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Abstract

We investigate the possibility of democratic redistribution of resources in a society with some
rich and some poor citizens called to vote over redistribution under majoritarian rule. To do so, we
adopt a standard pivotal-voter model with costly voting, under the assumption that the poor citizens
outnumber the rich. A redistribution trade-off emerges; despite the poor citizens outnumbering the
rich, and thus “being stronger” in the democratic election, each single rich citizen has more at stake
in the election than a single poor citizen, and thus her willingness to vote is greater. Multiplicity of
equilibria, as standard in pivotal-voter models, arises. However, we impose an intuitive refinement,
namely that voting probabilities are continuous in the cost of voting, and find that such refinement
pins down a unique equilibrium, capable of characterizing the redistribution trade-off. The unique
continuous equilibrium a key inequality threshold; if the number of poor citizens is lower than
the square of the number of the rich citizens, then the poor citizens may vote in equilibrium and
redistribution has a chance of winning, otherwise the poor citizens abstain with certainty and thus
enter in a “poverty trap”—namely, redistribution is doomed to lose.

1 Introduction

Consider a stylized society with two “poor” citizens with 1 unit of resource each, and one “rich” citizen
with 2 units of resources. Each citizen may cast a costly vote in a majoritarian election over whether
to implement full redistribution of resources within the society. Full redistribution, resulting in 4/3
of resources for every citizen, would harm the rich citizen (losing 2/3) more than it would benefit a
single poor citizen (gaining 1/3). Hence, the rich citizen has more at stake in the election than each
of the two poor citizens. However, as a countervailing effect, if all citizens were to vote with the same
exogenous probability, then full redistribution would be the most likely outcome of the election as there
are more poor citizens than rich. We characterize this trade-off, arising in societies where the poor
citizens outnumber the rich citizens—namely, the poor citizens are a more numerous electoral body than
the rich, but each rich citizen has more at stake in the election.

We adopt a complete-information pivotal-voter model with costly voting.1 This class of models
is far from novel. The seminal contribution dates back to Palfrey and Rosenthal (1983),2 where two
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1Our focus is different compared to other models in which there is voting over redistribution without cost of voting,

as in for example Meltzer and Richard (1981). In their model, under voting, the level of redistribution is endogenously
determined by the median voter and all citizens vote. We are more interested in what happens when the cost of voting is
an issue, and how its magnitude affects the result of the redistribution election, in a model where voters vote only based
on the possibility of being pivotal; for empirical evidence on how voters’ voting decision depends on the probability of
affecting the election outcome see Lyytikäinen and Tukiainen (2019).

2After the complete-information contribution by Palfrey and Rosenthal (1983), the same authors analyzed in 1985 a
version of the model under private information on the cost of voting; see Palfrey and Rosenthal (1985). From then onwards,
much of the literature has developed under private information, as the model is often more tractable and allows more elegant
and neat results (e.g., Borgers, 2004; Taylor and Yildirim, 2010). Nevertheless, the general idea that voters compare the
benefits of voting with its costs is older and has been long the interest of economists, dating back at least to Downs’ (1957)
seminal work. We consider only benefits that accrue from changing the policy to the voters’ preferred outcome, despite
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groups of citizens each preferring one of two alternatives simultaneously decide between abstaining or
voting for their preferred alternative. The winner is decided by majority rule. Technical difficulties
and multiplicity issues allowed Palfrey and Rosenthal to analyze only special cases.3 The analysis of
this model has been pushed forward by two other works. First, Nöldeke and Peña (2016) focus on the
two groups having symmetric number of members and symmetric benefit from the favored alternative
winning the election. Second, Mavridis and Serena (2018) focus on the two groups having asymmetric
number of members and symmetric benefit from the favored alternative winning the election. In order to
capture the motivating trade-off of poor-rich societies, we need a model with both asymmetric number
of members and asymmetric benefits; the poor citizens outnumber the rich, but each rich citizen has
more at stake in the election.4

After describing the model in Section 2, we fully characterize the simple three-poor-two-rich model in
Section 3 where there are multiple equilibria.5 We characterize analytically the equilibria where members
of at least one group play a pure strategy in participation (Section 4.1, Section 4.2), and we characterize
in part analytically and in part numerically the equilibria where members of both groups play a mixed
strategy (Section 4.3). Our numerical analysis, which complements our analytical results, characterizes
the redistribution trade-off. Despite the multiplicity of equilibria, only one equilibrium survives a novel
and intuitive continuity refinement; that is, the equilibrium probability of voting is continuous in the cost
of voting.6 The continuity refinement turns out to single out a unique equilibrium in the general model
with an arbitrary number of poor and rich citizens (see Section 5). We study the properties of the unique
continuous equilibrium; if the society is sufficiently equal (namely, the number of poor citizens is lower
than the square of the number of the rich citizens), then the poor citizens may vote and redistribution
has a chance of winning, while in a sufficiently unequal society (namely, the number of poor citizens is
greater than the square of the number of the rich citizens), the unique continuous equilibrium dictates
that poor citizens abstain with certainty, and thus poor citizens are doomed to lose the election and
redistribution is not implemented.

The above inequality threshold provides a clear-cut answer to the redistribution trade-off. Consider
an increase in the number of poor citizens. On the one hand, it makes the individual resource under
redistribution closer to the resources of a poor and further apart from those of a rich. This makes the
stakes of the rich in the election increase, and that of the poor decrease.7 On the other hand, an increase
in the number of poor citizens makes the poor group bigger and thus stronger in the election; that is,
if all citizens where to vote with the same exogenous probability full redistribution would be the most
likely outcome of the election as there are more poor citizens than rich. All in all, the former effect of
an increase in the number of poor citizens (making rich citizens vote “more”) is stronger than the latter
effect (making rich citizens relatively less numerous) the greater is the number of poor citizens; in fact,
when the number of poor citizens is greater than the square of the number of the rich citizens, the former
dominates the latter and in the unique continuous equilibrium poor citizens have no chance of winning
the election. The opposite happens when the number of poor citizens is low, and hence poor citizens
have a chance of democratically redistributing resources.

2 Model

There are two types i ∈ {m,n} of citizens; m > 1 poor citizens and n > 1 rich citizens. Assume
poor citizens are more numerous; m > n.8 Citizens are simultaneously called to cast a vote between
two alternatives, M and N . When we specialize the model to redistribution of resources, M is full
redistribution and N is no redistribution of resources. Poor citizens prefer alternative M , in that if M
wins (rather than loses) the individual payoff of a poor citizen increases by ∆πm > 0. Symmetrically, rich

a number of other benefits playing an important role in real-life; for instance, Wiese and Jong-A-Pin (2017) empirically
examine the benefits arising from “expressive” motives of voting.

3To see these special cases, we refer to footnote 1 in Mavridis and Serena (2018).
4Palfrey and Rosenthal (1983) consider only the case of symmetric benefits.
5Palfrey and Rosenthal (1983) already noticed that the asymmetric-symmetric model suffers from a multiplicity issue.
6In fact, it would be hard to claim that negligible changes in the cost of voting could bring about drastic changes in

the probabilities of voting. For example, if the voting center station moves slightly away from the home of a citizen, her
probability of voting also changes negligibly.

7Acemoglu and Robinson (2000, 2012) examine a similar idea, in which if there are many poor citizens in a society the
threat of revolution decreases since the spoils would be divided over a larger mass of citizens.

8By assuming m > n > 1 we avoid having to deal with trivial case distictions of m = n or n = 1 throughout the paper.
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citizens prefer alternative N , in that if N wins (rather than loses) the individual payoff of a rich citizen
increases by ∆πm > 0. Citizens choose whether to vote for their preferred alternative or to abstain, since
voting for the non-preferred alternative is strictly dominated. If a citizen casts a vote, she faces a cost
of voting, c > 0. Thus, the increase in payoff –net of cost of voting– for a citizen i when her preferred
alternative wins is ∆πi − c if she voted, and ∆πi if she did not vote. Citizens vote simultaneously and
the winning alternative is decided by majority rule. Ties are broken by a fair coin toss.

(Running Redistribution Example) Throughout the paper, our running example is that of resource
redistribution, where each poor citizen has an initial amount of resources equal to 1 and each rich citizen
has an initial amount of resources equal to 2.9 Under full redistribution each citizen ends up with the
average resources in the society, which is:

2n+m

n+m

and under no redistribution everyone keeps her original amount of resources. Thus,

∆πm =
2n+m

n+m
− 1 =

n

n+m
(1)

∆πn = 2− 2n+m

n+m
=

m

n+m
(2)

Since the resources of the poor is less than the average resources, a poor m citizen would always prefer
full redistribution (alternative M) and a rich n citizen would always prefer no redistribution (alternative
N). Furthermore, notice from (1) and (2) that ∆πn > ∆πm; that is, a single rich citizen has more at
stake in the election than a single poor citizen.10

We denote by pi the probability of voting of citizen i. This probability maximizes her individual
expected payoff, taking as given the choices of the other citizens. As in Palfrey and Rosenthal (1983),
we consider Quasi-Symmetric Nash Equilibria (QSNE), that is, citizens of group i follow the same
equilibrium strategy p∗i . Hence, a QSNE is a pair (p∗i , p

∗
j ) such that a citizen of group i ∈ {m,n} would

not want to deviate from p∗i if she expects every other citizen of group i to also play p∗i and all citizens
of group j with j 6= i to play p∗j . A QSNE can be of one of the following three types:

1. “Pure”: (p∗m, p
∗
n) ∈ {0, 1}2

2. “Partially Mixed”: p∗m ∈ {0, 1}, p∗n ∈ (0, 1) or p∗m ∈ (0, 1), p∗n ∈ {0, 1}

3. “Totally Mixed”: (p∗m, p
∗
n) ∈ (0, 1)2.

Our asymmetric-asymmetric setting (see Introduction) will allow us to fully characterize the first two
types of QSNE, and for sufficiently low (m,n) also the third. However, for arbitrary (m,n) we will tackle
the characterization of the “Totally Mixed” equilibria partly analytically and partly numerically.

Define Ai to be the probability that the vote of a citizen of group i is pivotal. A citizen of group i
may cast a vote if:

Ai
∆πi

2
≥ c. (3)

Conditional on being pivotal, the extra utility of creating a tie (from 0 to ∆πi

2 ) or breaking a tie

(from ∆πi

2 to ∆πi) is identical since the tie breaking rule is fair. This property explains the division by
2 in (3) and holds in general throughout the paper. The above inequality is identical to

Ai ≥
2c

∆πi
≡ Bi (4)

9It will be clear that these resource level assumptions are qualitatively without loss of generality.
10Considering the extrema of no- and full-redistribution is, to some extent, without loss of generality. Since the resources

of the poor are less than the average resources, the poor would like as much redistribution as possible and, at the same
time, the rich would like as little redistribution as possible. Therefore, given a choice between any two proportional tax
rates schemes, the poor would want to vote for the higher one and the rich for the lower one. In the end, there is no loss
of generality to assume that the two tax rates that are competing are 0 (no redistribution) and 1 (full redistribution).
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for i ∈ {m,n}. Note that allowing for asymmetric costs of voting is a straightforward generalization
of our setting.

(Running Redistribution Example) Given the specifications (1) and (2), we can write

Bm =
2c(n+m)

n
, (5)

Bn =
2c(n+m)

m
, (6)

so that a poor citizen may cast a vote if Am ≥ 2c(n+m)
n and a rich citizen if An ≥ 2c(n+m)

m . Notice that
Bm > Bn; as discussed in the Introduction, an individual rich has more at stake in the election than an
individual rich.

In what follows we start the analysis focusing first on an easy non trivial case: (m,n) = (3, 2). Then,
we characterize the general (m,n) case.

3 Three-poor-two-rich society: (m,n) = (3, 2)

We start with a simple example where we assume that m = 3 and n = 2. A single citizen will analyze
all the possible scenarios of what the other four citizens will do.

Focus on a poor citizen first. A single poor citizen knows that there are nine possible cases depending
on whether the other four citizens (two rich and the other two poor citizens) vote or abstain. We consider
the nine cases in the following table where (m̄, n̄) represent the number of citizens from each group that
turn out to vote; that is, if (m̄, n̄) = (0, 1), the other poor citizens do not vote, while one rich does and
the other rich does not.

Poor citizen: pivotal if voting? (m̄, n̄) Probability ∆πi

2

Yes (2,2) p2
mp

2
n

1
5

Yes (1,1) 4pm(1− pm)pn(1− pn) 1
5

Yes (0,0) (1− pm)2(1− pn)2 1
5

Yes (0,1) 2(1− pm)2pn(1− pn) 1
5

Yes (1,2) 2pm(1− pm)p2
n

1
5

No (2,0) p2
m(1− pn)2 0

No (2,1) 2p2
mpn(1− pn) 0

No (1,0) 2pm(1− pm)(1− pn)2 0
No (0,2) (1− pm)2p2

n 0

In this table, every row corresponds to each possible case: the first three rows correspond to the cases
where the vote of the poor citizen would break a tie. The fourth and fifth rows correspond to the case
where her vote would create a tie. The last four rows correspond to the case where her vote would make
no difference to the outcome of the election. The column Probability gives the probability that each
case realizes. For example the (2, 1) case realizes if the other two poor vote, one rich votes and the other
rich does not. The single poor citizen examining this table knows that she is pivotal in fives cases out
of nine. If she is not pivotal she would rather not vote, so as to save on the cost c. If she is pivotal she
may want to vote, provided that the net utility from voting is positive.

Following the table above and the voting condition (3), a poor citizen would want to vote if:

[
p2
mp

2
n + 4pm(1− pm)pn(1− pn) + (1− pm)2(1− pn)2 + 2(1− pm)2pn(1− pn) + 2pm(1− pm)p2

n

] 1

5
≥ c,
(7)

where the ∆πi

2 = 1
5 because;

1. if the poor votes and breaks a tie, she obtains the full redistribution outcome 7/5 while not voting
would give her the tie outcome (1/2) (7/5) + (1/2) 1,
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2. if the poor votes and creates a tie, she obtains the tie outcome (1/2) (7/5)+(1/2) 1 while not voting
would give her the no redistribution outcome 1,

and in both cases the difference in payoff is 1/5.

A rich citizen solves a similar problem, considering the six corresponding cases. The resulting condi-
tion for the rich to want to vote is:[

3p2
m(1− pm)pn + 3pm(1− pm)2pn + 3pm(1− pm)2(1− pn) + (1− pm)3(1− pn)

] 3

10
≥ c. (8)

Note that for c = 0 both Inequalities (7) and (8) trivially hold, regardless of the probabilities, therefore
all poor citizens vote and, as they outnumber rich citizens, full redistribution wins. On the other hand,
for very high c neither inequality holds and no-one votes.

We now describe how a QSNE (p∗m, p
∗
n) is defined by Inequalities 7 and 8. If a pair (p∗m, p

∗
n) leads

to Inequality 7 (8) to hold strictly then it must be that p∗m = 1 (p∗n = 1). If a pair (p∗m, p
∗
n) leads to

Inequality 7 (8) to not hold then it must be that p∗m = 0 (p∗n = 0). These two cases form the four possible
“Pure” QSNE; (0, 0), (0, 1), (1, 0), (1, 1). If a pair (p∗m, p

∗
n) leads to the two inequalities to hold with

equality, then the pair (p∗m, p
∗
n) forms a “Totally Mixed” QSNE. If a pair (p∗m, p

∗
n) leads Inequality 7

to hold with equality, and Inequality 8 to hold with < (>) then the pair is an equilibrium if p∗n = 0
(p∗n = 1). If a pair (p∗m, p

∗
n) leads Inequality 8 to hold with equality, and Inequality 7 to hold with < (>)

then the pair is an equilibrium if p∗m = 0 (p∗m = 1). These last two cases form “Partially Mixed” QSNE.
Such reasoning leads to the general solution depicted in Figure 1, where we adopted the notation

consistent with our (Running Redistribution Example); namely, Bn = B and Bm = m
n B, so as to have

only one parameter B simplifying the graphical exposition (see (1) and (2)).11

For any B we examine all the types of equilibria: “Pure”, “Partially Mixed” and “Totally Mixed”.
We find that for low B there are three different types of equilibria, which are depicted in the first row
of Figure 1, while for larger B we only have the equilibrium depicted in the second row. The unique
equilibrium for B sufficiently large corresponds to the characterization in Propositions 1 to 5 (Subsections
4.1 and 4.2).

The maximum values of B for existence of each equilibrium in the first row are the following: B1 =
1/2, B2 = 30/49, B3 = 30/49. The minimum value of B for existence of the equilibrium in the second
row is B4 = 1/2, with B1 = B4 < B2 = B3. Now, take for example B = 1/3. There are three equilibria:
respectively, one in which both types of citizens are playing a mixed strategy , with the rich voting with
a much higher probability than the poor; one that both are playing a mixed strategy but now the poor
are voting with higher probability than the rich; and one that the rich vote for sure and the poor play a
mixed strategy. On the other hand for larger B (but not too large), say B = 2/3, there is only one type
of equilibrium, the one where the rich are playing a mixed strategy, and the poor abstain for sure. And,
naturally, if B is very high (i.e., greater than 1), the cost of voting is much greater than the benefit, thus
no-one votes.12

Continuity. Beginning from a high B we will have to be on the ”Pure” equilibrium in the bottom
panel of the Figure. As B decreases and gets lower than 1, a unique equilibrium exists which is the
“Partially Mixed” equilibrium which is drawn in the same panel. As we keep decreasing B, we move
along the two curves of the “Partially Mixed” equilibrium until we reach B2 = B3 = 30/49, where the
“Totally Mixed 2” equilibrium (second panel) and the Partially Mixed equilibrium in which the rich
are voting with certainty (third panel) start being defined; however moving to any of these equilibria
would involve an upwards jump in both probabilities of voting. However, exactly where the “Partially
Mixed” equilibrium of the fourth panel stops being defined, is where the “Totally Mixed 1” equilibrium
starts being defined (since B1 = B4), and on top of that the probabilities change continuously from one
equilibrium to the other. As intuition suggests, we would expect a small decrease in costs or benefits to
incur a reasonably small effect on the probabilities of voting. For this reason, we consider the smooth
transition of the unique continuous equilibrium more plausible than the discontinuous behavior of the

11In this (m,n) = (3, 2) case, this notation implies B = 10
3
c.

12The probability of being pivotal is at most 1, and thus the voting condition (4) is never satisfied.
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Figure 1: First row, first panel: “Totally Mixed 1”. First row, second panel: “Totally Mixed 2”. First
row, third panel: “Partially Mixed”. Bottom panel: “Partially Mixed” continuously connected to the
“Pure”.

other two equilibria, and thus our continuity refinement selects the “Totally Mixed 1” together with the
equilibria in the fourth panel. 13

Numerical simulations in Section 4.3 will show that the uniqueness of a continuous equilibrium is
a property holding, not only for (m,n) = (3, 2), but for general (m,n). We will focus on the unique
continuous equilibrium and run comparative statics to shed light on the redistribution trade-off spelled
out in the Introduction and on how it depends on the number of poor and rich citizens in the society.
We will also provide the intuition for our results, and derive an inequality cut-off describing when full
redistribution has or does not have a chance of winning the election.

4 General (m,n)

The probability of being pivotal is crucial for the voting/abstention choice in (4). While we discussed it
in the previous section for the special case of (m,n) = (3, 2), it is useful to provide the expression for
a general pair (m,n). The following table shows the calculations that a single poor citizen must make
when she knows that she faces m − 1 poor citizens and n rich with (m̄, n̄) signifying how many of the
rest actually vote in each instance.

For economy of space we have omitted the cases that the poor citizen is not pivotal. The resulting
expression for the pivotal probability is as follows:

Ai =

n∑
s=0

(
i− 1

s

)(
j

s

)
psi (1−pi)i−s−1psj(1−pj)j−s+

n−1∑
s=0

(
i− 1

s

)(
j

s+ 1

)
psi (1−pi)i−s−1ps+1

j (1−pj)j−s−1

(9)
for i, j ∈ {m,n}, i 6= j.

13Formally, we use a standard definition of continuity (see for example page 943 of Mas-Colell et al. 1995). This definition
means that, for all i, j ∈ {m,n}, i 6= j, there is a single continuous selection of the equilibrium correspondences p∗i (Bi, Bj)
mapping (Bi, Bj) to equilibrium probabilities of voting.
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Figure 2: Unique continuous equilibrium for m = 3 and n = 2.

Poor citizen: pivotal if voting? (m̄, n̄) Probability ∆πi

Yes (n,n) (m−1)!
n!(m−1−n)!p

n
p (1− pp)m−n−1pnr

n
n+m

Yes (n-1,n) (m−1)!
(n−1)!(m−n)!p

n−1
p (1− pp)m−npnr n

n+m

Yes (n-1,n-1) (m−1)!
(n−1)!(m−n)!np

n−1
p (1− pp)m−npn−1

r (1− pr) n
n+m

Yes (n-2,n-1) (m−1)!
(n−2)!(m−n+1)!np

n−2
p (1− pp)m−n+1pn−1

r (1− pr) n
n+m

...
...

...
...

Yes (0, 1) n(1− pp)m−1pr(1− pr)n−1 n
n+m

Yes (0, 0) (1− pp)m−1(1− pr)n n
n+m

No All other cases 0

With the general expression for Ai in our hands, we can analyse the QSNE of the general voting
game, given the relative costs of voting Bi and Bj , and classify them according to their type: “Pure”,
“Partially Mixed” or “Totally Mixed”. As we will see, the first two types (i.e., equilibria in which some
citizens play pure strategies) can be fully characterized, as we do in Subsections 4.1 and 4.2, while the
last type of equilibria will be tackled in Subsection 4.3.

4.1 “Pure” equilibria and “Partially Mixed” equilibria with abstention

If Ai < Bi, citizen i’s dominant strategy is to abstain. On the other hand if Ai > Bi citizen i’s dominant
strategy is to vote. When Ai = Bi citizen i is indifferent between voting and abstaining; therefore this
is a necessary condition for citizen i to employ a mixed strategy. From this condition we see that Bi can
be interpreted as the minimum Ai for citizen i to be willing to vote. Clearly if Bi > 1, citizen i abstains.

Proposition 1. If Bi ≥ 1 then p∗i = 0.

Proof. Trivial generalization of Proposition 1 in Mavridis and Serena (2018).

The previous proposition shows that if relative costs of voting Bi are high enough for citizens of both
groups, the only equilibrium that exists is the “Pure” one in which nobody votes.

Obviously, the situation described in Proposition 1 is not very interesting. Therefore, next we allow
one of the two relative costs of voting to be low enough such that citizens from one of the two groups
might consider voting; in other words, Bi ≥ 1 only for citizens i. Then Proposition 2 yields a simple and
unique characterization of j’s equilibrium strategy:
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Proposition 2. For Bi ≥ 1 and Bj ∈ (0, 1) the unique QSNE is that p∗i = 0 and p∗j = 1−B
1

j−1

j , for all

i, j ∈ {m,n}, i 6= j.14

Proof. By Proposition 1, p∗i = 0. Suppose p∗j = 0. Then any single j citizen would have an incentive to
deviate and vote for sure in order to single-handedly decide the election in favor of the j-group. Thus
pj = 0 is not an equilibrium. On the other hand, suppose p∗j = 1. This means that j group wins for sure
with a margin of j votes. Then any single j-citizen would have an incentive not to pay the cost without
affecting the outcome. Thus pj = 1 is not an equilibrium. Therefore p∗j ∈ (0, 1). Plugging p∗i = 0 in Aj
(see equation Equation 9) we have Aj = (1 − pj)j−1, and since (4) must hold with equality for citizens
j to mix, we have:

(1− pj)j−1 = Bj

or equivalently:

pj = 1−B
1

j−1

j .

Note that this proposition is not paralleled by any result in Mavridis and Serena (2018), which assume
that Bi = Bj .

The two previous propositions examine cases in which citizens from at least one group find it too costly
to vote, no matter what citizens from the other group do. These cases gave rise to two types of equilibria;
a “Pure” equilibrium in which everybody’s strictly dominant strategy is not to vote (Proposition 1), and
a “Partially Mixed” equilibrium in which citizens from one group have a strictly dominant strategy not
to vote and citizens from the other group play a mixed strategy (Proposition 2).

Comparative Statics. For x ∈ (0, 1) the expression 1− x
1

j−1 is strictly decreasing in x. Therefore

p∗j = 1 − B
1

j−1

j is strictly decreasing in cj and strictly increasing in ∆πj . Higher individual cost-payoff
ratio results in j-citizens voting with lower probability.

In the remaining of this subsection we examine what happens when citizens from neither group have
a strictly dominant strategy to abstain, ie. what happens when Bm < 1 and Bn < 1. Under these
conditions citizens of both groups may vote with positive probability. This causes strategic interactions
that may generate multiple equilibria.

It is easy to see that when Bm < 1 and Bn < 1 no “Pure” equilibria exist.

Proposition 3. For Bi < 1 and Bj < 1, no “Pure” QSNE exist, for all i, j ∈ {m,n} and i 6= j.

Proof. Trivial generalization of Proposition 2 in Mavridis and Serena (2018).

After proving that for Bm < 1 and Bn < 1 no “Pure” equilibria exist, the next proposition establishes
that for Bm < 1 and Bn < 1 a “Partially Mixed” equilibrium does exist.

Proposition 4. For Bi < 1 and Bj < 1, there exists a “Partially Mixed” QSNE with p∗i = 0 and

p∗j = 1−B
1

j−1

j , for all i, j ∈ {m,n} and i 6= j if and only if Bi ≥ Bi ≡ jBj − (j − 1)B
j

j−1

j .

Proof. An equilibrium where p∗i = 0 implies: Aj = (1− pj)j−1 and Ai = (1− pj)j + jpj(1− pj)j−1. The
former means that a citizen j is pivotal only if none of her groupmates vote (her vote breaks the tie in
which nobody votes). The latter means that a citizen i is pivotal if none of j citizens vote or if only one
of them votes. In order for the i-citizens to not want to vote we must have:

Ai ≤ Bi,

or equivalently
(1− pj)j + jpj(1− pj)j−1 ≤ Bi,

and similarly, for the j-group citizen to play a mixed strategy we must have:

(1− pj)j−1 = Bj , (10)

14As a reminder, in the beginning of this section we have assumed m > n > 1. It is easy to see that for j = 1 the unique
equilibrium is: p∗i = 0 and p∗j = 1
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dividing the two conditions and rearranging we get:

1− pj + jpj ≤ Bi
Bj

(j − 1)pj ≤ Bi
Bj
− 1 (11)

Isolate pj in (10) and plug it in (11) to get

(j − 1)

(
1−B

1
j−1

j

)
≤ Bi
Bj
− 1 (12)

Or equivalently,

−B
j

j−1

j ≤ Bi − jBj
j − 1

(13)

Bi ≥ jBj − (j − 1)B
j

j−1

j ≡ Bi

Bi is an increasing bijection from [0, 1] to [0, 1], such that if Bj = 0, Bi = 0, and if Bj = 1, Bi = 1.
Note that the equilibria pinned down by Proposition 2 and Proposition 4 are essentially the same,

the difference being that Proposition 2 provides the range of Bi’s for which the equilibrium is unique,
and Proposition 4 provides the range of Bi’s for which that equilibrium continues to exist although not
necessarily uniquely. This is an important finding in terms of uniqueness of a continuous equilibrium.
In fact, first notice that Proposition 4 gives us for every Bj ∈ (0, 1) the lowest Bi for existence of the

“Partially Mixed” equilibrium p∗i = 0 and p∗j = 1 − B
1

j−1

j . This satisfies the system Ai ≤ Bi and
Aj = Bj , which implies that the system Ai = Bi and Aj = Bj is also satisfied (Ai’s are continuous in
pi’s). Therefore, exactly at those values of (Bi, Bj) there must be a “Totally Mixed” equilibrium. In our
(Running Redistribution Example), as discussed in Section 3 we set Bn = B and Bm = m

n B. Numerical
simulations show that that “Totally Mixed” equilibrium survives from that value of B all the way down
to 0.

Proposition 4 is silent with respect to which of the two groups will be playing a mixed strategy and
which will not be voting. What it says is that if Bm < 1 and Bn < 1 it can be either that the m citizens
do not vote and the n citizens play a mixed strategy, or that the n citizens do not vote and the m citizens
play a mixed strategy. The next proposition shows that for a given pair (Bi, Bj) these two “Partially
Mixed” equilibria of Proposition 4 cannot co-exist; in other words, for a given pair (Bi, Bj) we either
have m citizens not voting and n playing a mixed strategy or n citizens not voting and m playing a
mixed strategy (but not both).

Proposition 5. For Bi < 1 and Bj < 1, Bi ≥ Bi and Bj ≥ Bj are mutually exclusive, for all

i, j ∈ {m,n} and i 6= j.

Proof. Suppose not and consider the (Bi, Bj)−space. We first show that Bi > Bj , or equivalently:

(j − 1)Bj > (j − 1)B
j

j−1

j

1 > B
1

j−1

j .

For the same reason we also have Bj > Bi. Then, Bi ≥ Bi and Bi > Bj imply Bi > Bj , while Bj ≥ Bj
and Bj > Bi imply Bj > Bi leading to a contradiction.

9



4.2 “Partially Mixed”equilibria with voting

We are left to analyze the “Partially Mixed” equilibria in which citizens of one group are voting with
certainty and the others are playing a mixed strategy. There cannot be an equilibrium in which the
majority group votes with certainty and the minority group plays a mixed strategy (see Mavridis and
Serena (2018) for a proof). Therefore the equilibria left to analyze are of the type p∗n = 1 and p∗m ∈
(0, 1). The next four propositions will establish conditions for this type of equilibrium to exist, and
Proposition 10 will characterize the equilibria behavior.

Proposition 6. There exists a B̂ < 1 such that if both Bm ≤ B̂ and Bn ≤ B̂ hold there exists a unique
“Partially Mixed” equilibrium of the form p∗n = 1 and p∗m ∈ (0, 1).

Proof. It follows from Proposition 3 in Mavridis and Serena (2018). However we repeat some key steps
of their proof that will help the proofs of the following propositions.

When p∗n = 1 we have:

Am =

(
m− 1

n

)
pnm(1− pm)m−n−1 +

(
m− 1

n− 1

)
pn−1
m (1− pm)m−n

and

An =

(
m

n− 1

)
pn−1
m (1− pm)m−n+1 +

(
m

n

)
pnm(1− pm)m−n.

Am is strictly increasing in pm in (0, p̂m) and strictly decreasing otherwise, with

p̂m =
n(n− 1)

n(n− 1) +
√
n(n− 1)(m− n)(m− n− 1)

.

We furthermore know that Am ≥ An if and only if pm ≤ p∗∗m , with

p∗∗m =
n(n− 1)

n(n− 1) +
√
n(n− 1)(m− n)(m− n+ 1)

.

The cut-off for costs is therefore B̂ = Am|pm=p∗∗m
.

Hence the ranking between Bm and Bn does not affect the existence and uniqueness of the equilibrium
of the form p∗n = 1 and p∗m ∈ (0, 1), as long as both are below B̂.

Proposition 7. If Bn > B̂ or if Bm > Bmax, Bmax = Am|pm=p̂m , no “Partially Mixed” equilibrium of
the form p∗n = 1 and p∗m ∈ (0, 1) exists.

Proof. We will prove that An is strictly increasing in pm for pm < p∗∗m and strictly decreasing for pm > p∗∗m .
Take the derivative of An with respect to pm. This derivative is greater than zero when:

(
m

n− 1

)
((n− 1)pn−2

m (1− pm)m−n+1 − (m− n+ 1)pn−1
m (1− pm)m−n)

+

(
m

n

)
(npn−1

m (1− pm)m−n − (m− n)pnm(1− pm)m−n−1) ≥ 0

Simplifying this expression we get:

m(m− 2n+ 1)p2
m + 2pn(n− 1)− n(n− 1) ≤ 0,

which is precisely Inequality (5) of Mavridis and Serena (2018). Using a similar analysis as in that
paper we see that for pm < p∗∗m An is strictly increasing and for pm > p∗∗m it is strictly decreasing. This
implies that An is strictly increasing when An > Am and strictly decreasing when An < Am, which
further implies that the point of intersection between Am and An is the maximum of An. Therefore,
B̂ = Am|pm=p∗∗m

, and if Bn > B̂ this would necessarily imply An < Bn. A similar argument follows for
Bm > Bmax, Bmax = Am|pm=p̂m .
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Naturally if the cost of voting is too high for any group then nobody from that group will vote, and
no “Partially Mixed” equilibrium of the form p∗i = 1 and p∗j ∈ (0, 1) exists. The next two propositions
examine the cases when the cost of voting for the minority is relatively small and the cost of voting for
the majority relatively large.

Proposition 8. Let m = n + 1 and Bm ∈ [B̂, Bmax). Then there exists a unique “Partially Mixed”
equilibrium given by p∗n = 1 and p∗m ∈ (0, 1) if An|pm=p∗m

≥ Bn. Let m = n + 1 and Bm = Bmax then
there is no “Partially Mixed” equilibrium.

Proof. The first part of the proof follows from Proposition 3 in Mavridis and Serena (2018). Notice that
if n = m−1 then p̂m = 1 and in this case Am is strictly increasing for pm ≤ 1. Because of this Am = Bm
has a unique solution p∗m > p∗∗m . The equilibrium exists as long as An|pm=p∗m

≥ Bn. For the second part
notice that when Bm = Bmax then necessarily p∗m = 1. But this means that An|pm=1 = 0, which means
that nobody from the minority group would vote.

The next proposition considers the m > n+ 1 case.

Proposition 9. Let m > n+ 1 and Bm ∈ [B̂, Bmax). There are two equilibria p∗n = 1 and p∗m1 ∈ (0, 1),
and p∗n = 1 and p∗m2 ∈ (0, 1) with pm1 < pm2 if Bn < An|pm=p∗m2

, one equilibrium p∗n = 1 and p∗m1 ∈ (0, 1)
if Bn ∈ [An|pm=p∗m1

, An|pm=p∗m2
) and no equilibrium otherwise. Let m > n + 1 and Bm = Bmax. Then

there exists one equilibrium p∗n = 1 and p∗m ∈ (0, 1) if Bn < An|pm=p∗m
.

Proof. The first part of the proof follows from Proposition 3 in Mavridis and Serena (2018). If m > n+1
then Am reaches a maximum at p̂m < 1 and at pm = 1 Am becomes zero. Since B̂ = Am|pm=p∗∗m

and
p∗∗m < p̂m, Am = Bm has two roots, which we will call p∗m1 and p∗m2 and without loss of generality
we will assume that p∗m1 < p∗m2. It follows from Proposition 3 in Mavridis and Serena (2018) that if
Bn > An|pm=p∗m1

no equilibrium exists. If Bn ∈ [An|pm=p∗m1
, An|pm=p∗m2

) then only the equilibrium
p∗n = 1,p∗m1 ∈ (0, 1) exists. Otherwise, if Bn < An|pm=p∗m2

, there are two equilibria p∗n = 1, p∗m1 ∈ (0, 1)
and p∗n = 1, p∗m2 ∈ (0, 1). For the second part notice that since Bm equals the unique maximum of Am
there is only one solution of Bmax = Am.

Comparative Statics. We provide comparative statics on p∗m of the “Partially Mixed” equilibrium
of the form p∗n = 1 and p∗m ∈ (0, 1).

Proposition 10. In the intervals for which Am is increasing, p∗m is increasing in Bm and decreasing
otherwise. For Am ≤ (≥)An, p∗m is decreasing (increasing) in m. Finally if m(m− 2n− 1)p2

m + 2n(n−
1)pm − n(n− 1) ≤ (≥)0 then p∗m is increasing (decreasing) in n.

Proof. The three parts follow from Proposition 3 in Mavridis and Serena (2018). The only part that needs
some further analysis is the third one. Notice that this quadratic inequality follows from Proposition 3
in Mavridis and Serena (2018) and that the roots of the quadratic equation m(m− 2n− 1)p2

m + 2n(n−
1)pm − n(n− 1) = 0 are given by:

p̃m =
n(n− 1)

n(n− 1)±
√
n(n− 1)(n(n− 1) +m(m− 2n− 1))

.

We discard the root with the negative sign in front of the square root because it becomes negative
if m − 2n − 1 > 0 and greater than one otherwise. Let m − 2n − 1 > 0. If pm ≤ p̃m then m(m −
2n − 1)p2

m + 2n(n − 1)pm − n(n − 1) ≤ 0 holds and p∗m is increasing in n. On the other hand if
m− 2n− 1 < 0 the function f(pm) = m(m− 2n− 1)p2

m + 2n(n− 1)pm−n(n− 1) is strictly concave and
has a unique maximum. At the unique maximum the value of the function is: n(n− 1) +m(m− 2n− 1),
which is greater than zero as long as n(n − 1) ≥ m(2n + 1 − m). In this case if pm ≤ p̃m then
m(m− 2n− 1)p2

m + 2n(n− 1)pm−n(n− 1) < 0 holds and p∗m is increasing in n. Otherwise if n(n− 1) <
m(2n+ 1−m) then m(m− 2n− 1)p2

m + 2n(n− 1)pm − n(n− 1) < 0 always holds and p∗m is increasing
in n.

In this section we derived the full characterization of the “Pure” and “Partially Mixed” equilibria.
Several differences emerge from the setting with symmetric benefits analyzed in Mavridis and Serena
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(2018). While in the symmetric setting of Mavridis and Serena (2018) the “Partially Mixed” is unique,
in the present asymmetric setting there are two “Partially Mixed” (as clear from the propositions of
this section, and also already from Figure 1). However, only one connects continuously with the unique
“Pure”. Furthermore, the same “Partially Mixed” also connects continuously to one “Totally Mixed”,
as we anticipated in Section 3 and we will further discuss in the next Section. Finally, while Mavridis
and Serena (2018) analysed the “Totally Mixed” only numerically, we derive an analytical result in
Proposition 11. The Proposition verifies Mavridis and Serena (2018)’s conjectures, arising from their
numerical results.

4.3 “Totally Mixed” equilibria and continuity refinement

Analytical findings. Propositions 1 to 10 fully characterized the “Pure” and “Partially Mixed” equi-
libria of the voting game. We are left to analyze the “Totally Mixed” equilibria. As discussed earlier in
the paper, the mixing conditions for the m citizens is defined by:

Am = Bm (14)

and the mixing condition for the n citizens is defined by:

An = Bn (15)

Since we have imposed the condition that all citizens within a group employ the same strategy, it
suffices to focus on the mixing condition of an m citizen for every pn, and that of an n citizen for every pm,
and analyze the intersections between these two in the (pm, pn)-space. These intersections are “Totally
Mixed” equilibrium pairs (p∗m, p

∗
n), which are what we are after in this Subsection.

In contrast with the “Pure” and “Partially Mixed” cases, it is challenging to derive a general algebraic
solution for equilibrium strategies of the “Totally Mixed” case, as expressions (14) and (15) are a system
of two polynomial equations of arbitrary power. Instead, in order to analyze them we will use a number
of indirect results about the space these equilibria lie on. For this it is useful to distinguish among the
three cases: Bm = Bn, Bm > Bn, and Bm < Bn. Thus, by (14) and (15), these translate into Am = An,
Am > An, and Am < An. Analyzing Am = An will greatly help the analysis of the other two cases.

The set of points for which Am = An is depicted by the two black lines of Figure 3; the increasing
and the decreasing one. These two black lines divide the (pm, pn)-space in four regions depending on
the ranking of Am and An. Keep in mind that the two mixing conditions are defined in the same space;
dividing the space in these four regions will help us analyze how the intersections of the two mixing
conditions behave.15

In Appendix A we characterize the set Am = An, through a series of lemmas. First, we find the four
points where these two lines touch the edges of the (pm, pn)-space (Lemma 1). Second, we characterize
the decreasing line connecting the top-left corner with the bottom-right corner (Lemma 2). Finally we
characterize the increasing line (Lemmas 3 and 4).16 We summarize this series of lemmas in Proposition
11.

Proposition 11. The only points (pm, pn) ∈ (0, 1)2 satisfying condition

Am = An (16)

are the points along the line pm+pn = 1 and along a continuous line that goes from (0, 0) to (p∗∗∗m , 1)

where p∗∗∗m = n(n−1)

n(n−1)+
√
n(n−1)(m−n)(m−n+1)

.

Proof. See Appendix A.

15At this stage it is interesting to compare our analysis with the one of Palfrey and Rosenthal (1983). In particular
in Section 6 of Palfrey and Rosenthal (1983), they discuss “totally quasi-symmetric equilibria”, which are what we call
“Totally Mixed” equilibria. However they analyze two special cases, which in our notation are: i) pm = pn and m = n and
ii) pm + pn = 1. In terms of our Figure 3 it means that they analyze equilibria that might arise along the two diagonals
(in the case of the 45-degree line, they also assume m = n).

16Note that, as it will be explained in more detail later, the fact that the increasing line is in fact increasing is not needed.
What is only needed is that it crosses the decreasing line once.
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Figure 3: Set of points in the (pm, pn)-space according to whether Am R An when m = 3 and n = 2.

This result characterizes analytically what Mavridis and Serena (2018) found numerically, and de-
scribed in their Figure 2. Furthermore, notice that in their Figure 2, the mixing conditions always cross
in the set Am = An, because they are interested only in the symmetric case of Bm = Bn. On the
contrary, we are interested in the more general case where Bm R Bn. For what concerns our (Running
Redistribution Example), as can be seen in (5) and (6), we have Bm > Bn, and thus all equilibria lie in
one of the two regions where Am > An of Figure 3.

Numerical findings. Our numerical exercise shows that the two mixing conditions (14) and (15)
cross at most once in each of the four regions delimited by the set of points such that Am = An (see
Figure 3). This implies that for every pair (Bm, Bn), we always have at most two “Totally Mixed”
equilibria, one where p∗m + p∗n < 1 which we name “Totally Mixed 1”, and one where p∗m + p∗n > 1 which
we name “Totally Mixed 2”.17 Including the “Partially Mixed” equilibrium previously characterized,
this shows that, all in all, we have at most three equilibria.

The crucial feature that emerges from our numerical exercise is that exactly one “Totally Mixed”
equilibrium satisfies the continuity refinement mentioned in Section 3. We now deliver the graphical
intuition about uniqueness and continuity.

In Figure 4 we depict in the (pm, pn)-space the conditions (14) and (15), where the red (blue) lines
represent the mixing condition correspondence An = Bn (Am = Bm) for a n− (m−) citizen for four
values of B, {0.166, 0.333, 0.5, 0.61}.18 In particular, we choose the third value to be the minimum B
such that the “Totally Mixed 1” equilibrium disappears (bottom-left panel), and the fourth value to
be the minimum B such that even the ”Totally Mixed 2” equilibrium disappears. The black lines in
Figure 4 are the set of (pm, pn) satisfying Am = An, as in Figure 3.

The equilibrium on the right side of the panel is the “Totally Mixed 2” equilibrium, which exists as
long as B ≤ 0.61. This equilibrium cannot clearly be continuously connected to the “Partially Mixed”

17These definitions of “Totally Mixed 1” and “Totally Mixed 2” are in line with those of Section 3.
18Notice that Figure 4 is reminiscent to Figure 2 in Mavridis and Serena (2018). However their setting with symmetric

payoffs yielded equilibria always lying along the increasing or decreasing line. In our setting with asymmetric payoffs the
equilibria do not lie on these two lines.
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Figure 4: Mixing conditions correspondences in the (pm, pn)-space respectively for B =
{0.166, 0.333, 0.5, 0.61}.

equilibrium, as we need p∗i to go to 0 and at the same time p∗j to be interior.19 For this to happen we
need that p∗m + p∗n < 1, which contradicts “Totally Mixed 2”, which hence is ruled out by the continuity
refinement.

The equilibrium on the left side of the panel is the “Totally Mixed 1” equilibrium, which exists as
long as B ≤ 0.5. In particular, it converges to the “Partially Mixed” equilibrium (p∗m, p

∗
n) = (0, 0.5)

as B → 0.5. Our numerical exercise shows that this continuous connection between the “Partially
Mixed” and the “Totally Mixed 1” is a general property. We exploit the uniqueness of equilibrium under
the continuity refinement in order to discuss comparative statics and characterization of the (Running
Redistribution Example), to which we dedicate the next Section, so as to shed light on the redistribution
trade-off spelled out in the Introduction.

5 Application - voting over redistribution of resources

From Proposition 4 we know that the “Partially Mixed” p∗m = 0 and p∗n = 1−B
1

n−1
n exist if and only if

Bm > nBn − (n − 1)B
n

n−1
n . Recall from (5) and (6) that Bm = 2c(n + m)/n and Bn = 2c(n + m)/m.

Finally, recall that the notation for our (Running Redistribution Example) is Bn = B and Bm = m
n B.

Plugging these expressions into

Bm ≥ nBn − (n− 1)B
n

n−1
n , (17)

19In terms of Figure 3 and Figure 4, equilibria must converge to the horizontal or vertical axis. This happens in the
third panel of Figure 4.
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we obtain (
m− n2

)
B + n(n− 1)B

n
n−1 > 0

B >

(
n2 −m
n2 − n

)n−1

.

And in fact, the lowest value of B for which the “Partially Mixed” exists is 0 when n2 ≤ m, while when

n2 > m it is
(
n2−m
n2−n

)n−1

, which decreases in m. In fact, as we increase m, we see that such threshold

moves to the left in the graph.

Notice that the “Partially Mixed” p∗m = 0 and p∗n = 1 − B
1

n−1
n exists until p∗n ↘ 0, which implies

1 − B
1

n−1
n = 0 ⇐⇒ Bn = B = 1. Hence, the highest B where the “Partially Mixed” exists is always

equal to B = 1. Moreover, the mixing equilibrium probability p∗n = 1− B
1

n−1 in the “Partially Mixed”
has the same graph in the four plots, as the functional form is the same and n does not change. Only
its existence region becomes bigger as m increases.

Therefore, if the “Partially Mixed” still exists as B goes to 0 (equivalently, c goes to 0), then the
“Partially Mixed” and “Pure” together form the unique equilibrium without any need for continuity,
and the poor citizens will never vote for any c > 0. Notice that the second term of the right-hand side
of (17) goes to 0 faster than the other terms in the inequality as B’s go to zero, and thus in the limit it
is negligible. Then, sufficiently close to 0, we are left with only Bm > nBn. By plugging the expressions
for Bm and Bn we get:

m ≥ n2. (18)

This is a necessary and sufficient condition for p∗m = 0 to hold in the unique equilibrium for any
c > 0. Also, it has a nice interpretation. If the society is sufficiently equal (m < n2), the poor might
vote and redistribution has a chance of winning. However, in a sufficiently unequal society (m ≥ n2),
the poor are doomed to lose the election.

Comparative Statics. How does a change of m affect (p∗m, p
∗
n)? We answer with the support of

Figure 5. We fix n = 3, and set m so as to initially have a very equal society (m = 4, top-left), and
gradually increase the inequality (m = 5, top-right, and m = 6, bottom-left), until we hit inequality
m = n2 (m = 9, bottom-right). When we hit this inequality threshold condition (18) is satisfied and the
“Totally Mixed 1” equilibrium (which survives continuity) disappears, and we are left with the “Partially
Mixed” and “Pure” only.20

Consider n = 3 and m = 4. Since the society has (slightly) more poor than rich citizens, the average
resource level is closer to the resources of a poor citizen than to the resources of a rich citizen, thus if
full redistribution wins, the individual loss of a single rich citizen is greater than the individual gain of
a single poor citizen. For this reason, an n rich citizen is willing to vote for greater B’s than an m poor
citizen. In other words, a rich has more at stake than a poor, and thus is willing to face a greater cost
of voting. Therefore, p∗n turns positive for greater values of B than p∗m does, as we can see in Figure 5.

Consider an increase of m (n = 3 and m = 5, or 6). This has the effect of sharpening the asymmetry
in willingness to face the cost of voting between rich and poor: in fact, now, p∗n turns positive for even
greater B’s (the rich has even more at stake to lose in case of full redistribution), while p∗m turns positive
for even lower B’s (the poor has even less at stake to win in case of full redistribution). This widens the
“Partially Mixed” region (see Figure 5).

If the increase in m reaches the inequality threshold when m = n2 (n = 3 and m = 9), the poor
has so little at stake that she is nowhere willing to face the cost of voting with positive probability in
equilibrium.21 A further increase in m would still imply p∗m = 0 everywhere, and further increases the
willingness to vote of the rich (i.e., p∗n increases for any given B, and p∗n turns positive for greater B’s).

This could be interpreted as a “poverty trap”: the greater is the share of poor in a society, the
less likely is redistribution of resources to be the outcome of a democratic process (and if m ≥ n2 this
probability is zero).

20This possibility that members of the majority never vote in the unique continuous equilibrium did not emerge from
the discussion of the special case of m = 3 and n = 2 in Figure 1. In fact, when m = 3 and n = 2, m < n2.

21Remember that if m ≥ n2 the equilibrium is unique without the need for continuity selection.
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Figure 5: Effects of increasing m, keeping n = 3, on voting probabilities in the unique continuous
equilibrium. First row left panel m = 4, right panel m = 5. Second row, left panel m = 6 right panel
m = 9.

Other applications. Beside the redistribution example other applications fit our asymmetric-
asymmetric setting. Our complete information setting springs from Palfrey and Rosenthal (1983), how-
ever we depart from them in that a citizen’s benefit of having the favorite alternative win can be asym-
metric according to whether the citizen supports one or the other alternative, meaning that the personal
benefit can differ between citizens supporting one alternative or the other. On top of that, we allow
for asymmetric group sizes. For instance, think of a university faculty consisting of several economists
and a few lawyers, all called to vote over who to hire between two job market candidates: an economist
and a lawyer.22 Both economists and lawyers are better-off if the newly hired candidate is of their same
type. Furthermore, the benefit for a lawyer from hiring another lawyer is greater than the one for an
economist from hiring another economist because of the asymmetric size of the two groups; that is, since
lawyers are fewer, having another lawyer in the department sharply increases each lawyer’s coauthoring
possibilities, whereas the benefit for an economist from having a new economist in the faculty is lower
because they are already plenty. In other words, the benefit is asymmetric across citizens of differ-
ent groups. Another example of asymmetric benefit across groups of asymmetric size is the following.
Residents of two neighborhoods are called to vote over the location of a new school in one of the two
neighborhoods. In neighborhood 1 there is already a school, in neighborhood 2 there is none: thus, de-
spite the fact that each resident strictly prefers the school to be located in her neighborhood, residents in
neighborhood 1 “care less” than residents in neighborhood 2 about the location of the school since there
is already a school in neighborhood 1. Both these settings (faculty and neighborhoods) are captured
by our asymmetric-asymmetric setup which, to the best of our knowledge, has not been studied before.
Finally, on the contrary of the already studied symmetric-symmetric and asymmetric-symmetric setups,
we deploy a continuity refinement, pinning down a unique equilibrium which we analysed.

22The cost of voting in this case is the opportunity cost of showing up to vote that day instead of, for example, being on
vacation or doing research.
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Appendix

We prove Proposition 11 by way of the following lemmata. See Figure 3.

Lemma 1. The only points satisfying (16) and (pm, pn) ∈ {0, 1}2 are: (0, 0), (0, 1), (1, 0), and (p∗∗∗m , 1),

with p∗∗∗m = n(n−1)

n(n−1)+
√
n(n−1)(m−n)(m−n+1)

. Also, p∗∗∗m = 1 iff m = n .

Proof. By continuity of Am and An in pm and pn, in order to analyze the behavior of Am and An in
(pm, pn) ∈ {0, 1}2 we can compute the following limits for Am

lim
pm→0

Am = npn(1− pn)n−1 + (1− pn)n

lim
pm→1

Am =


pnn + npn−1

n (1− pn)(
m−1
n

)
pnn

0

if m = n
if m = n+ 1
if m > n+ 1

lim
pn→0

Am = (1− pm)m−1

lim
pn→1

Am =

(
m− 1

n− 1

)
pn−1
m (1− pm)m−n +

(
m− 1

n

)
pnm(1− pm)m−n−1

and for An

lim
pm→0

An = (1− pn)n−1

lim
pm→1

An =

{
pn−1
n

0
if m = n
if m > n

lim
pn→0

An = m(1− pm)m−1 + (1− pm)m

lim
pn→1

An =

(
m

n

)
pnm(1− pm)m−n +

(
m

n− 1

)
pn−1
m (1− pm)m−n+1

From the above,
- if pm = 0, (16) holds iff pn = 0 or pn = 1
- if pm = 1, (16) holds iff pn = 0 or pn = 1 and m = n
- if pn = 0, (16) holds iff pm = 0 or pm = 1
- if pn = 1, (16) is equivalent to(

m− 1

n− 1

)
pn−1
m (1− pm)m−n +

(
m− 1

n

)
pnm(1− pm)m−n−1 =

(
m

n

)
pnm(1− pm)m−n +

(
m

n− 1

)
pn−1
m (1− pm)m−n+1(

m− 1

n− 1

)
(1− pm) +

(
m− 1

n

)
pm =

(
m

n

)
pm(1− pm) +

(
m

n− 1

)
(1− pm)2 (19)

If m = n, (19) boils down to

1− pm = pm(1− pm) +m (1− pm)
2

whose unique solution is pm = 1.
If m > n, (19) boils down to

(1− pm)

m− n
+
pm
n

=
mpm(1− pm)

n(m− n)
+

m(1− pm)2

(m− n)(m− n+ 1)

Solving the simple polynomial in the last expression we see that p∗∗∗m is indeed one of its two roots
(the second root has to be discarded since it is greater than 1).

Lemma 2. Equation pm + pn = 1 solves Am = An ∀(pm, pn) ∈ [0, 1]2.
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Proof. From (9) plug Am and An into (16), simplify for (1 − pm)m(1 − pn)n, and use pn = 1 − pm to
obtain

n∑
s=0

(
m− 1

s

)(
n

s

)
ps−sm (1− pm)−s−1+s +

n−1∑
s=0

(
m− 1

s

)(
n

s+ 1

)
ps−s−1
m (1− pm)−s−1+s+1

=

n−1∑
s=0

(
m

s

)(
n− 1

s

)
ps−s−1
m (1− pm)−s+s +

n−1∑
s=0

(
m

s+ 1

)(
n− 1

s

)
ps+1−s−1
m (1− pm)−s−1+s

pm

n∑
s=0

(
m− 1

s

)(
n

s

)
+ (1− pm)

n−1∑
s=0

(
m− 1

s

)(
n

s+ 1

)

= (1− pm)

n−1∑
s=0

(
m

s

)(
n− 1

s

)
+ pm

n−1∑
s=0

(
m

s+ 1

)(
n− 1

s

)

pm

n∑
s=0

(
m− 1

s

)(
n

n− s

)
+ (1− pm)

n−1∑
s=0

(
m− 1

s

)(
n

n− s− 1

)

= (1− pm)

n−1∑
s=0

(
m

s

)(
n− 1

n− s− 1

)
+ pm

n−1∑
s=0

(
m

s+ 1

)(
n− 1

n− s− 1

)

pm

(
m+ n− 1

n

)
+ (1− pm)

(
m+ n− 1

n− 1

)
= (1− pm)

(
m+ n− 1

n− 1

)
+ pm

(
m+ n− 1

n

)
0 = 0

where in the second-to-last step we used the symmetry rule for binomial coefficients, and in the last
step we used Vandermonde’s identity.23

Next we characterize the set of points Am = An that are depicted by an increasing line in the
(pm, pn)-space by means of two lemmas. In Lemma 3 We show that there exists a point (p∗∗m , p

∗∗
n ) along

the decreasing line which divides the neighborhoods of the decreasing line into two parts:

1. The first part is the one connecting (p∗∗m , p
∗∗
n ) and (1, 0), where we prove that increasing pm (i.e.,

moving to the right of the line), increases Am more than An. Since exactly along the line Am = An,
this result implies that to the right of the segment connecting (p∗∗m , p

∗∗
n ) and (1, 0) we have Am > An

and to its left we have Am < An.

2. The second part is the one connecting (0, 1) and (p∗∗m , p
∗∗
n ), where we prove that increasing pm (i.e.,

moving to the right of the line), increases Am less than An. Since exactly along the line, Am = An,
this result implies that to the right of the segment connecting (0, 1) and (p∗∗m , p

∗∗
n ) we have that

Am < An and to its left Am > An.

Lemma 3. There exists a unique pair (p∗∗m , p
∗∗
n ) ∈ (0, 1)2 with p∗∗m + p∗∗n = 1 such that

∂Am
∂pm

∣∣∣∣
pm+pn=1

>
∂An
∂pm

∣∣∣∣
pm+pn=1

iff pm > p∗∗m (or equivalently pn < p∗∗n )

Also, if m = n, then p∗∗m = p∗∗n = 1
2 , and if m > n, then p∗∗m ∈ (0, 1

2 ) and p∗∗n ∈ ( 1
2 , 1).

In particular,

p∗∗m =
n(n− 1)

n(n− 1) +
√
m(m− 1)n(n− 1)

and p∗∗n = 1− p∗∗m

23Vandermonde’s identity states that
(m+n

r

)
=
∑r

k=0

(m
k

)( n
r−k

)
for m,n, r ∈ N0.
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Proof. For notation simplicity and for the sake of space we define the following

p̃s,m =

(
pm

1− pm

)s
p̃s,n =

(
pn

1− pn

)s
Then,

∂Am
∂pm

∣∣∣∣
pm+pn=1

>
∂An
∂pm

∣∣∣∣
pm+pn=1

n∑
s=0

(
m− 1

s

)(
n

s

)
p̃s,mp̃s,n

s+ pm
pm(1− pm)2

+

n−1∑
s=0

(
m− 1

s

)(
n

s+ 1

)
p̃s,mp̃s,n

s+ pm
pm(1− pm)2

pn
1− pn

∣∣∣∣∣
pm+pn=1

>

n−1∑
s=0

(
m

s

)(
n− 1

s

)
p̃s,mp̃s,n

s

pm(1− pm)(1− pn)
+

n−1∑
s=0

(
m

s+ 1

)(
n− 1

s

)
p̃s,mp̃s,n

s+ 1

(1− pm)2(1− pn)

∣∣∣∣∣
pm+pn=1

by noticing that pm + pn = 1 implies p̃s,mp̃s,n = 1 the above inequality simplifies to

n∑
s=0

(
m− 1

s

)(
n

s

)
s+ pm

pm(1− pm)2
+

n−1∑
s=0

(
m− 1

s

)(
n

s+ 1

)
s+ pm

p2
m(1− pm)

>

n−1∑
s=0

(
m

s

)(
n− 1

s

)
s

p2
m(1− pm)

+

n−1∑
s=0

(
m

s+ 1

)(
n− 1

s

)
s+ 1

pm(1− pm)2

n∑
s=0

(
m− 1

s

)(
n

s

)
pm(s+ pm) +

n−1∑
s=0

(
m− 1

s

)(
n

s+ 1

)
(1− pm)(s+ pm) >

n−1∑
s=0

(
m

s

)(
n− 1

s

)
(1− pm)s+

n−1∑
s=0

(
m

s+ 1

)(
n− 1

s

)
pm(s+ 1)

Note that some summands in the above inequality contain s only in the binomial coefficients. By
applying to these terms the same procedure at the end of Lemma 2 (i.e. symmetry rule for binomial
coefficients and Vandermonde’s identity), we get

pm

n∑
s=0

(
m− 1

s

)(
n

s

)
s+p2

m

(
m+ n− 1

n

)
+(1−pm)

n−1∑
s=0

(
m− 1

s

)(
n

s+ 1

)
s+pm(1−pm)

(
m+ n− 1

n− 1

)
>

(1− pm)

n−1∑
s=0

(
m

s

)(
n− 1

s

)
s+ pm

n−1∑
s=0

(
m

s+ 1

)(
n− 1

s

)
s+ pm

(
m+ n− 1

n

)

pm

n∑
s=0

(
m− 1

s

)(
n

s

)
s+ (1− pm)

n−1∑
s=0

(
m− 1

s

)(
n

s+ 1

)
s >

(1−pm)

n−1∑
s=0

(
m

s

)(
n− 1

s

)
s+pm

n−1∑
s=0

(
m

s+ 1

)(
n− 1

s

)
s+pm(1−pm)

[(
m+ n− 1

n

)
−
(
m+ n− 1

n− 1

)]
we now analyze the summations left (containing s not only in the binomial coefficient), and use the
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fact that
∑n
s=0

(
m
s

)(
n
s

)
s = n

(
m+n−1

n

)
and that

∑n
s=0

(
m
s

)(
n
s+1

)
s = m

(
m+n−1
n−2

)
,24 and get

npm

(
m+ n− 2

n

)
+ (m− 1)(1− pm)

(
m+ n− 2

n− 2

)
>

(n− 1)(1− pm)

(
m+ n− 2

n− 1

)
+ (n− 1)pm

(
m+ n− 2

n

)
+ pm(1− pm)

[(
m− n− 1

n

)
−
(
m− n− 1

n− 1

)]

(m− 1)(1− pm)

(
m+ n− 2

n− 2

)
>

(n− 1)(1− pm)

(
m+ n− 2

n− 1

)
− pm

(
m+ n− 2

n

)
+ pm(1− pm)

[(
m− n− 1

n

)
−
(
m− n− 1

n− 1

)]
and simplifying by (m+n−2)!

(m−2)!(n−2)! we get

1− pm
m

>
1− pm
m− 1

− pm
n(n− 1)

+ pm(1− pm)
(m− n)(m+ n− 1)

m(m− 1)n(n− 1)

−n(n− 1)(1− pm) > −m(m− 1)pm + pm(1− pm)(m− n)(m+ n− 1)

(m− n)(m+ n− 1)p2
m + 2n(n− 1)pm − n(n− 1) > 0

pm >
n(n− 1)

n(n− 1) +
√
m(m− 1)n(n− 1)

= p∗∗m

If m = n it is trivial to see that p∗∗m = 1
2 . But notice also that p∗∗m decreases in m, and hence by

m > n, p∗∗m ∈ (0, 1
2 ) and p∗∗n ∈ ( 1

2 , 1).

Lemma 4 concludes the characterization of the increasing line.

Lemma 4. There exists a unique and continuous line in the (pm, pn)-space which satisfies Am = An
and connects (0, 0) and (p∗∗∗m , 1) Furthermore, this line crosses the pm + pn = 1 line once at (p∗∗m , p

∗∗
n ).

Proof. Lemma 2 establishes that the decreasing line connects two out of the four points satisfying Am =
An along the edges. The line connecting the remaining two points is continuous and by Lemma 3 crosses
the decreasing line once, at (p∗∗m , p

∗∗
n ).

24

n∑
s=0

(m
s

)(n
s

)
s =

n∑
s=0

(m
s

) n!

s!(n− s)!
s

=

n∑
s=0

(m
s

) n!

(s− 1)!(n− s)!
=

n∑
s=0

(m
s

) n!

(s− 1)!(n− 1− s + 1)!

=

n∑
s=0

(m
s

) (n− 1)!

(s− 1)!((n− 1)− (s− 1))!
n = n

(m + n− 1

n

)
Where the last equality follows from Valdemore’s identity. The calculations for the other summation are similar.
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