satisfy MCI, but it is implementable in rationaliz-
able strategies by a finite mechanism. This implies that MCI is not necessary for rationalizable
implementation. The same example shows that SNWA is not necessary either, as the SCC violates
SNWA. See also the last section of the online companion for the indispensability of MCI for our
sufficiency result.

Next we introduce a natural extension of the responsiveness condition used by BMT [5] to the
case of SCCs.

Definition 6. An SCC F is responsive if there do not exist two distinct states θ, θ
′ ∈Θ such that

F (θ)⊆ F (θ
′
).

Remark: Responsiveness is not necessary for rationalizable implementation either. For instance,
while the SCC F in the example of Section 5 is not responsive (i.e., F (β)⊆ F (α)), F is rationalizably
implementable by a finite mechanism. We discuss the role of this condition further in the last
section of the online companion.

For the sufficiency result we establish below, we propose the following mechanism Γ = (M,g):
each agent i sends a message mi = (m1

i ,m
2
i ,m

3
i ,m

4
i ,m

5
i ,m

6
i ), where
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• m1
i ∈Θ, i.e., a state;

• m2
i = {m2

i [θ]}θ∈Θ where m2
i [θ] ∈ F (θ), i.e., a state-dependent menu of socially desirable alter-

natives, understood as a recommendation to the designer;
• m3

i = {(m3
i [θ,1],m3

i [θ,2])}θ∈Θ wherem3
i [θ,1]∈∆(A) andm3

i [θ,2]∈ F (θ), i.e., a state-dependent
pair of alternatives, one of them in the SCC, understood as potential arguments for a challenge to
the designer;
• m4

i ∈∆(A), i.e., a state-independent alternative, also understood as a challenge to the designer;
• m5

i ∈N , i.e., a number chosen from {1, . . . , n}, understood as a vote for some person to be the
king;
• and m6

i ∈N, i.e., a positive integer.
The outcome function g :M →∆(A) is defined as follows: for each m∈M :

Rule 1. Consensus implements the recommendation made by the elected king: If there
exists θ

′ ∈Θ such that m1
i = θ

′
and m6

i = 1 for all i∈N , then g(m) =m2
t [θ
′
] where t= (

∑
j∈Nm

5
j)

(mod n+ 1).

Rule 2. An odd man out: If there exist θ
′ ∈Θ and i ∈N such that [a] m1

j = θ
′

and m6
j = 1 for

all j 6= i, and [b] either m6
i > 1 or m1

i 6= θ
′
, then the following subrules apply:

Rule 2-1. A nongreedy odd man out is heard in his challenge, although some bad
outcomes are also implemented in the appeal process: If ui(m

2
t [θ
′
];θ
′
)≥ ui(m3

i [θ
′
,1];θ

′
) and

m2
t [θ
′
] =m3

i [θ
′
,2] where t= (

∑
j∈Nm

5
j) (mod n+ 1), then

g(m) =

{
m3
i [θ
′
,1] with probability m6

i /(m
6
i + 1)

zi(θ
′
, θ
′
) with probability 1/(m6

i + 1)

Rule 2-2. A greedy odd man out is not heard in his challenge, although some bad
outcomes are also implemented in the appeal process: Otherwise,

g(m) =

{
m2
t [θ
′
] with probability m6

i /(m
6
i + 1)

zi(θ
′
, θ
′
) with probability 1/(m6

i + 1)

where t= (
∑

j∈Nm
5
j) (mod n+ 1).

Rule 3. Stronger disagreements lead to the integer game, implementing potential
disarray in the appeal/challenge process: In all other cases,

g(m) =



m4
1 with probability

m6
1

n(m6
1+1)

m4
2 with probability

m6
2

n(m6
2+1)

...
...

m4
n with probability m6

n
n(m6

n+1)

z with the remaining probability,

where

z =
1

n

∑
i∈N

zi and zi =
1

|Θ|
∑
θ∈Θ

zθi .

We are finally ready to state the general sufficiency result for full implementation in rationalizable
strategies.
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Theorem 2. Suppose that there are at least three agents (n≥ 3). If an SCC F satisfies uniform
monotonicity, SNWA, MCI, and responsiveness, it is fully implementable in rationalizable strate-
gies.

Proof : We use the mechanism Γ = (M,g) constructed above. The proof consists of Steps 1
through 4. Before going into the details of the proof, we briefly sketch its basic logic. We discuss
the properties of our mechanism after providing the formal proof.

In Step 1, we show that any rationalizable message mi involves m6
i = 1, that is, there must be

at least consensus in the integer chosen. If this were not the case, either Rule 2 (odd man out) or
Rule 3 (stronger disagreements) is triggered with probability one. By choosing the third and fourth
components of the message appropriately, it is strictly better for agent i to announce an integer
even higher than m6

i , which contradicts the hypothesis that mi is rationalizable.
In Step 2, we prove that any outcome in the range of the SCC can be supported by a rationalizable

message profile. Let θ be the true state and fix a ∈ F (θ) arbitrarily. We construct the following
message profile m: m1

i = θ; m5
i = 1; and m6

i = 1 for every i ∈N and m2
1[θ] = a. Note first that no

agent has an incentive to become the odd man out and induce Rule 2 by unilaterally deviating
from m. Thus, the specification of the third and fourth components of the messages do not matter.
Then, m induces Rule 1 with probability one and g(m) = a where agent 1 is the king, the winner
of the modulo game. The novelty of the argument is that we can make m1 rationalizable because
agent 1 believes that agent 2 is a “generous king” so as to choose agent 1’s best outcome from F (θ).
Similarly, we can also make m2 rationalizable because agent 2 believes that agent 3 is a “generous
king” so as to choose agent 2’s best outcome from F (θ). We extend this argument to all agents so
that we can make m rationalizable.

In Step 3, we show that every agent believes that all rationalizable message profiles induce Rule
1 (consensus also in the announced state) with probability one. Suppose, by way of contradiction,
that agent i believes with positive probability that Rule 2 (odd man out) or Rule 3 (stronger
disagreements) is triggered. By choosing the third and fourth components of the message appro-
priately and an integer in its sixth component sufficiently high, agent i is able to find an even
better response against his belief. This is a contradiction. Step 3 implies that one can partition the
set of rationalizable message profiles into separate components, θ, θ

′
, θ
′′
, . . .. For instance, in the θ

′

component, this is the announced state by each agent in the first item of their messages, which also
determines the event to which each of them assigns probability 1. That is, in that component, each
agent i believes that all the others are using strategies of the form (θ

′
, ·, ·, ·, ·,1) with probability 1.

In Step 4, for any θ 6= θ
′
, we prove that if m is a message profile such that mj = (θ

′
, ·, ·, ·, ·,1) for

each j ∈N , then m is “not” a rationalizable profile in state θ. Suppose by way of contradiction that
mi = (θ

′
, ·, ·, ·, ·,1) is rationalizable in state θ. By Step 3, we also have a rationalizable message profile

m where mj = (θ
′
, ·, ·, ·, ·,1) for each j ∈N . First, using the features of the canonical mechanism, a

technical claim –Claim 3– shows that one can modify m slightly in order to support any outcome
in the range of the social choice correspondence. After that claim, if in state θ there were a
rationalizable message profile whose outcome is not in F (θ) where all agents are coordinating in
a deception in which they are reporting state θ

′
, given previous steps in the proof, the outcome

must be actually in F (θ
′
). By responsiveness, we observe F (θ

′
) is not a subset of F (θ). Then,

uniform monotonicity would allow us to use the preference reversal for at least an agent and at least
an alternative a∗ ∈ F (θ

′
). By the technical claim, this should also be supported by rationalizable

messages, but, using MCI, we show it cannot. It follows that, if mj = (θ
′
, ·, ·, ·, ·,1)∈ SΓ(θ)

j for each

j ∈N , we must have θ
′
= θ. This means that it is commonly certain that all agents announce the

true state θ under rationalizability. This establishes that SΓ(θ) ⊆ F (θ), which completes the proof.

Now, we proceed to the formal proof. Throughout, we denote the true state by θ
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Step 1: mi ∈ SΓ(θ)
i ⇒m6

i = 1.

Proof of Step 1: Let mi = (m1
i ,m

2
i ,m

3
i ,m

4
i ,m

5
i ,m

6
i ) ∈ S

Γ(θ)
i . Suppose by way of contradiction

that m6
i > 1. Then, for any profile of messages m−i that agent i’s opponents may play, (mi,m−i)

will trigger either Rule 2 or Rule 3. We can partition the message profiles of all agents but i as
follows:

M 2
−i ≡

{
m−i ∈M−i

∣∣ ∃θ′ ∈Θ s.t. m1
j = θ

′
,m2

j [θ
′
]∈ F (θ

′
), and m6

j = 1 ∀j 6= i
}

denotes the set of messages of all agents but i in which Rule 2 is triggered, and

M 3
−i ≡M−i\M 2

−i

denotes the set of messages of all agents but i in which Rule 3 is triggered.
Suppose first that agent i has a belief λi ∈∆∗(M−i) under which Rule 3 is triggered with positive

probability, so that
∑

m−i∈M3
−i
λi(m−i)> 0. If ui(m

4
i ;θ)>ui(z

θ
i ;θ), we define m̂i as the same as mi

except that m̂6
i is chosen to be larger than m6

i . In doing so, agent i decreases the probability that
z is chosen in Rule 3.

Note that, under Rule 3, by choosing an appropriate lottery, each agent has a strict incentive to
reduce the probability that z occurs. To see this, fix θ ∈Θ and a∈ F (θ). Then, define

ẑi(θ)≡
1

|Θ|
∑
θ̂ 6=θ

zθ̂i +
1

|Θ|
a.

By SNWA, we obtain
ui(ẑi(θ);θ)>ui(zi;θ).

Define

z∗i (θ)≡
1

n

∑
j 6=i

zj +
1

n
ẑi(θ).

Since ui(ẑi(θ);θ)>ui(zi;θ), we have

ui(z
∗
i (θ);θ)>ui(z;θ).

So, conditional on Rule 3, we have∑
m−i∈M3

−i

λi(m−i)ui(g(m̂i,m−i);θ)>
∑

m−i∈M3
−i

λi(m−i)ui(g(mi,m−i);θ).

If ui(m
4
i ;θ)≤ ui(zθi ;θ), we define m̂i as the same as mi except that m̂4

i ∈ F (θ) and m̂6
i is chosen to

be larger than m6
i . Similarly, conditional on Rule 3, we obtain the same inequality.

Now suppose that agent i believes that Rule 2 will be triggered with positive probability, so that∑
m−i∈M2

−i
λi(m−i)> 0. We again consider a deviation from mi to m̂i and observe that the choice

of m̂4
i does not affect the outcome of the mechanism conditional on Rule 2.

First, assume that m1
j = θ

′ 6= θ for each j 6= i. Suppose ui(m
3
i [θ
′
,1];θ) ≥ ui(zi(θ, θ

′
);θ). In this

case, agent i could change mi to m̂i by having m̂6
i larger than m6

i and keeping mi unchanged
otherwise. Since ui(m

3
i [θ
′
,1];θ)≥ ui(zi(θ, θ

′
);θ)>ui(zi(θ

′
, θ
′
);θ), we have that conditional on Rule

2, ∑
m−i∈M2

−i

λi(m−i)ui(g(m̂i,m−i);θ)>
∑

m−i∈M2
−i

λi(m−i)ui(g(mi,m−i);θ).
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Otherwise, suppose that ui(m
3
i [θ
′
,1];θ) < ui(zi(θ, θ

′
);θ). In this case, agent i could change mi

to m̂i by having m̂3
i [θ
′
,1] = zi(θ, θ

′
), m̂6

i > m6
i > 1, and keeping mi unchanged otherwise. Since

ui(zi(θ, θ
′
);θ)>ui(zi(θ

′
, θ
′
);θ), we have that, conditional on Rule 2,∑

m−i∈M2
−i

λi(m−i)ui(g(m̂i,m−i);θ)>
∑

m−i∈M2
−i

λi(m−i)ui(g(mi,m−i);θ).

Second, assume that m1
j = θ for each j 6= i. We choose t∗ 6= i and m∗−i ∈ supp(λi(·)) such that for

each j 6= i and m−i ∈ supp(λi(·)),

ui(m
∗2
t∗ [θ];θ)≥ ui(m2

j [θ];θ).

Then, in this case, agent i could change mi to m̂i by having m̂3
i [θ,1] =m∗2t∗ [θ] and m̂6

i >m6
i > 1,

keeping mi unchanged otherwise. Since ui(m
∗2
t∗ [θ];θ)> ui(zi(θ, θ);θ), we have that, conditional on

Rule 2, ∑
m−i∈M2

−i

λi(m−i)ui(g(m̂i,m−i);θ)>
∑

m−i∈M2
−i

λi(m−i)ui(g(mi,m−i);θ).

It follows that, in all cases, these choices of m̂i strictly improve the expected payoff of agent i if
either Rule 2 or Rule 3 is triggered. This implies that mi is never a best response to any belief λi,
which contradicts our hypothesis that mi ∈ SΓ(θ)

i . �

Step 2: For any θ ∈Θ and a∈ F (θ), there exists m∗ ∈ SΓ(θ) such that g(m∗) = a.

Proof of Step 2: Fix θ ∈ Θ as the true state, and fix a ∈ F (θ). Define m∗1 =
(θ,m∗21 ,m

∗3
1 ,m

∗4
1 ,1,1), where m∗21 [θ] = a. For each j ∈ {2, . . . , n}, define m∗j = (θ,m∗2j ,m

∗3
j ,m

∗4
j ,1,1),

where m∗2j [θ] = aj−1(θ), which denotes one of the maximizers of uj−1(·;θ) within all the outcomes
in F (θ) – recall that F is compact-valued and uj−1(·;θ) is continuous in probability. Then, the
constructed message profile m∗ induces Rule 1 and agent 1 becomes the winner of the modulo
game. We thus have g(m∗) = a by construction. What remains to show is that m∗ ∈ SΓ(θ).

By construction of the mechanism, Rule 3 cannot be triggered by any unilateral deviation from
Rule 1. So, the specification of m∗4i does not affect our argument. Moreover, also by construction
of the mechanism, no agent has an incentive to induce Rule 2 with a unilateral deviation from a
truthful profile under Rule 1. So, effectively, the specification of m∗3i does not affect our argument
either.

We first show that m∗1 can be made a best response to some belief. Define λ∗1 ∈ ∆∗(M−1) as
follows: for any m−1 ∈M−1, if λ∗1(m−1)> 0,

m1
j = θ;

m2
j [θ] = aj−1(θ);

m5
j =

{
2 if j = 2,
1 otherwise;

m6
j = 1.

for all j ∈ {2, . . . , n}. Given this belief λ∗1 and m∗1, agent 2 becomes the winner of the modulo game
so that the outcome a1(θ), which is the best one for agent 1, is generated. Therefore, m∗1 is a best
response to λ∗1 so that it survives the first round of deletion of never best responses.

We next show that the support of λ∗1 is rationalizable. Assume j 6= 1. Define

m̄j =

{
(θ, m̄2

2, m̄
3
2, m̄

4
2,2,1) if j = 2,

(θ, m̄2
j , m̄

3
j , m̄

4
j ,1,1) otherwise.
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where m̄2
j [θ] = aj−1(θ). Define λ̄2 ∈∆∗(M−2) as follows: for any m−2 ∈M−2, if λ̄2(m−2)> 0,

m1
k = θ;

m2
k[θ] = ak−1(θ);

m5
k =

{
2 if k= 1,
1 otherwise;

m6
k = 1.

for all k 6= 2. Then, given this belief λ̄2 and m̄2, agent 3 becomes the winner of the modulo game
so that the outcome a2(θ), which is the best one for agent 2, is realized. Therefore, m̄2 is a best
response to λ̄2 so that it survives the first round of deletion of never best responses. Assume
j ∈N\{1,2}. Define λ̄j ∈∆∗(M−j) as follows: for any m−j ∈M−j, if λ̄j(m−j)> 0,

m1
k = θ;

m2
k[θ] =

{
an(θ) if k= 1,
ak−1(θ) otherwise;

m5
k =

{
j+ 1 if k= 1

1 otherwise;
m6
k = 1,

for all k 6= j. Assume j < n. Then, given the belief λ̄j and m̄j, agent j + 1 becomes the winner of
the modulo game so that the outcome aj(θ), which is the best one for agent j, is realized. Assume,
on the other hand, that j = n. Then, given the belief λ̄j and m̄j, agent 1 becomes the winner of the
modulo game so that the outcome an(θ), which is the best one for agent n, is realized. Therefore,
m̄j is a best response to λ̄j so that it survives the first round of deletion of never best responses.
We can repeat this argument iteratively so that m∗1 survives the iterative deletion of never best
responses. Hence, m∗1 ∈ S

Γ(θ)
i .

Third, we shall show that, for each j 6= 1, m∗j can be made a best response to some belief. For
each j ∈ {2, . . . , n}, define λ∗j ∈∆∗(M−j) with support as follows:

m1
k = θ;

m2
k[θ] =

{
an(θ) if k= 1,
ak−1(θ) otherwise;

m5
k =

{
j+ 1 if k= 1,

1 otherwise;
m6
k = 1,

for all k 6= j. Given this belief λ∗j and m∗j , agent j+ 1 becomes the winner of the modulo game so
that the outcome aj(θ), which is the best one for agent j, is realized. Therefore, for each j 6= 1, m∗j
is a best response to λ∗j so that it survives the first round of deletion of never best responses.

Fourth, we will show that the support of λ∗j is rationalizable. Consider m̄1 = (θ, m̄2
1, m̄

3
1, m̄

4
1, j +

1,1), where m̄2
1[θ] = an(θ). Define λ̄1 ∈∆∗(M−1) as follows: for any m−1 ∈M−1, if λ̄1(m−1)> 0,

m1
k = θ;

m2
k[θ] = ak−1(θ);

m5
k =

{
n+ 2− j if k= 2,

1 otherwise;
m6
k = 1,

for all k 6= 1. Given this belief λ̄1 and m̄1, agent 2 becomes the winner of the modulo game so that
the outcome a1(θ), which is the best one for agent 1, is realized. Therefore, m̄1 is a best response
to λ̄1 so that it survives the first round of deletion of never best responses.
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Consider agent k ∈ N\{1, j}. We first assume k < n. Define m̄k = (θ, m̄2
k, m̄

3
k, m̄

4
k,1,1), where

m̄2
k[θ] = ak−1(θ). Define λ̄k ∈∆∗(M−k) as follows: for any m−k ∈M−k, if λ̄k(m−k)> 0,

m1
i = θ;

m2
i [θ] = ai−1(θ);
m6
i = 1,

for all i 6= k and
∑

i 6=km
5
i = n+k−1. Given this belief λ̄k and m̄k, agent k+ 1 becomes the winner

of the modulo game so that the outcome ak(θ), which is the best one for agent k, is realized.
Therefore, m̄k is a best response to λ̄k so that it survives the first round of deletion of never best
responses.

Assume n 6= j. We define m̄n = (θ, m̄2
n, m̄

3
n, m̄

4
n,1,1) and λ̄n ∈∆∗(M−n) as follows: for any m−n ∈

M−n, if λ̄n(m−n)> 0,

m1
i = θ;

m2
i =

{
an(θ) if i= 1
ai−1(θ) otherwise;

m5
i = 1;

m6
i = 1,

for all i 6= n. Given this belief λ̄n and m̄n, agent 1 becomes the winner of the modulo game so that
the outcome an(θ), which is the best for agent n, is realized. Therefore, m̄n is a best response to
λ̄n so that it survives the first round of deletion of never best responses.

We conclude that the support of λ∗j is rationalizable. So, we can repeat this argument iteratively
so that for each j 6= 1, m∗j survives the iterative deletion of never best responses. Therefore, m∗j ∈
S

Γ(θ)
j for each j 6= 1. Since m∗1 ∈ S

Γ(θ)
1 , we obtain m∗ ∈ SΓ(θ). This completes the proof of Step 2. �

Step 3: mi ∈ SΓ(θ)
i ⇒ λi(m−i) = 0 for any profile (mi,m−i) under Rules 2 or 3, where λi ∈∆∗(M−i)

represents the belief held by i to which mi is a best response.

Proof of Step 3: Suppose mi ∈ SΓ(θ)
i . By Step 1, mi has the form of mi = (θ

′
,m2

i ,m
3
i ,m

4
i ,m

5
i ,1)

for some θ
′ ∈ Θ, where the state θ

′
announced by different agents might be different. Given the

message mi, we define the set of messages of the remaining agents which trigger Rule 1, 2, or 3. Let
M 1
−i be the set of m−i ∈M−i such that (mi,m−i) triggers Rule 1 and M 2,i

−i be the set of m−i ∈M−i
such that (mi,m−i) triggers Rule 2 with agent i as the deviating player (odd man out).

We consider a given belief λi of agent i. If
∑

m−i∈M1
−i
λi(m−i) = 0, then Rule 2 or 3 will be

triggered with probability one. Although Rule 2 can now be triggered with a “deviating agent (odd
man out)” being different from i, it is easily checked that a similar argument to that in Step 1
applies so that the message mi cannot be a best reply to λi. So, suppose that

0<
∑

m−i∈M1
−i

λi(m−i)< 1.

For each θ̃ ∈Θ, define

m̂3
i (θ̃) =

{
(m2

j∗ [θ
′
],m3

i [θ
′
,2]) if θ̃= θ

′

m3
i [θ̃] otherwise,

where j∗ = arg maxj∈N ui(m
2
j [θ
′
];θ). Define m̂4

i = arg maxy∈∆(A) ui(y;θ). We set m̂6
i to be an integer

sufficiently large. Define m̂i = (θ
′
,m2

i , m̂
3
i , m̂

4
i ,m

5
i , m̂

6
i ) as i’s alternative message in which we keep
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m1
i = θ

′
,m2

i and m5
i unchanged. Then, as m̂6

i tends to infinity, agent i’s expected utility from
choosing m̂i is approximately at least as high as∑

m−i∈M1
−i∪M

2,i
−i

λi(m−i)ui(g(mi,m−i);θ) +
∑

m−i /∈M1
−i∪M

2,i
−i

λi(m−i)ui(m̂
4
i ;θ),

which is strictly larger than i’s expected payoff from choosing mi. Hence, by choosing m̂6
i large

enough, m̂i is a better response to λi (in words, the loss in Rule 2 can always be offset by a bigger
gain in Rule 3). This is a contradiction.

So, if mi = (θ
′
,m2

i ,m
3
i ,m

4
i ,m

5
i ,1) ∈ SΓ(θ)

i , it follows that agent i must be convinced that each
j 6= i is choosing a message of the form (θ

′
,m2

j ,m
3
j ,m

4
j ,m

5
j ,1) and hence

∑
m−i∈M1

−i
λi(m−i) = 1. �

We introduce an additional piece of notation. For any θ, θ
′ ∈Θ and i∈N , define

S
Γ(θ)
i [θ

′
] =
{
mi ∈ SΓ(θ)

i

∣∣ m1
i = θ

′
and m6

i = 1
}
.

For each i∈N and θ
′ ∈Θ, consider the sets S

Γ(θ)
i [θ

′
]. Now define:

SΓ(θ)[θ
′
] =
∏
i∈N

S
Γ(θ)
i [θ

′
].

We also define
S

Γ(θ)
i =

⋃
θ
′∈Θ

S
Γ(θ)
i [θ

′
].

And, of course,
SΓ(θ) =

∏
i∈N

S
Γ(θ)
i .

Step 4: For all θ 6= θ
′

and for all i∈N , S
Γ(θ)
i [θ

′
] = ∅.

Proof of Step 4: Let θ 6= θ
′
. By contradiction, suppose we have m̄j = (θ

′
, m̄2

j , m̄
3
j , m̄

4
j , m̄

5
j ,1) ∈

S
Γ(θ)
j [θ

′
] for some j ∈N . By Step 3, agent j believes with probability one that Rule 1 is triggered,

implying that for every agent k 6= j, the set S
Γ(θ)
k [θ

′
] is nonempty. Moreover, for any k 6= j, m̄k ∈

S
Γ(θ)
k [θ

′
] implies that it is a best response to λk ∈∆∗(M−k), where the support of this belief consists

of strategies that yield outcomes under Rule 1. That is, every agent k 6= j also believes that Rule
1 will be triggered with probability one.

Take now the profile m̄ = (m̄1, . . . , m̄n) such that m̄k ∈ SΓ(θ)
k [θ

′
] for each k ∈ N . Clearly, by

construction, g(m̄)∈ F (θ
′
). By responsiveness, we observe that F (θ

′
) is not a subset of F (θ).

Therefore, by uniform monotonicity, there exist an agent i ∈ N , an outcome a∗ ∈ F (θ
′
), and

z∗ ∈ ∆(A) such that ui(a
∗;θ
′
) ≥ ui(z∗;θ

′
); and ui(a

∗;θ) < ui(z
∗;θ). We begin with the following

auxiliary claim, whose proof is relegated to the online companion:

Claim 3. If there exists m̄∈ SΓ(θ)[θ
′
], for any a∗ ∈ F (θ

′
), there also exists m∗ ∈ SΓ(θ)[θ

′
] such that

a∗ = g(m∗).

We thus proceed with the proof. By Claim 3, there exists m∗ ∈ SΓ(θ)[θ
′
] such that g(m∗) = a∗

and m∗k = (θ
′
,m∗2k ,m

∗3
k ,m

∗4
k ,m

∗5
k ,1) ∈ SΓ(θ)

k [θ
′
] for any k ∈ N .12 Since m∗i ∈ S

Γ(θ)
i [θ

′
], there exists

λi ∈∆∗(M−i) such that (i) λi(m−i)> 0⇒mk = (θ
′
,m2

k,m
3
k,m

4
k,m

5
k,1)∈ SΓ(θ)

k [θ
′
] for any k 6= i and

12 If |F (θ
′
)|= 1, we have g(m̄) = g(m∗) = a∗.
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(ii)
∑

m−i
λi(m−i)ui(g(m∗i ,m−i);θ)≥

∑
m−i

λi(m−i)ui(g(m̃i,m−i);θ) for all m̃i ∈Mi. Over profiles
m−i to which m∗i is one of i’s best responses in state θ, define

m̂−i(m
∗
i )∈ arg max

(m∗i ,m−i)∈S
Γ(θ)[θ

′
]

ui(g(m∗i ,m−i);θ).

Without loss of generality, we assume that the winner of the modulo game that yields the outcome

g(m∗i , m̂−i(m
∗
i )) is actually not agent i himself.13

The rest of the proof is intended to establish that m∗i /∈ S
Γ(θ)
i [θ

′
]. By Claim 3, this will imply

m̄i /∈ SΓ(θ)
i [θ

′
], which will contradict our initial hypothesis. This will complete the proof of Step 4.

We proceed to detail. Assume that g(m∗i , m̂−i(m
∗
i )) 6= a∗.14 First, we observe that this assumption

implies that |F (θ
′
)| ≥ 2. Since the SCC F satisfies MCI and |F (θ

′
)| ≥ 2, the profile (m∗i , m̂−i(m

∗
i ))

is not a Nash equilibrium in state θ, since there must exist at least one agent j ∈ N\{i} who

has a different strategy that is a better response to the profile (m∗i , m̂−i(m
∗
i )). Since every agent

believes that Rule 1 is triggered with probability one, as we have established in Steps 1 to 3, this

further implies that there are no message profiles in SΓ(θ)[θ
′
] that are Nash equilibria in state θ.

(In particular, m is not a Nash equilibrium either in state θ.)15

The preceding argument confirms that S
Γ(θ)
−i [θ

′
] contains multiple message profiles, which together

with m∗i , lead to distinct outcomes. Recall that S
Γ(θ)
−i [θ

′
] denotes the set of all rationalizable message

profiles of all agents other than i in state θ where all other agents coordinate on θ
′

for the first

component of their message. This is consistent with our assumption that g(m∗i , m̂−i(m
∗
i )) and

a∗ are two distinct outcomes, each of which is induced by some rationalizable message profile

(m∗i ,m−i) with m−i ∈ SΓ(θ)
−i [θ

′
]. In particular, for each k ∈ N\{i}, we have m∗k ∈ S

Γ(θ)
k [θ

′
]. Recall

that g(m∗) = a∗. We define λ̃i ∈∆∗(M−i) as follows: λ̃i(m−i) = 0 if and only if m−i 6= m̂−i(m
∗
i ). We

now define λεi ∈∆∗(M−i) as the belief that assigns probability 1− ε to λ̃i and assigns probability ε

to the event that all agents other than i use m∗−i. By construction, the support of λεi is concentrated

on S
Γ(θ)
−i [θ

′
].

By construction of λ̃i, m
∗
i must be a best response to the redefined belief λ̃i. We assume without

loss of generality that the lottery z∗ is the best lottery for agent i in state θ such that ui(a
∗;θ
′
)≥

ui(z
∗;θ
′
) and ui(z

∗;θ) > ui(a
∗;θ).16 Fix ε > 0 small enough. Since ui(g(m∗i , m̂−i(m

∗
i ));θ) ≥

ui(g(m
′
i, m̂−i(m

∗
i ));θ) for any m

′
i and ε > 0 is chosen to be small, the best possible deviation by

13 This is indeed confirmed in the proof of Claim 3, where we explicitly construct m∗i from m̄i.

14 Later we consider the case where g(m∗i , m̂−i(m
∗
i )) = a∗ and argue that it can also be handled by the same argument

we are about to construct.

15 Although there are no pure-strategy Nash equilibria in state θ, there might exist a mixed-strategy equilibrium
whose support belongs to the set of rationalizable message profiles triggering Rule 1. For example, suppose there
are three agents and F (θ) = {a1, a2, a3}, with u1(a1;θ) = 2, u1(a2;θ) = 1, u1(a3;θ) = 0, u2(a2;θ) = 2, u2(a3;θ) = 1,
u2(a1;θ) = 0, u3(a3;θ) = 2, u3(a1;θ) = 1, u3(a2;θ) = 0. Then, a profile of mixed-strategies, all of them inducing Rule
1, in which each agent announces the true state θ, asks for her most preferred outcome in F (θ), announces integer 1
in her sixth component, and randomizes with equal probability over all three names in her fifth component, is a Nash
equilibrium. The probability that each agent is elected to be the king is 1/3, and cannot be affected by unilateral
deviations. The outcome is the uniform probability distribution over the three alternatives in F (θ). Note how for
each of the pure strategies in the support of the equilibrium, the resulting outcome is one of the alternatives in F (θ).
This is the only canonical form that Nash equilibria can take in this mechanism.

16 This is indeed without loss of generality: one could take z∗ to be the supremum lottery over the set of alternatives
satisfying these inequalities, and then construct the argument below using a sequence of alternatives converging to
z∗.
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agent i is to choose m3
i [θ
′
,1] = z∗; m3

i [θ
′
,2] = a∗; and m6

i →∞, keeping the rest of her announce-
ment the same as m∗i so that the outcome is changed only when a∗ used to occur under Rule 1.
Therefore, we must have that for any m

′
i ∈Mi,∑

m−i

λεi (m−i)ui(g(m
′

i,m−i);θ)

≤ (1− ε)ui(g(m∗i , m̂−i(m
∗
i ));θ) + εui(z

∗;θ)
= (1− ε)ui(g(m∗i , m̂−i(m

∗
i ));θ) + εui(a

∗;θ) + ε[ui(z
∗;θ)−ui(a∗;θ)]

=
∑
m−i

λεi (m−i)ui(g(m∗i ,m−i);θ) + ε[ui(z
∗;θ)−ui(a∗;θ)].

Thus, we obtain that for any m
′
i ∈Mi,∑

m−i

λεi (m−i)ui(g(m∗i ,m−i);θ)≥
∑
m−i

λεi (m−i)ui(g(m
′

i,m−i);θ)− ε[ui(z∗;θ)−ui(a∗;θ)].

Set ε
′
= ε[ui(z

∗;θ)− ui(a∗;θ)]. Hence, if we choose ε > 0 small enough (and hence, ε
′

also small
enough), we have argued that m∗i is an ε

′
-best response to λεi , even including deviations to messages

that trigger Rule 2.
However, we show this is not the case. Consider the already described deviation, mi, by agent

i, who chooses m6
i arbitrarily large, m3

i [θ
′
,1] = z∗, and m3

i [θ
′
,2] = a∗ but keeps the rest of her

announcement the same as m∗i so that the outcome is changed only when a∗ used to occur under
Rule 1. The construction of λεi guarantees that given m∗i , the outcome a∗ is realized with probability
ε > 0. We define {ε(m6

i )} as a sequence on R such that (i) ε(m6
i )> 0 for each m6

i ; (ii) ε(m6
i )→ 0 as

m6
i →∞; and (iii)

1
m6
i+1

ε(m6
i )
→ 0 as m6

i →∞.

For example, we can set ε(m6
i ) = 1/

√
m6
i + 1, which satisfies the three properties.

Recall that m∗i is a best response to m̂−i(m
∗
i ). This implies in particular that

ui(g(m∗i , m̂−i(m
∗
i ));θ)≥ ui(z∗;θ).

We next show that there exists ε > 0 small enough such that m∗i is not an ε
′
-best response to

λεi , where ε
′
= ε[ui(z

∗;θ)−ui(a∗;θ)]. Indeed, we confirm this as follows:

∑
m−i

λ
ε(m6

i )
i (m−i)ui(g(mi,m−i);θ)− ε

′
(m6

i )

= (1− ε(m6
i ))

[
m6
i

m6
i + 1

ui(g(m∗i , m̂−i(m
∗
i ));θ) +

1

m6
i + 1

ui(zi(θ
′
, θ
′
)

]
+ε(m6

i )

[
m6
i

m6
i + 1

ui(z
∗;θ) +

1

m6
i + 1

ui(zi(θ
′
, θ
′
);θ)

]
− ε

′
(m6

i )

(∵ agent i is not the winner of the modulo game under (mi, m̂−i(m
∗
i )).)

≥ m6
i

m6
i + 1

[
(1− ε(m6

i ))ui(g(m∗i , m̂−i(m
∗
i ));θ) + ε(m6

i )ui(z
∗;θ)

]
+

1

m6
i + 1

ui(zi(θ
′
, θ
′
);θ)− ε(m6

i ) [ui(g(m∗i , m̂−i(m
∗
i ));θ)−ui(a∗;θ)]

(∵ ε
′
(m6

i ) = ε(m6
i ) [ui(z

∗;θ)−ui(a∗;θ)] and ui(g(m∗i , m̂−i(m
∗
i ));θ)≥ ui(z∗;θ))

≈ (1− ε(m6
i ))ui(g(m∗i , m̂−i(m

∗
i ));θ) + ε(m6

i )ui(z
∗;θ)

−ε(m6
i ) [ui(g(m∗i , m̂−i(m

∗
i ));θ)−ui(a∗;θ)]

(if we choose m6
i large enough so that 1/(m6

i + 1)→ 0 but ε(m6
i )> 0.)

= (1− 2ε(m6
i ))ui(g(m∗i , m̂−i(m

∗
i ));θ) + ε(m6

i )(ui(z
∗;θ) +ui(a

∗;θ))
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= (1− 2ε(m6
i ))ui(g(m∗i , m̂−i(m

∗
i ));θ) + 2ε(m6

i )ui(z
∗;θ)− ε(m6

i )[ui(z
∗;θ)−ui(a∗;θ)]

≈ (1− 2ε(m6
i ))ui(g(m∗i , m̂−i(m

∗
i ));θ) + 2ε(m6

i )ui(z
∗;θ)

(if we choose ε(m6
i ) small enough, noting 2ui(z

∗;θ)>ui(z
∗;θ)−ui(a∗;θ))

≈ (1− ε(m6
i ))ui(g(m∗i , m̂−i(m

∗
i ));θ) + ε(m6

i )ui(z
∗;θ)

(if we choose m6
i large enough so that ε(m6

i )→ 0)
> (1− ε(m6

i ))ui(g(m∗i , m̂−i(m
∗
i ));θ) + ε(m6

i )ui(a
∗;θ)

(∵ ui(z
∗;θ)>ui(a

∗;θ), and ε(m6
i )> 0.)

=
∑
m−i

λ
ε(m6

i )
i (m−i)ui(g(m∗i ,m−i);θ).

Hence, we have established the desired opposite inequality, showing that m∗i is not an ε
′
-best

response to λεi .
17

For the case where g(m∗i , m̂−i(m
∗
i )) = a∗, we first observe that m∗i is a best response to λεi

independently of the size of ε because g(m∗i , m̂−i(m
∗
i )) = g(m∗) = a∗. We next claim that if we

choose m6
i large enough, the same deviation strategy mi constructed above is a better response to λεi

than m∗i . Specifically, given the belief λεi , mi induces the outcome z∗ with probability m6
i /(m

6
i + 1)

and the outcome zi(θ
′
, θ
′
) with the rest of probability. Since ui(z

∗;θ)> ui(a
∗;θ), by choosing m6

i

large enough, we obtain∑
m−i

λεi (m−i)ui(g(mi,m−i);θ)>
∑
m−i

λεi (m−i)ui(g(m∗i ,m−i);θ).

Thus, even if g(m∗i , m̂−i(m
∗
i )) = a∗, we obtain the desired contradiction, as in the previous case.

Hence, regardless of whether g(m∗i , m̂−i(m
∗
i )) 6= a∗ or g(m∗i , m̂−i(m

∗
i )) = a∗, we conclude that m∗i /∈

S
Γ(θ)
i [θ

′
]. This concludes the proof of Step 4. �

Now we shall conclude the proof of Theorem 2. By Step 4, it follows that for any θ ∈Θ,

SΓ(θ) =
∏
i∈N

S
Γ(θ)
i =

∏
i∈N

S
Γ(θ)
i [θ].

This together with Step 2 further implies⋃
m∈SΓ(θ)

{g(m)}= F (θ).

This concludes the proof of Theorem 2. �

We make some comments on the properties of the mechanism we constructed. One novelty of
the mechanism lies in the way we use the modulo game under the consensus Rule 1. Modulo games
have been often used in the literature, but they are viewed as a substitute for the integer games
where the person who announces the highest integer becomes a dictator. In fact, our Rule 3 on
strong disagreements is a stochastic version of an integer game, used to knock out bad message
profiles so that the agents end up making a unanimous announcement under rationalizability, as
only Rule 1 (consensus) prevails. However, in our mechanism, the modulo game in Rule 1 is used
to select an outcome rather than knock out bad message profiles. Since the rational expectations

17 To make our argument more transparent, we could divide it into the following two cases. We first assume
ui(g(m∗i , m̂−i(m

∗
i ));θ)>ui(z

∗;θ). In this case, we immediately obtain a strict inequality even before we take 1/(m6
i +

1)→ 0. Otherwise, i.e., if ui(g(m∗i , m̂−i(m
∗
i ));θ) = ui(z

∗;θ), when we obtain (1 − 2ε(m6
i ))ui(g(m∗i , m̂−i(m

∗
i ));θ) +

2ε(m6
i )ui(z

∗;θ), this is equivalent to (1 − ε(m6
i ))ui(g(m∗i , m̂−i(m

∗
i ));θ) + ε(m6

i )ui(z
∗;θ). This is larger than (1 −

ε(m6
i ))ui(g(m∗i , m̂−i(m

∗
i ));θ) + ε(m6

i )ui(a
∗;θ), regardless of the size of ε(m6

i ).
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hypothesis is not needed here, each agent believes that the modulo game under Rule 1 always
works in his favor but the resulting outcome is not necessarily what he expects to happen.

Our paper follows the classic implementation literature in allowing for arbitrary mechanisms.
This is often justified in order to obtain a tight characterization, i.e., to have a small gap between
necessary and sufficient conditions. Jackson [11], however, rightly argues that some of the power
of implementation results derive from the fact that we have not imposed any restrictions on the
mechanisms. In order to restrict attention to reasonable mechanisms, Jackson, Palfrey, and Srivas-
tava (henceforth, JPS, [12]) propose the best response property, which requires that there be a best
response for every possible belief that an agent might hold about other agents’ strategies. Indeed,
our mechanism does not satisfy this property as there exist no best responses when Rule 3 (strong
disagreements) is triggered. As we discuss in Section 5, finite mechanisms sometimes suffice for
rationalizable implementation. Finite mechanisms clearly satisfy the JPS best response property.
We will have more to say about rationalizable implementation by finite mechanisms for the case
of SCFs and postpone this discussion until we state our result for that case.

When focusing only on SCFs, we obtain the following result as a corollary of Theorem 2.

Corollary 1. Suppose that there are at least three agents (n ≥ 3). If an SCF f satisfies Maskin
monotonicity, NWA, and responsiveness, it is fully implementable in rationalizable strategies.

Remark: This result is the same as Proposition 2 of BMT [5]. Using the example proposed by
Jain ([13], Appendix A), we can show that responsiveness cannot be dispensed with for Corollary
1 if we were to achieve rationalizable implementation by our canonical mechanism. We discuss this
in the online companion. However, it remains an open question whether one can dispense with
responsiveness for rationalizable implementation. Of course, if this is possible, we need to devise a
different mechanism than the mechanism proposed in Theorem 2.

Proof : This follows because MCI becomes a vacuous constraint and uniform monotonicity and
SNWA reduce to Maskin monotonicity and NWA (the SCF-version used by BMT [5]), respectively,
as long as the social choice rule is single-valued. �

We recall that BMT [5] introduce their best-response property, and restrict attention to the mech-
anisms satisfying it when considering nonresponsive SCFs (See Definition 6 of BMT [5] (p.1267)).
It is easy to see that our canonical mechanism used in Theorem 2 satisfies BMT’s best-response
property.18

7. Concluding Remarks. By relying on a setwise condition requiring the nestedness of lower
contour sets, a condition that we term uniform monotonicity, we have shown that rationalizable
implementation of correspondences leads to a significantly more permissive theory than its counter-
part using Nash equilibrium. This has been established for environments with at least three agents.

18 In their proposition 3, BMT show that strict Maskin monotonicity∗ (BMT [5] (p.1265)) is a necessary condition for
rationalizable implementation of SCFs by a mechanism satisfying their best response property. Maskin monotonicity∗,
together with the modified version of NWA, implies strict Maskin monotonicity∗, which is itself logically stronger
than strict Maskin monotonicity. See p.1269 of BMT [5] for the details. When considering environments with mon-
etary transfers, Chen, Kunimoto, Sun, and Xiong [9] show that an SCF is rationalizably implementable by a finite
mechanism if and only if it satisfies Maskin monotonicity∗. That paper also obtains the following result: an SCF is
Nash implementable by a finite mechanism if and only if it satisfies Maskin monotonicity. Hence, in some classes of
economic environments, when we only deal with SCFs and finite mechanisms, Nash implementation yields results
that are more permissive than rationalizable implementation. For the case of SCCs, the result for Nash implemen-
tation is extended. In particular, if an SCC is deterministic and the set of pure outcomes is finite, the SCC is Nash
implementable by a finite mechanism if and only if it satisfies Maskin monotonicity. What is unknown is whether
their rationalizable implementation result can be extended to SCCs.



Kunimoto and Serrano: Rationalizable Implementation of Correspondences
Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 23

The two-agent general sufficiency argument is likely handled by adding the usual requirement of
nonempty intersections of lower contour sets; we chose instead to focus on a simple finite mecha-
nism for a useful example. The extension to incomplete information environments should be our
natural next step. Our conclusion is that, in the comparison with Nash equilibrium, dropping the
rational expectations assumption while still retaining best-replies to beliefs, expands significantly
the range of socially desirable rules that can be potentially decentralized. For a specific rule in a
concrete environment, one should aim to construct a less abstract mechanism than our proposed
canonical one, but we view our contribution as a way to draw the landscape of rules that could be
in principle implemented.
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