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ABSTRACT  

We introduce a commodity futures return predictor related to “fear” about weather, disease, 
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search volume data by 149 hazards as keywords, we define a commodity hazard-fear characteristic 
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Using this characteristic as trading signal in a long-short portfolio framework, we find a sizeable 
and significant commodity hazard-fear (CFEAR) premium. The CFEAR portfolio returns reflect 
some compensation for momentum, basis, skewness, basis-momentum, and illiquidity risks, but 
the risk-adjusted excess returns remain sizeable. Exposure to hazard-fear is strongly priced in the 
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risk factors. We identify a significant role for investor sentiment in the CFEAR premia. 
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“Data are widely available, what is scarce is the ability to extract wisdom from them” (Hal 
Varian, Google Chief Economist, emeritus Professor at University of California, Berkeley.) 

 

1. INTRODUCTION 

THE COMMODITY FUTURES PRICING literature largely rests on two pillars known as the theory of 

storage (Kaldor, 1939; Working, 1949; Brennan, 1958), and the hedging pressure hypothesis 

(Cootner, 1960; Hirshleifer, 1988) which contend that the fundamental backwardation-contango 

cycle, driven by supply and demand shocks, is the key driver of commodity futures prices.  

The theory of storage explains the basis (or roll yield) – the difference between a spot and the 

contemporaneous futures price – in terms of interest foregone in storing a commodity (opportunity 

cost), warehousing costs, and a convenience yield from inventory. With low inventories there is 

upward pressure on the spot price as the high convenience yield exceeds all other costs and hence, 

the term structure curve is in backwardation (downward sloped) and the roll yield is positive. The 

futures price is then expected to increase with maturity; thus, long futures positions are profitable. 

The opposite setting, called contango (upward sloped curve), is typical of abundant inventories; 

here the futures price is expected to decrease with maturity and short positions are profitable.  

The hedging pressure hypothesis stems from the normal backwardation theory of Keynes 

(1930) and Hicks (1939) which hinges on the interaction of hedgers (commercial traders) and 

speculators (non-commercial traders). The normal backwardation theory assumes that hedgers are 

net short, namely, commodity producers are hedging more than commodity consumers. The 

hedgers’ net short positions are matched off by speculators’ net long positions. Accordingly, 

futures prices are set low relative to the expected future spot price to entice speculators to take 

long positions; the subsequent increase in futures prices is interpreted as the “insurance” premium 

paid by hedgers to speculators. The hedging pressure hypothesis extends these ideas by allowing 

for the possibility of net-long hedging; accordingly, the futures price is set high relative to the 
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expected spot price to entice speculators to take short positions; the subsequent fall in futures prices 

is the “insurance” premium accrued by short speculators. In sum, hedgers participate in the futures 

markets to manage the risk of price fluctuations but their risk management would not be possible 

without the participation of speculators – speculators fulfil the role of balancing the commodity 

futures market when long and short commercial positions do not match each other. 

Building on the above mechanisms, namely, the dynamics of inventories and the inter-play of 

hedgers and speculators, we hypothesize that hazard fear contains predictive information about 

commodity futures returns. Admittedly, neither the theory of storage of Kaldor (1939) nor the 

hedging pressure hypothesis of Cootner (1960) explicitly state that hazard fear matters to 

commodity futures pricing. However, the fundamental interplay between hedgers and speculators 

portrayed by the hedging pressure hypothesis allows for a nexus between hazard fear and expected 

commodity futures returns, while the inherent asymmetry of inventories predicts a stronger hazard-

fear effect when the underlying event is supply-reducing (or demand increasing) than vice versa.  

Building on ideas from economic psychology, we argue that when economic agents feel 

“anxious” about a hazard – an event beyond their control that may abruptly alter the natural 

commodity backwardation-contango cycle – they search for information (Lemieux and Peterson, 

2011). It has been shown also that the internet, through search engine tools such as Google, 

particularly, has become a handy way of finding information that market participants trust.1 We 

proxy commodity hazard-fear by the volume of Google search queries by keywords representing 

weather, disease, geopolitical and economic hazards affecting the supply/demand. 

Our contributions are threefold. Using Google Trends data on search volume by 149 

commodity hazard-related keywords, we construct an index as proxy for aggregate commodity-

                                                                 
1 According to Smart Insights (www.smartinsights.com) in 2017 the number of daily searches on Google 
is 3.5 billion which equates to 1.2 trillion searches per year worldwide and, in terms of search engines, 
Google dominates averaging a net share of 74.54%. 
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hazard fear (CFEAR). Instead of using the commodity names as keywords as most papers in the 

literature, our search terms reflect weather, agricultural disease, geopolitical and economic hazards 

inducing a shift in the commodity supply and/or demand curve. We obtain a commodity-specific 

trading signal by measuring the past response of individual commodity futures returns to the hazard 

fear; namely, using past data we gauge the strength and direction of the co-movement of individual 

commodity futures excess returns and CFEAR index changes. Ours is the first attempt to construct 

a commodity-market fear index and to translate it into a commodity-specific hazard fear signal. 

Our second contribution is to the commodity risk factor investing literature by conducting 

time-series tests using various benchmarks in order to test the novel hypothesis that there is a 

CFEAR effect embedded in commodity futures prices. Specifically, we evaluate the performance 

of a long-short portfolio obtained by sorting 28 commodities according to the commodity-specific 

hazard fear signal. Our third and final contribution is to the relatively sparse commodity pricing 

literature by establishing through cross-sectional tests using a range of commodity portfolios 

(sorted on characteristics and sectors) or individual commodities that the CFEAR factor captures 

priced risk over and above that captured by traditional commodity pricing factors. Adding the 

CFEAR factor to the traditional four-factor model with the AVG, basis, hedging pressure and 

momentum factors provides a noticeable improvement in the cross-sectional fit. 

The long-short CFEAR portfolio construction exercise mimics the decisions of an investor in 

real time (or in an out-of-sample sense). Specifically, at each portfolio formation time t which is 

each week-start (Monday end) in our analysis, the representative investor takes short (long) 

positions in those commodities whose excess returns have positively (negatively) co-moved with 

the CFEAR index and holds the resulting fully-collateralized long-short portfolio for one week. 

Repeating this process until the end of the sample period, we appraise the CFEAR-based strategy 

using a traditional pricing model that uses as risk factors the excess returns of a long-only (weekly 
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rebalanced) portfolio of all commodities, and long-short basis, hedging pressure and momentum 

portfolios as the relevant risk factors. Employing separately two different sets of test assets (26 

commodity portfolios and 28 individual commodities), we assess whether the CFEAR factor can 

price the cross-section of individual commodity futures returns and commodity futures portfolios 

over and above what can be regarded as a set of “traditional” commodity risk factors.  

Empirically, we find that the long-short CFEAR portfolio captures an economically and 

statistically significant mean excess return of about 6.96% per annum (𝑡𝑡 = 3.00). The CFEAR 

premia translates to a Sharpe ratio of 0.7152 that is very attractive compared to the Sharpe ratio of 

traditional basis, hedging pressure and momentum portfolios over the same sample period. In time-

series spanning regressions the CFEAR factor generates large alphas relative to a model with four 

traditional factors: an average commodity market factor (i.e., return of equal-weighted long-only 

portfolio of all commodities, AVG), basis factor, hedging pressure (HP) factor, and momentum 

(Mom) factors. The results from cross-sectional tests suggest that the CFEAR-based factor has 

significant pricing ability both for individual commodities and commodity portfolios after 

controlling for the role of the traditional risk factors.  

Seeking to ascertain what the CFEAR premium relates to, a further analysis suggests that the 

CFEAR premia reflects positive exposure to commodity market skewness, but it is not subsumed 

by this risk. Further, we show that the CFEAR returns increase in lagged volatility and lagged 

illiquidity suggesting that speculators demand a greater premium to absorb imbalances in the 

supply and demand of futures contracts driven by hazard-fear when commodity futures markets 

are highly volatile or illiquid. The findings reveal that the CFEAR premium and alpha are notably 

higher in periods of bearish (pessimistic) investor sentiment as proxied by the VIX. Overall, we 

conclude that the CFEAR effect reflects exposure for commodity market risks but this is not the 

whole story; we identify a significant role for investor sentiment in the CFEAR premium. 
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Our paper is inspired by a recent literature that underscores the potential of internet search 

volume data to capture the actively-expressed beliefs and concerns of financial market participants 

and households (as opposed to indirect proxies such as the amount and tone of news and headlines). 

It has been shown that Google search queries can predict the mean and/or volatility of returns in 

equity markets (Da et al., 2011, 2014; Vozlyublennaia, 2015; Dimpfl and Jank, 2016; Ben Rhepael 

et al., 2017; Dzielinski et al., 2018), foreign exchange rate markets (Smith et al., 2012; Markiewicz 

et al., 2018), and for credit spreads in sovereign bond markets (Dergiades et al., 2015). Google 

search data has been found to be a useful out-of-sample predictor of changes in unemployment 

(see McLaren and Shanbogue, 2011, for the UK, D’Amuri and Marcucci, 2017, for the US and 

Niesert et al., 2019, for the UK, US, Canada, Germany and Japan) and other macroeconomic 

variables such as UK house prices (MacKaren and Shanbogue, 2011) and US private consumption 

(Vosen and Schmidt, 2011) beyond traditional indicators; e.g., internet searches by Jobseeker’s 

Allowance are typically made by those who think that they may soon become unemployed.  

More related to our study for commodity markets, internet search activity has been shown to 

contain predictive information for returns in various commodity markets (Han et al., 2017a, 2017b; 

Guo and Ji, 2013; Ji and Guo, 2015; Vozlyublennaia, 2014).2 We should note at this point that 

studies documenting the opposite finding, namely, that commodity returns or their volatility have 

predictive power for search volume changes, like that of Vozlyublennaia (2014), use commodity 

names as the Google search keywords (see also Baur and Dimpf (2016) for gold and silver). Stating 

                                                                 
2 Using WTI crude oil, corn price, heating oil and gold price as keywords, Ji and Guo (2015) establish a 
predictive link between Google searches and the subsequent prices of these commodities using weekly data. 
Han et al., (2017a) show that Google searches by 85 oil-related and real economy-related keywords can 
predict oil futures prices in- and out-of-sample using weekly and daily data. For 13 commodities, Han et al. 
(2017b) show that daily Google searches (by the commodity names as keywords (and combinations of them 
with the words price, futures, production and supply) can predict futures prices after controlling for several 
macroeconomic predictors. Guo and Ji (2013) show that market concerns revealed through Google searches 
by Libyan war, financial/economic/global crisis, economic recession influence the oil futures volatility. 
Vozlyublennaia (2014) analyses the link between gold/WTI crude oil index performance and investor 
attention and finds that commodity excess returns are influenced by search volume changes and vice versa.  
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that the commodity price evolution can predict the search volume changes when the search terms 

are instead hazards/catastrophe related would be a far-fetched contention. 

Our paper extends a scant literature that using case studies for coffee, corn or natural gas shows 

that the uncertainty surrounding an impending weather event increases systematically the 

commodity futures price during the pre-harvest season in the case of coffee and corn and in the 

run-up to the winter season in the case of natural gas (Di Tomasso and Till, 2000; Till, 2000; Till 

and Eagleeye, 2006). The commodity futures price is cast as “too high” when an analysis of 

historical data shows that significant profits can be made from taking short positions during the 

relevant uncertainty period. Inspired by these isolated case studies and by the extant evidence that 

search activity conveys market participants’ beliefs and concerns, we generalize the notion of 

“weather fear” to fear about weather, disease, geopolitical and economic events as proxied by 

Google search queries to construct a trading signal for each of 28 commodities. 

Our paper speaks to a fast growing empirical literature on risk-factor investing that suggests 

long-short strategies to capture premia in commodity futures markets. Consistent with the theory 

of storage of Kaldor (1939), Working (1949) and Brennan (1958), and the hedging pressure theory 

of Keynes (1930), Hicks (1939) and Cootner (1960), respectively, long-short strategies based on 

the roll yield, or the net positions of either hedgers (or speculators) relative to their total positions, 

have been shown to be profitable as they capture fundamental risks related to the inexorable 

backwardation-contango cycle. Momentum profitability in commodity futures markets has also 

been linked to the backwardation-contango cycle. In essence, the most backwardated commodity 

futures contracts, as proxied by high roll-yields, net long speculative positions, and good past 

performance, outperform the most contangoed futures contracts as proxiec by low roll-yields, net 

short speculative positions, and poor past performance; see e.g., Basu and Miffre (2013), Erb and 

Harvey (2006), Gorton and Rouwenhorst (2006) and Miffre and Rallis (2007).  
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Finally, our work is related to that of Gao and Süss (2015) who establish through univariate 

and multivariate regression analyses of commodity futures returns on various sentiment candidate 

proxies that sentiment exposure is present in commodity futures returns. Our focus is instead on 

hazard fear, and the finding that this is priced in commodity futures markets and that the effect is 

significantly pronounced when investor sentiment is bearish aligns with their key finding.  

The remainder of the paper unfolds as follows. In section 2 we motivate the empirical analysis 

and formulate testable hypothesis. Section 3 describes the methodology and data, and in Sections 

4 and 5 the empirical results are discuss. The paper ends with a summary and conclusions. 

2. THEORETICAL MOTIVATION AND TESTABLE PREDICTIONS 

The theoretical motivation for this study hinges on the interplay between hedgers and speculators, 

as contended by the risk transfer or hedging pressure hypothesis, while ascribing also a role to the 

theory of storage. Let t denote the current time, and 𝑡𝑡 + 𝑇𝑇0 the approximate date when an imminent 

hazard is expected to materialize, 𝐸𝐸𝑡𝑡�𝑆𝑆𝑖𝑖,𝑡𝑡+𝑇𝑇� is the future spot price of commodity i, and 𝐹𝐹𝑖𝑖,𝑡𝑡𝑇𝑇  the 

futures price for delivery at time T immediately after the hazard date (𝑇𝑇0 < 𝑇𝑇). Building on the 

view that the difference between the futures price and the spot price can be decomposed as the 

expected premium and the expected change in the spot price (Fama and French, 1987) 

𝐹𝐹𝑖𝑖,𝑡𝑡𝑇𝑇 − 𝑆𝑆𝑖𝑖,𝑡𝑡 = 𝐸𝐸𝑡𝑡�𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖,𝑡𝑡
𝑇𝑇 � + 𝐸𝐸𝑡𝑡�𝑆𝑆𝑖𝑖,𝑡𝑡+𝑇𝑇 − 𝑆𝑆𝑖𝑖,𝑡𝑡�                (1) 

since 𝐸𝐸𝑡𝑡�𝑆𝑆𝑖𝑖,𝑡𝑡� = 𝑆𝑆𝑖𝑖,𝑡𝑡, the expected premium is therefore conceptualized as the bias of the futures 

price as a forecast of the future spot price, namely 

𝐸𝐸𝑡𝑡�𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖,𝑡𝑡
𝑇𝑇 � = 𝐹𝐹𝑖𝑖,𝑡𝑡𝑇𝑇 − 𝐸𝐸𝑡𝑡�𝑆𝑆𝑖𝑖,𝑡𝑡+𝑇𝑇�                                                (2) 

Let us consider an impending hazard that, if and when it occurs at 𝑡𝑡 + 𝑇𝑇0, will drastically reduce 

the commodity supply and/or increase the commodity demand; e.g. severe heatwaves in the U.S. 

summer time can impair the corn pollination and hence, damage the crops, and simultaneously 
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hike the demand for natural gas for air conditioning.3 The hazard-fear leads economic agents (who 

tend to assume the worse) to predict a violent spike in the spot price post-hazard, 𝐸𝐸𝑡𝑡(𝑆𝑆𝑡𝑡+𝑇𝑇) 

increases, and accordingly this influence their commodity futures positions. Consumers may more 

long positions, while the producers may decrease their short positions in the hope of selling their 

commodity produce at a very high price spot at 𝑡𝑡 + 𝑇𝑇. Overall, the hazard fear induces an increase 

in the net long (or decrease in the net short) positions of hedgers. In order to entice speculators to 

absorb the latter, the commodity futures prices increases by a large amount so that the futures price 

is set above the expected future spot price, 𝐹𝐹𝑖𝑖,𝑡𝑡𝑇𝑇 > 𝐸𝐸𝑡𝑡(𝑆𝑆𝑡𝑡+𝑇𝑇). The difference reflects the hazard fear-

driven futures premia that short speculators (long hedgers) expect to earn (pay) for trading in 

futures markets. Assuming the expected future spot price does not change from t to T, we can 

rewrite Equation (2) at t=T as 0 = 𝐹𝐹𝑖𝑖,𝑇𝑇𝑇𝑇 − 𝐸𝐸𝑡𝑡(𝑆𝑆𝑡𝑡+𝑇𝑇)  which subtracted from (2) implies that 

∆𝐹𝐹𝑖𝑖,𝑡𝑡:𝑡𝑡+𝑇𝑇
𝑇𝑇 = 𝐹𝐹𝑖𝑖,𝑡𝑡+𝑇𝑇𝑇𝑇 -𝐹𝐹𝑖𝑖,𝑡𝑡𝑇𝑇  < 0, the subsequent fall in the commodity futures prices as maturity 

approaches  is the CFEAR premium received by speculators for absorbing the decrease (increase) 

in hedgers’ short (long) positions induced by supply-disrupting-hazard fear. 

Likewise, the commodity-hazard fear may be associated with an impending event that shifts 

down the commodity demand and/or shifts up the commodity supply (e.g., a positive shock to 

unemployment that shrinks the demand for natural gas or a weather event that boosts an 

agricultural harvest).4 In this context, the violent drop in the commodity price that is anticipated 

induces the commercial participants to take less long (more short) positions in futures. Specifically, 

                                                                 
3 Based on surveys conducted over 26-years, Goetzmann et al. (2017) find that the subjective probability of 
a severe, single-day stock market crash is much higher than what the historical probability of such rare 
events suggests. As Till and  Eeagleye (2006) argue agricultural commodity markets tend to assume the 
worse when it comes to real or perceived threats to the food supply.   
4 Weather events typically disrupt the commodity supply but they can occasionally favour the supply 
instead. For instance, the timing of El Niño determines whether the impact is positive or negative to coffee 
supply. The warm weather that El Niño brings in June-August aids the arabica coffee harvest as the crop 
solidifies and warmer weather protects against the spread of the Roya fungus (which thrives in wetter 
conditions). However, drier El Niño weather in December-February adversely affects the next arabica crop, 
helping to support coffee prices as the event continues (see Material Risk Insights www.material-risk.com).  

http://www.material-risk.com/
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producers take more short positions to hedge their output while the consumers of the commodities 

may decrease their demand for long positions given the possibility of buying their inputs at a low 

price spot. The hedgers are more net short (or less net long) and they entice speculators to absorb 

this change in positions (i.e., to be less net short or more net long) by setting the commodity futures 

price below the expected future spot price. The subsequent fall in the price of the commodity 

futures contracts is the CFEAR premium captured by long speculators for accommodating the 

increase in hedgers’ short positions prompted by demand-reducing hazard fear.  

Thus we conjecture that taking long positions at each portfolio formation time in the extreme 

quintile Q1 of  futures contracts on the commodities exposed to imminent hazards that are overall 

mostly demand-reducing (or supply-favouring) hazards is profitable; the hazard fear induces a too 

low futures price, 𝐹𝐹𝑄𝑄1,𝑡𝑡
𝑇𝑇 < 𝐸𝐸𝑡𝑡�𝑆𝑆𝑄𝑄1,𝑡𝑡+𝑇𝑇� which is expected to increase over time enabling a premium 

for long speculators ∆𝐹𝐹𝑄𝑄1,𝑡𝑡:𝑡𝑡+𝑇𝑇
𝑇𝑇 = 𝐹𝐹𝑄𝑄1,𝑡𝑡+𝑇𝑇

𝑇𝑇 -𝐹𝐹𝑄𝑄1,𝑡𝑡
𝑇𝑇 > 0 (Hypothesis 𝐻𝐻01). We conjecture that taking 

simultaneous short positions in the extreme quintile Q5 of futures contracts on the commodities 

most threatened by imminent supply-reducing (or demand-increasing) hazards is profitable; the 

hazard fear inflates the current futures price, 𝐹𝐹𝑄𝑄2,𝑡𝑡
𝑇𝑇 > 𝐸𝐸𝑡𝑡�𝑆𝑆𝑄𝑄2,𝑡𝑡+𝑇𝑇�, which is expected to decrease 

enabling a premium for short speculators ∆𝐹𝐹𝑄𝑄5,𝑡𝑡:𝑡𝑡+𝑇𝑇
𝑇𝑇 = 𝐹𝐹𝑄𝑄5,𝑡𝑡+𝑇𝑇

𝑇𝑇 -𝐹𝐹𝑄𝑄5,𝑡𝑡
𝑇𝑇 < 0 (Hypothesis 𝐻𝐻02). 

Bringing the dynamics of inventories into consideration, the inherent asymmetry of inventories 

may play a role in the CFEAR premium. Specifically, since inventories can (in principle) increase 

without bound but cannot decrease below zero, they lend themselves as an easier lever to cushion 

violent commodity price drops (due to hazards that reduce the demand or favour the supply) than 

violent price jumps (due to hazards that reduce the supply or increase the demand). Thus, it is 

plausible that speculators require more compensation to take short positions in commodity futures 

markets exposed to an imminent price-increasing hazard than to take long positions in commodity 

futures facing price-reducing hazards. In effect, supply-reducing (or demand-increasing) hazards 
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are more worrisome for economic agents as it then more difficult to entice speculators to take short 

positions due to the difficulty of using inventories as lever; this is similar to a short-selling 

constraint, namely, speculators can short-sell but are reluctant to do so which opens the possibility 

of fear (sentiment)-induced mispricicng in commodity futures. Accordingly, we conjecture that 

the excess return captured by the short quintile of commodity futures (Q5, as defined above) is 

larger in magnitude than that captured by the long quintile of commodity futures (Q1, as defined 

above): |∆𝐹𝐹𝑄𝑄5,𝑡𝑡:𝑡𝑡+𝑇𝑇
𝑇𝑇 | > ∆𝐹𝐹𝑄𝑄1,𝑡𝑡:𝑡𝑡+𝑇𝑇

𝑇𝑇   (Hypothesis 𝐻𝐻03). 

Finally, we also conjecture that exposure to hazard-fear is able to price the time-series and 

cross-sectional variation of commodity futures beyond known risk factors; namely, the hazard-fear 

portfolio attains significant risk-adjusted returns or “alpha” (Hypothesis H04) and is a key priced 

factor (Hypothesis H05). Specifically, our portfolio analysis of the predictive content of hazard 

fear takes into consideration the possibility that any hazard-fear premium might be fully explained 

by the traditional hedging pressure theory – the risk of net supply-demand imbalance among 

hedgers in the futures contracts induced by fundamental macroeconomic shocks –  which splits a 

futures price into an expected risk premium and a forecast of a future spot price as in Equation (2). 

We measure the risk-adjusted CFEAR premium as the excess returns that remain after controlling 

for exposure to hedging pressure and other known risks. Specifically, we control also for hedging 

pressure, basis and momentum risks, all of which relate to the backwardation-contango cycle, and 

other risks that relate to imbalances in the supply-demand for futures contracts that materialize 

when the market clearing ability of speculators is impaired such as illiquidity and volatility risks. 

3. EMPIRICAL METHODOLOGY AND DATA 

In this section, we begin by discussing the construction of the commodity-hazard fear (CFEAR) 

index, and the Google search data required. Next, we describe the long-short CFEAR portfolio 
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construction methodology, and the commodity futures data required. The observation period for 

the analysis runs from the first week of January 2004 to the last week of December 2018. 

2.1 Commodity hazard-fear (CFEAR) characteristic 

Following the extant literature that typically uses Google search volume as proxy for investor 

attention and information demand, the construction of the novel commodity-hazard fear (CFEAR) 

index in our study is based on internet search volume data obtained from Google Trends.5  Google 

organizes the searches by their origin (different regions and worldwide). We use the worldwide 

search data in the main empirical sections, and the US search data in the robustness tests section. 

We opt for the weekly sampling frequency for the Google search data three reasons.6 First, a 

relatively high-frequency such as weekly or daily (instead of monthly) is most pertinent to capture 

the dynamics of investor search behaviour or information demand; e.g. Da et al. (2011, 2015), 

Smith et al. (2012), Vozlyublennaia (2014), and Ji and Guo (2015) employ weekly search data and 

Ben-Rephael (2017) and Han et al. (2017b) use daily data. Second, our empirical framework is an 

out-of-sample portfolio analysis that mimics the real-time decisions of a commodity futures 

investor; most commodity factor investing studies are based on monthly-rebalanced portfolios 

(e.g., Basu and Miffre, 2013;  Fernandez-Perez et al., 2018; Szymanowska et al., 2014; Boons and 

Prado, 2019) since the daily rebalancing frequency is rarely used by practitioners for transaction 

cost considerations. Thus, the weekly frequency offers a reasonably balanced time resolution to 

study the information content of internet search queries in a realistic portfolio framework. A final 

reason is that due to Google Trends constraints each downloadable time-series has at most a time 

span of five years which can be, in principle, circumvented by concatenating sequential blocks of 

                                                                 
5 Google is the most widely used internet search engine worldwide; see https://www.google.com/trends.  
6 The weekly searches data from Google Trends cover Monday (hh:mm:ss) 00:00:00 to Sunday 23:59:59. 

https://www.google.com/trends
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data; unfortunately, Google Trends also imposes quotas on the number of time series; thus, the 

blocks of data have to be retrieved on different days which may introduce noise as explained below. 

The methodology to build our commodity-hazard fear index is inspired by the Da et al. (2015) 

approach to construct a Financial and Economic Attitudes Revealed by Search (FEARS) in equity 

markets.  We adapt their methodology to construct a commodity-hazard fear (CFEAR) index for 

the purpose of testing empirically the presence of a hazard-fear factor in commodity futures 

markets. The rationale is that an imminent threat to the commodity supply or demand triggers fear 

about dramatic price swings; we take the CFEAR index as proxy for this hazard-related fear. 

Using various sources (Iizumi and Ramankutty, 2015; Mu, 2007; Tomasso and Till, 2006; Till 

and Eagleeye, 2006; Filimon and Sornette, 2011; Israel and Briones, 2012; United Nations Office 

for Disaster Risk Reduction, 2018), we compile a primary list of raw (or primary) keywords that 

reflect commodity market price risks associated with weather disasters (WE), agricultural diseases 

(DI), geopolitical (GP), and economic (EC) vulnerabilities.7 Next we refine the raw keywords by 

examining the “top related searches” provided by Google Trends. From the top 10 related searches 

we retain the keywords that are related to our goal and not redundant.8,9 Finally, we add to the 

retained keywords the ‘risk’ and ‘warning’ terms, e.g. we consider tsunami, tsunami risk and 

                                                                 
7 We have considered additional sources such as Material Risk Insights (see www.material-risk.com). 
8 For instance if we search for hail damage one of the top related searches is hail storm so we can consider 
both. As regards redundant terms, for instance, top related searches associated with the term hurricane are 
those pertaining to specific hurricanes such as Katrina hurricane; the Google searches for the raw term 
hurricane exhibit a peak around the dates when the most catastrophic hurricanes have occurred which 
suggests that the specific term does not provide any additional information not already captured by the raw 
term. In other cases the top related searches have nothing to do with the aim of the paper, for instance, for 
the keyword flood, one of the top related searches is flood lights. 
9 We use keywords not surrounded by commas since, e.g. using the keywords tropical storm in Google 
Trends one obtains the number of searches that have been conducted including those two words in any 
order, e.g. it includes searches by what is the probability of a tropical rain storm. However, keywords with 
commas are much more restrictive as, for instance, using “tropical storm” in Google Trends one obtains 
the searches conducted by phrases that contain those two words literally. 

http://www.material-risk.com/
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tsunami warning. We thus end up with 𝐽𝐽 = 149 keywords which are listed in Table 1 by category: 

113 weather (WE), 10 crop diseases (DI), 14 geopolitical (GP) and 12 economic (EC) hazards.  

Out of the 149 keywords, searches by those in the first three (WE, DI and GP) categories are 

most likely to reflect concerns about commodity supply-reduction and/or demand-increases, 

whereas the EC keywords typically relate to demand-reduction. As WE examples, an extreme cold 

spell (or frosts) can damage the growth of cotton while simultaneously increase the demand of 

natural gas for heating purposes; extremely dry weather or wet weather may reduce the harvest of 

sugar and cocoa that thrive in the right mix of rain and sunshine.10,11  Among the DI hazards, an 

increase of crop diseases would reduce de supply of grain commodities or an outbreak of La Roya 

fungus would reduce the supply of coffee. GE hazards such as the Russian crisis or Ukraine crisis 

can threat the natural gas supply or the Middle East conflict can damage the provision of oil. As 

instances of EC hazards, a recession or a crisis can lead to a reduction of the demand for metal 

commodities such as copper, silver or platinum which are very linked to industrial performance. 

[Insert Table 1 around here] 

Let j denote a search keyword and w a sample week. Google Trends obtains the ratio between 

the volume of queries associated to the keyword j during week w, denoted 𝑉𝑉𝑗𝑗,𝑤𝑤,  and the entire 

volume of queries (for any keyword) in the same time period 𝑉𝑉𝑘𝑘,𝑤𝑤; the subscripts j and k stand for 

the jth keyword and any keyword, respectively. Subsequently, the ratio 𝑆𝑆𝑗𝑗,𝑤𝑤 ≡ 𝑉𝑉𝑗𝑗,𝑤𝑤/𝑉𝑉𝑘𝑘,𝑤𝑤 is then 

                                                                 
10 The data collection by 15 out of the 149 keywords (avalanche, blizzard, cold, frost, frosts, gust, gusts, 
heat, heavy rain, hurricanes, rain, snow, storm, wildfire and wind) is carried out within the Weather 
category of Google Trends since those terms can have other meanings unrelated to commodity supply and 
demand. For instance, the query frost can be related to the meteorological phenomena or to Jack Frost. We 
do not include livestock diseases since these events can simultaneously shift down the supply (e.g., cattle 
slaughtering) and demand (e.g., less beef consumption due to a health scare) and hence, the price can swing 
upwards or downwards. Hence, it is difficult for economic agents to predict the effect of a contagious 
livestock disease on the future livestock commodity spot price. 
11 The geopolitical keywords include terrorist attack(s) as potential supply disrupting threats. As discussed 
in ETF research “[… ] Even though industry data shows Brent oil production to be at multi-year highs, the 
price has risen to $110 (€79.5) a barrel. This is because of geopolitical risk in Ukraine, as well as a fall in 
production in the Middle East and Africa due to political instability and terrorism.” (Revesz, 2014) 
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divided by its historical maximum value and multiplied by a factor of 100 to scale it between 0 

and 100; this is the Google Search Volume Index (GSVI) provided by Google Trends which has 

the interpretation of a search probability. We collect weekly GSVI data for each of J=149 

keywords (denoted 𝑆𝑆𝑗𝑗,𝑤𝑤 hereafter); thus, 𝑆𝑆𝑗𝑗,𝑤𝑤 denotes the relative intensity of Google searches or 

search volume ratio for the keyword 𝑗𝑗 = 1, . . , 𝐽𝐽 during the week 𝑤𝑤 = 1, . . ,𝑊𝑊, with 0 ≤ 𝑆𝑆𝑗𝑗,𝑤𝑤 ≤

100.12 In effect, the 𝑆𝑆𝑗𝑗,𝑤𝑤 measure can be interpreted as a search probability equal to 0 if the jth 

keyword is not searched at all on week w, and equal to 100 in the peak search week of the keyword. 

 Google Trends compiles the GSVI data using random samples (not the entire population) to 

represent total searches and therefore the search data for a given week w downloaded on two 

different dates 𝑡𝑡1  and 𝑡𝑡2 can slightly differ, {𝑆𝑆𝑗𝑗,𝑤𝑤}𝑡𝑡1 ≠ {𝑆𝑆𝑗𝑗,𝑤𝑤}𝑡𝑡2. However, this well-known GSVI 

sample bias is small, as discussed  in Carrière-Swallow and Labbé (2013), Da et al. (2011), and 

McLaren and Shanbhogue (2011) inter alia. Nevertheless, following the latter studies, we alleviate 

concerns on this issue by downloading GSVI time-series per keyword on six different dates and 

defining our final Google search volume as the average of them, i.e. 𝑆𝑆𝑗𝑗,𝑤𝑤 ≡ 1
6
∑ {𝑆𝑆𝑗𝑗,𝑤𝑤}𝑑𝑑6
𝑑𝑑=1 . In our 

study, the six dates are 6th, 7th and 9th February 2019, and 15th, 16th and 17th  February 2019.13  

Figure 1 (Panel A) shows the evolution of the Google search index 𝑆𝑆𝑗𝑗,𝑡𝑡 for the keyword 

hurricane, and the average price of lumber futures (front-contract) in each sample month. 

[Insert Figure 1 here] 

We observe that the peaks in Google searches by hurricane precede the occurrence of ost notorious 

hurricanes such as, for instance, Hurricane Sandy on October 2012 or Hurricane Irma on 

September 2017. A peak in Google searches tends to be followed by an increase in lumber prices 

                                                                 
12 Google removes those terms introduced repeatedly by the same user to prevent artificial manipulation. 
13 The average pairwise correlation between the Google search series retrieved on the above 6 dates exceeds 
90% for 55 out of the 149 search terms and the average correlation is 78%. 
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which subsequently drop. Similar patterns are observed on Panels B and C; however, the opposite 

is observed in Panel D where increases in Google searches by unemployment (a demand-reduction 

related fear) are associated with decreases in the price of natural gas, which afterwards gradually 

adjusted upwards. These graphical examples provides prima facie evidence that the search 

intensity 𝑆𝑆𝑗𝑗,𝑡𝑡 reflects concerns about impending hazards. Of course, we cannot and do not assert 

that the users behind these searches are exclusively commodity market participants. In fact, this 

does not need to do so since what is important for the present research is that imminent hazards 

are accompanied by an increase in Google searches by keywords related to the hazard and thus, 

the increase in the Google searches can be taken as signal that an impending hazard is anticipated. 

Our goal is to obtain a commodity-specific signal to proxy for economic agents’ expectation as 

to the hazard fear-related price direction. The approach unfolds in various steps. As in Da et al. 

(2015), the measure of interest is the weekly log change in the Google search volume for keyword 

j defined as ∆𝑆𝑆𝑗𝑗,𝑤𝑤 ≡ log � 𝑆𝑆𝑗𝑗,𝑤𝑤

𝑆𝑆𝑗𝑗,𝑤𝑤−1
�, 𝑗𝑗 = 1, … , 𝐽𝐽. Working with changes mitigates the possibility of a 

relationship between search data and economic/financial variables that is actually spurious because 

it is solely driven by the presence of stochastic trends (McLaren and Shangobue, 2011; Baur and 

Dimpfl, 2016). Unreported Augmented Dickey-Fuller test results confirm that the 𝐽𝐽 search volume 

changes ∆𝑆𝑆𝑗𝑗,𝑤𝑤, like the commodity futures returns, are stationary whereas the levels are not. 

 As in Da et al. (2015), we winsorize the time-series of GSVI changes, {∆𝑆𝑆𝑗𝑗,𝑤𝑤}𝑤𝑤=1𝑊𝑊 , at the 5% 

level (2.5% in each tail); thus, if the Google search change ∆𝑆𝑆𝑗𝑗,𝑤𝑤 associated with j=drought on 

week w exceeds the limit ±1.96𝜎𝜎𝑗𝑗∆𝑆𝑆 we shrink it closer to the mean by replacing it by ∆𝑆𝑆����𝑗𝑗,𝑤𝑤 ±

1.96𝜎𝜎𝑗𝑗∆𝑆𝑆 (where  ∆𝑆𝑆����𝑗𝑗,𝑤𝑤 and 𝜎𝜎𝑗𝑗∆𝑆𝑆 are the mean and standard deviation of {∆𝑆𝑆𝑗𝑗,𝑤𝑤}𝑤𝑤=1𝑊𝑊 . Next, we obtain 

the deseasonalized Google search change time-series as the residuals of a regression of the 

winsorized ∆𝑆𝑆𝑗𝑗,𝑤𝑤 on monthly dummy variables. We do so to ensure that our data are not 
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contaminated by noise related to seasonality in the demand for information, e.g., Google searches 

by weather keywords may systematically increase in the run-up to holiday seasons such as summer 

or Christmas. Finally, we normalize the series by scaling the winsorized and deseasonalized series 

by their standard deviation so that all J time-series (associated with keywords 𝑗𝑗 = 1, … , 𝐽𝐽) of 

Google searches have unit standard deviation and are thus more comparable. Let us denote by 

∆𝑆𝑆𝑗𝑗,𝑤𝑤
∗  the winsorized, deseasonalized and normalized Google search series. 

Seeking to focus on the most relevant keywords (hazards) for each commodity, we carry out a 

data-based selection of the most relevant keywords. Specifically, as in Da et al. (2015) we employ 

a regression-based filtering process; specifically, we estimate by OLS the sensitivity of the 

commodity excess returns, 𝑃𝑃𝑖𝑖,𝑡𝑡−𝑙𝑙, to the Google search changes ∆𝑆𝑆𝑗𝑗,𝑡𝑡−𝑙𝑙
∗  for each of the 149 keywords 

𝑃𝑃𝑖𝑖,𝑡𝑡−𝑙𝑙 = 𝛼𝛼 + 𝛽𝛽𝑖𝑖,𝑗𝑗,𝑡𝑡−𝑙𝑙
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ∙ ∆𝑆𝑆𝑗𝑗,𝑡𝑡−𝑙𝑙

∗ + 𝜀𝜀𝑡𝑡−𝑙𝑙 ,      𝑙𝑙 = 1, … , 𝐿𝐿 weeks                                   (4) 

and retain only the keywords with the largest sensitivity 𝛽𝛽𝑖𝑖,𝑡𝑡−𝑙𝑙𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 estimate (according to the Newey-

West robust t-statistic at the 10% level or better). Suppose that for the ith commodity the first 𝐽𝐽1 

keywords (hazards) are retained as the most relevant, then at the final step we define the trading 

signal for commodity i as the aggregate value of those sensitivities   

𝐶𝐶𝐹𝐹𝐸𝐸𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡 ≡ ��̂�𝛽𝑖𝑖,𝑗𝑗,𝑡𝑡−𝑙𝑙
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

𝐽𝐽1

𝑗𝑗=1

 

such that if 𝐶𝐶𝐹𝐹𝐸𝐸𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡 > 0 this is telling us that overall (across all types of hazards affecting 

commodity i) the effect on the futures return was positive, namely, akin to a supply-disrupting of 

demand-increasing hazard effect, and vicevers.14 Da et al. (2015) carry out a similar regression-

based filtering but retaining only the keywords with large and positive t-statistic since their goal is 

                                                                 
14 Da et al. (2015) seek to focus only on those keywords associated with a contemporaneous deterioration 
in the overall equity market and accordingly they filter the “negative” keywords by estimating a similar 
regression of the equity market excess return on each of the Google search series (per keyword) using past 
expanding windows of data, 𝑃𝑃𝑡𝑡 = 𝛼𝛼 + 𝛽𝛽𝑗𝑗,𝑡𝑡

∆𝑆𝑆∆𝑆𝑆𝑗𝑗,𝑡𝑡
∗ + 𝜖𝜖𝑡𝑡, and retain the keywords with significant �̂�𝛽𝑗𝑗,𝑡𝑡

∆𝑆𝑆 < 0. 
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to focus on the Google searches associated with “negative” beliefs (i.e., pessimism) that, 

accordingly, commove with falling equity prices. The total number of long and short positions is 

identical in commodity futures (zero net-supply asset), and therefore falling futures prices are 

unfavorable for commodity futures market participants that are long but favourable instead for 

those that are short. For this reason, we retain the keywords (hazards) whose searches, as proxy 

for fear, most strongly affect the futures price in either direction.  

In robustness tests, we will repeat the signal construction by side-stepping the winsorization, 

deseasonalization and normalization of the Google searches series. The motivation against these 

transformations in our analysis is that since the goal is to exploit surges in hazard-related Google 

searches as conveying relevant commodity market fear, the winsorization (and final normalization) 

may filter out important information. Likewise, there may be informative seasonality associated 

with the Google searches since, say, in the case of corn the fear about extreme weather events 

ought to be highest in the pre-pollination period when the corn growth is most sensitive. 

2.2 CFEAR factor construction  

Our representative investor forms at each portfolio formation time t (week-start) a long-short 

portfolio of commodities using the hazard fear-based sorting signal �̂�𝛽𝑖𝑖,𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶. To avoid look-ahead 

bias and perform the analysis out-of-sample, the investor’s decisions at each time t hinge only on 

past information. For this purpose, we construct the CFEAR index iteratively at each portfolio 

formation time t using the available past data. With the commodity hazard-fear index at hand, and 

using the same past window of data, we measure the commodity-specific CFEAR signal using 

equation (4). We use recursive (expanding) windows with initial length of 𝐿𝐿 = 52 weeks.15  

                                                                 
15 Da et al. (2015) estimate their keyword-selecting regressions 𝑃𝑃𝑡𝑡 = 𝛼𝛼 + 𝛽𝛽𝑗𝑗,𝑡𝑡

∆𝑆𝑆∆𝑆𝑆𝑗𝑗,𝑡𝑡
∗ + 𝜖𝜖𝑡𝑡 using expanding 

windows to maximize the statistical power of the outcome. A difficulty with the use of fixed length windows 
in our context is that the hazards considered may occur twice or once within a year (or even more 
infrequently) and so a fixed length window of 52 weeks maybe too noisy for the estimation of Equation (2) 
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The CFEAR signal is appropriately standardized cross-sectionally, namely, 𝜃𝜃𝑖𝑖,𝑘𝑘,𝑡𝑡 ≡ (𝑥𝑥𝑖𝑖,𝑡𝑡 −

�̅�𝑥𝑡𝑡)/𝜎𝜎𝑡𝑡𝑥𝑥 where 𝑥𝑥𝑖𝑖,𝑡𝑡 is the 𝛽𝛽𝑖𝑖,𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 measure for the ith commodity and �̅�𝑥𝑘𝑘,𝑡𝑡 (𝜎𝜎𝑘𝑘,𝑡𝑡
𝑥𝑥 ) is the cross sectional 

mean (standard deviation) of 𝑥𝑥𝑖𝑖,𝑡𝑡 at time t.  Following the theoretical predictions outlined in the 

Introduction, a high level of fear as regards an impending hazard that disrupts the commodity 

supply or increases the demand (i.e., fear of a dramatic increase in the commodity price in the 

future) will increase the long positions of hedgers overall and hence, the commodity futures prices 

will set low to entice speculators to take risky short positions. Thus at the first portfolio formation 

time t, we sort the available cross-section of 28 commodities according to the disaster-fear signal 

𝜃𝜃𝑖𝑖,𝑡𝑡 and take short positions in the 𝑁𝑁/5 commodities (top quintile, Q5 hereafter) with the most 

positive signals, 𝜃𝜃𝑖𝑖,𝑡𝑡 > 0, that is, in those commodity futures whose price has co-moved most 

positively (or least negatively) with the CFEAR index over the preceding L-week window (i.e., 

associated with supply reducing or demand increasing hazards). We take long positions in the 

bottom quintile Q1 that is, on the commodity futures that have co-moved most negatively or least 

positively with the CFEAR index (most extreme 𝜃𝜃𝑖𝑖,𝑡𝑡 < 0). The constituents of the long and short 

portfolios are equally weighted, and the weights are appropriately scaled so that 100% of the 

investor mandate is invested, that is, ∑ 𝑤𝑤𝑖𝑖,𝑡𝑡
𝐿𝐿

𝑖𝑖 = ∑ �𝑤𝑤𝑗𝑗,𝑡𝑡
𝑆𝑆 �𝑗𝑗 = 0.5 with 𝑤𝑤𝑖𝑖,𝑡𝑡

𝐿𝐿 = �𝑤𝑤𝑗𝑗,𝑡𝑡
𝑆𝑆 � = 𝑤𝑤𝑡𝑡 for all 𝑖𝑖, 𝑗𝑗. 

 
We hold the long and short legs of the CFEAR portfolio for 1 week on a fully-collateralized 

basis; thus, the weekly portfolio excess return is 1/2 the return of the longs minus 1/2 the return of 

the shorts. We reconstruct the CFEAR index and form a new portfolio on the subsequent week-

start using the new past window (length 𝐿𝐿 + 1 weeks) and so on until the end of the sample period.  

 In order to test whether exposure to extant factors explains the hazard-fear premium, we adopt 

a “traditional” model in commodity pricing research that includes as factors the excess returns of 

                                                                 
to obtain the commodity-specific CFEAR signal. Considering L=520 weeks (10 years) poses the problem 
that it reduces considerable the sample of portfolio returns. We address this issue in the robustness tests. 
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the equally-weighted, weekly rebalanced, long-only portfolio of all commodities (AVG), and 

excess returns of well-known long-short portfolios to capture the premia related to the fundamental 

backwardation/contango cycle using roll-yield, momentum, and hedging pressure signals. 

 The roll-yield (or basis) characteristic of commodity i is defined, following the literature, as 

𝐶𝐶𝑅𝑅𝑙𝑙𝑙𝑙𝑖𝑖𝑡𝑡 ≡ ln�𝑓𝑓𝑖𝑖,𝑡𝑡
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡� − ln�𝑓𝑓𝑖𝑖,𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑑𝑑�                                                (5)                    

where 𝑓𝑓𝑖𝑖,𝑡𝑡
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡 and 𝑓𝑓𝑖𝑖,𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑑𝑑 denote, respectively, the logarithmic time t price of the front-end and 

second-end commodity futures contract (e.g., Bakshi et al., 2017; Erb and Harvey, 2006; Gorton 

and Rouwenhorst, 2006; Szymanowska et al., 2014). A positive (negative) roll-yield signals a 

negatively (positively)-sloping term structure which is typical of backwardation (contango). 

 The momentum trading signal for commodity i is the trend in returns, and is formally computed 

as the average excess return of its front-end futures contract over a lookback period of W weeks 

𝑀𝑀𝑅𝑅𝑃𝑃𝑖𝑖𝑡𝑡 ≡
1
𝑊𝑊
� 𝑃𝑃𝑖𝑖,𝑡𝑡−𝑗𝑗

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡
𝑊𝑊−1

𝑗𝑗=0
                                                                 (6) 

which for a reasonably long lookback period has been shown to be able to proxy for the 

backwardation/contango cycle. The intuition is that following a negative shock to inventories, 

which exerts upwards pressure on the spot price, a period of high expected futures risk premia will 

follow as inventories are gradually restored (Gorton et al., 2012). On a given week t the 

commodities in the cross-section with the largest 𝑀𝑀𝑅𝑅𝑃𝑃𝑖𝑖𝑡𝑡 > 0 tend to be the most backwardated. 

Finally, the hedging pressure (HP) characteristic for commodity i is defined as 

𝐻𝐻𝑃𝑃𝑆𝑆,𝑖𝑖𝑡𝑡 ≡ � 1
𝑊𝑊
�∑ 𝐿𝐿𝑓𝑓𝑓𝑓𝐿𝐿𝑆𝑆,𝑖𝑖𝑖𝑖−𝑗𝑗−𝑆𝑆ℎ𝑓𝑓𝑓𝑓𝑡𝑡𝑆𝑆,𝑖𝑖𝑖𝑖−𝑗𝑗

𝐿𝐿𝑓𝑓𝑓𝑓𝐿𝐿𝑆𝑆,𝑖𝑖𝑖𝑖−𝑗𝑗+𝑆𝑆ℎ𝑓𝑓𝑓𝑓𝑡𝑡𝑆𝑆,𝑖𝑖𝑖𝑖−𝑗𝑗

𝑊𝑊−1
𝑗𝑗=0                                             (7) 
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where 𝑆𝑆ℎ𝑅𝑅𝑃𝑃𝑡𝑡𝑆𝑆,𝑖𝑖𝑡𝑡 and 𝐿𝐿𝑅𝑅𝐿𝐿𝐿𝐿𝑆𝑆,𝑖𝑖𝑡𝑡 are, respectively, the week t total short open interest and long open 

interest of non-commercial traders along the entire curve (i.e. all available maturity contracts).16 

This signal conveys the extent of the net long positions of commodity futures speculators.  

We measure the commodity momentum and HP characteristics over a lookback period of 𝑊𝑊 =

52 weeks (one year) because prior studies have shown that the signals thus defined are relatively 

good predictors of commodity futures returns; see e.g., Erb and Harvey (2006), Miffre and Rallis 

(2007), Asness et al. (2013), Bakshi et a. (2017), Szymanowska et al. (2014) and Boons and Prado 

(2018), on momentum; and Basu and Miffre (2013) and Kang et al. (2016), on hedging pressure.  

We standardize cross-sectionally the above signals (like the CFEAR signal) to construct the 

corresponding factors; namely, 𝜃𝜃𝑖𝑖,𝑘𝑘,𝑡𝑡 ≡ (𝑥𝑥𝑖𝑖,𝑘𝑘,𝑡𝑡 − �̅�𝑥𝑘𝑘,𝑡𝑡)/𝜎𝜎𝑘𝑘,𝑡𝑡
𝑥𝑥  where 𝑥𝑥𝑖𝑖,𝑘𝑘,𝑡𝑡,𝑘𝑘 = 1, … ,3  denotes the 

momentum, roll-yield or HP signal. We form the corresponding portfolios at each week start t by 

taking long (short) positions in the most backwardated (contangoed) commodities, that is, those 

with positive (negative) 𝜃𝜃𝑖𝑖,𝑘𝑘,𝑡𝑡; any other element of the portfolio construction is as described above.  

 We collect end-of-day settlement prices from Datastream for the front- and second-nearest 

contracts on 28 commodities: 17 agricultural (4 cereal grains, 4 oilseeds, 4 meats, 5 miscellaneous 

other softs), 6 energy, and 5 metals (1 base, 4 precious). Table 2 lists them. 

[Insert Table 2 around here] 

 Given that the weekly Google Trends data reflects all searches from Monday to Sunday, for 

consistency we measure the weekly commodity excess returns as 𝑃𝑃𝑖𝑖,𝑡𝑡 = log � 𝑃𝑃𝑖𝑖,𝑖𝑖
𝑃𝑃𝑖𝑖,𝑖𝑖−1

� where 𝑃𝑃𝑖𝑖,𝑡𝑡 is 

the settlement price at Monday-end of each week t in the sample period. Thus the long-short 

portfolio formed at week-start (Monday) t is based on Google search data covering the immediately 

                                                                 
16 The CFTC aggregates all the positions of traders along the entire curve. The results are very similar when 

we use instead the hedgers’ hedging pressure signal 𝐻𝐻𝑃𝑃𝐻𝐻,𝑖𝑖𝑡𝑡 ≡ � 1
𝑊𝑊
�∑ 𝑆𝑆ℎ𝑓𝑓𝑓𝑓𝑡𝑡𝐻𝐻,𝑖𝑖𝑖𝑖−𝑗𝑗−𝐿𝐿𝑓𝑓𝑓𝑓𝐿𝐿𝐻𝐻,𝑖𝑖𝑖𝑖−𝑗𝑗

𝑆𝑆ℎ𝑓𝑓𝑓𝑓𝑡𝑡𝐻𝐻,𝑖𝑖𝑖𝑖−𝑗𝑗+𝐿𝐿𝑓𝑓𝑓𝑓𝐿𝐿𝐻𝐻,𝑖𝑖𝑖𝑖−𝑗𝑗

𝑊𝑊−1
𝑗𝑗=0 . 
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preceding week and prior weeks 𝐺𝐺𝑆𝑆𝑉𝑉𝐺𝐺𝑡𝑡−𝑗𝑗 , 𝑗𝑗 = 1, … , 𝐿𝐿; we use an expanding lookback period 

starting from L=52 weeks.  We obtain the long/short open interests of large speculators from the 

Commitments of Traders report of the Commodity Futures Trading Commission (CFTC).  

We deploy the strategies by taking positions on the first nearest-to-maturity (or front) contracts 

as these are the most liquid (i.e., those with the largest open interest and trading volume among the 

contracts of all available maturities). Specifically, excess returns are changes in logarithmic prices 

of the front-end contract up to one month before maturity when we roll to the second-nearest 

contract. This standard rolling approach mitigates the confounding impact of erratic prices and 

volumes as maturity approaches. Table 2 reports summary statistics for the weekly excess returns 

(annualized) of each commodity – mean, standard deviation, and first-order autocorrelation, AC(1) 

– together with their primary uses and main hazards.17 The AC(1) coefficients and unreported t-

statistics suggest that the weekly commodity excess returns are very weakly autocorrelated.  

4.  EMPIRICAL RESULTS 

We begin by discussing the in-sample predictive ability of the commodity CFEAR signal through 

panel regressions in Section 3.1 before examining its out-of-sample predictive ability in an 

economic (portfolio) evaluation framework in Section 3.2. Then we deploy time-series tests to 

assess whether the CFEAR portfolio delivers abnormal risk-adjusted returns (Section 3.3). Lastly, 

in Section 3.4 we assess the cross-sectional pricing ability of the CFEAR  

3.1 Does the CFEAR signal predict returns? 

We estimate panel regressions of the commodity excess returns on week t+1 on the commodity 

CFEAR signal (while controlling for other commodity characteristics) measured on week t using 

various model specifications which can be formalized altogether as 

                                                                 
17 The sources are Baker et al. (2018) and reports from Materials-Risk.com and Commodity.com. 
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𝑃𝑃𝑖𝑖,𝑡𝑡+1 = [𝑢𝑢𝑖𝑖] + [𝑢𝑢𝑡𝑡+1] + 𝛾𝛾𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝛽𝛽𝑖𝑖,𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 +     𝜹𝜹𝐶𝐶′ 𝑪𝑪𝑖𝑖,𝑡𝑡 + 𝜀𝜀𝑖𝑖,𝑡𝑡                                     (8) 

where square brackets denote a discretionary component. We consider a simple pooled ordinary 

least squares (POLS) regression model (𝑢𝑢𝑖𝑖 ≡ 𝑢𝑢, 𝑢𝑢𝑡𝑡+1 ≡ 0) , a panel fixed effects (FE) model with 

either commodity FE only (𝑢𝑢𝑡𝑡+1 ≡ 0) to control for the passive predictability component related 

to systematic differences across commodity markets, time FE only (𝑢𝑢𝑖𝑖 = 0) to control for the 

passive predictability component related to seasonality or business cycle variation common across 

markets, or two-way FE to control for both. Significance t-statistics for POLS and FE are computed 

using the Newey-West standard errors, time-clustered standard errors and commodity-clustered 

standard errors. We also consider the panel mean group estimator of Pesaran and Smith (1995; 

PMG) that allows for full heterogeneity in the predictive slopes (𝛾𝛾𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝑖𝑖, 𝜹𝜹𝐶𝐶,𝑖𝑖
′ )′ across 

commodities by averaging estimates from N individual time-series regressions and exploiting their 

dispersion to obtain the significance t-statistics. Table 3 reports the estimation results. 

[Insert Table 3 around here] 

As shown in column (1) of the table, POLS estimation, the predictive slope of the CFEAR 

characteristic is negative and strongly significant at −12.48 (𝑡𝑡 = −3.80) which translates to a 

decrease in the subsequent weekly excess returns of −5.59% per year for a one standard deviation 

increase in the CFEAR signal. Adding the commodity FE has almost no impact on the coefficient 

estimate, while adding the time FE improves the model fit notably, while the coefficient on lagged 

CFEAR remains large and significant at −11.24 (𝑡𝑡 = −3.53); this contrast between the 

commodity FE and time FE indirectly leaves a large role for the CFEAR signal to predict 

differences in returns in the cross-section. Columns (6)-(11) show that the momentum, basis and 

hedging pressure characteristics have very weak in-sample predictive content over the period 

2004-2018. Unsurprisingly, the last columns (12)-(14) show that the strong CFEAR predictive 

ability for weekly commodity returns is robust to the inclusion of these characteristics.  
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We further test whether the strong in-sample predictive ability of the CFEAR signal for weekly 

commodity returns is challenged by the inclusion of the lagged excess return, 𝑃𝑃𝑖𝑖,𝑡𝑡, as explanatory 

variable in Equation (6). The results reported on the Table A.1 of the online annex indicate that 

the lagged return is essentially insignificant and hence, the model fit (as measured by the 𝑎𝑎𝑎𝑎𝑗𝑗𝐶𝐶2) 

barely changes and the CFEAR signal retains its strong predictive ability for commodity excess 

returns.18 This is consistent with the small AC(1) coefficients reported in Table 2. 

Overall, these results suggest that the CFEAR characteristic measured at each week-start has 

in-sample predictive content for the commodity excess returns in the subsequent week. The 

predictability is robust to the joint consideration of traditional HP, basis and momentum predictors. 

However, in-sample predictability based on purely statistical criteria (significance t-statistics) is 

not tantamount to out-of-sample (OOS) predictability based on economic criteria (profitability 

measures). To assess the latter we now evaluate commodity futures portfolios formed at each time 

t using a CFEAR signal (and other traditional signals) based on past information. 

3.2 CFEAR portfolio analysis 

As just noted, this portfolio analysis is meant to assess the merit of the CFEAR characteristic as 

an out-of-sample commodity return predictor. Table 4 provides a battery of performance statistics 

for the CFEAR portfolio (and underlying quintiles), and for an equally weighted (AVG) long-only 

portfolio of the 28 commodity futures with weekly rebalancing, and traditional portfolios formed 

similarly using the hedging pressure, basis and momentum signals. 

[Insert Table 4 around here] 

                                                                 
18 These findings are unlikely to be contaminated by lagged-dependent-variable bias in dynamic panel fixed 
effects models for various reasons. One is that N is small relative to T in the present context (N=28 
commodities, T= 732 weeks) which acts towards reducing this potential bias towards zero. Another is that 
the same results are obtained for the POLS and PMG approach of Pesaran and Smith (1995) which do not 
suffer from this problem as tests clearly suggest that the model residuals are not autocorrelated. 
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We observe a monotonic decrease in the excess returns of the hazard fear-based commodity 

quintiles from 3.42% (Q1; most negative 𝛽𝛽𝑖𝑖𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 signal) to -10.49% (Q5; most positive 𝛽𝛽𝑖𝑖𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 

signal). Accordingly, a long-short portfolio that takes long (short) positions in the commodities 

with the most negative (positive) 𝛽𝛽𝑖𝑖𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 signal captures a significant premium of 6.96% per 

annum (𝑡𝑡 =  3.00) whereas the basis, hedging pressure and momentum portfolios capture over the 

same sample period a much smaller premium of  3.46% (𝑡𝑡 = 1.27), 5.98% (𝑡𝑡 = 2.32), and 1.51% 

(𝑡𝑡 =  0.51), respectively. Overall, these results suggest that the CFEAR measure has at least as 

good OOS predictive content for commodity excess returns as traditional characteristics such as 

basis, hedging pressure and momentum. The CFEAR portfolio excess returns translate into a 

Sharpe ratio of 0.7152 which represents an attractive reward-per-unit-of-risk versus the Sharpe 

ratios of traditional portfolios at 0.3387 (basis), 0.5926 (HP) and 0.1296 (Mom).  It is also 

noticeable that the CFEAR strategy stands well in terms of tail/crash risk as borne out, for instance, 

by a 99% VaR and maximum drawdown of 0.0311 and -0.1465, respectively, while the 

corresponding tail risk measures for the traditional portfolios lie, respectively, in the ranges 

[0.0331, 0.0421] and [-0.2872, -0.1828]. Confirming extant wisdom, the long-only (AVG) 

portfolio strategy is very unattractive with a negative mean return of -3.32%.   

Comparing the returns of the long (Q1; most negative CFEAR signal) and short (Q5; most 

positive CFEAR signal) legs of the hazard fear-based portfolio reveals that the significant CFEAR 

premium is mainly driven by the underperformance of the short-positions, namely, the 

commodities with the most positive 𝛽𝛽𝑖𝑖,𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 achieve a large (in absolute value) mean return of –

10.49% p.a. (t = -2.69). This finding is consistent with the inherent asymmetry of inventories; 

specifically, since inventories can (in theory) increase without bound but cannot become negative, 

they are an easier lever to cushion violent commodity price drops (due to hazards that reduce the 

demand or favour the supply) than violent price jumps (due to hazards that reduce the supply or 

increase the demand). Thus, it is plausible that speculators require more compensation to take short 
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positions in commodity futures markets exposed to an imminent price-increasing hazard than to 

take long positions in commodity futures facing price-reducing hazards.  

One may ask next whether the returns of the CFEAR long-short portfolio are driven by a few 

commodities that perpetually enter the long and/or short portfolios. To address this question, 

Figure 2 shows the frequency of portfolio formation weeks t = 1,…,T that each commodity enters 

the long and short CFEAR portfolios (Q1 and Q5 quintiles, respectively, according to the 

standardized 𝛽𝛽𝑖𝑖,𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 signal). The results are organized per commodity sector.  

 [Insert Figure 2 around here] 

With the exception of soybean oil, the frequencies are smaller from 100% (most of the frequencies 

are below 50%) which suggests that the portfolio constituents change over the sample weeks. 

Examining the graph per (sub)sector, we observe that the energy commodities are more often 

in the short Q5 portfolio (than in the long Q1 portfolio) which indicates that the hazards they are 

subject to are mainly supply-reducing or demand increasing; the exception is heating oil which is 

about 45% of the time in the long Q1 portfolio (and rarely in the short Q5 portfolio) suggesting 

that over the sample period under study it has been more often than not exposed to hazards that 

decreased demand (or increased supply) than to hazards the reduced supply (or increased demand). 

In contrast, the metals are more often in the long Q1 portfolio which is consistent with the fact that 

they are mainly exposed to EC hazards (e.g., recession) that are typically demand reducing.  

To investigate the extent to which the 𝛽𝛽𝑖𝑖,𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 signal acts as commodity futures return predictor 

in a manner that is independent of the traditional roll-yield, hedging pressure and momentum 

signals, Table 3, Panel B, reports the pairwise correlations among the excess returns of all 

portfolios. The commodity CFEAR portfolio is very mildly associated with traditional portfolios 
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with correlations ranging from -0.03 to 0.29. These results suggest that the predictive content of 

the CFEAR signal only mildly overlaps with that conveyed by traditional signals. 

[Insert Figure 3 around here] 

Figure 3 plots the future value of $1 invested in the CFEAR portfolio, in traditional long-short 

commodity portfolios, and in the long-only AVG portfolio. Confirming the findings in Table 4, 

the graph suggests that the CFEAR factor is an attractive investment.  

3.3 Time-series pricing tests 

The analysis in the preceding section reveals that the CFEAR strategy captures attractive mean 

excess returns in commodity markets. We now test whether the CFEAR premium can be 

rationalized as compensation for exposure to plausible risk factors. We consider the benchmark  

𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝑡𝑡 = 𝛼𝛼𝑃𝑃 + 𝛽𝛽𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶𝑉𝑉𝐺𝐺𝑡𝑡 + 𝛽𝛽𝑇𝑇𝑆𝑆𝑇𝑇𝑆𝑆𝑡𝑡+𝛽𝛽𝐻𝐻𝑃𝑃𝐻𝐻𝑃𝑃𝑡𝑡 + 𝛽𝛽𝑀𝑀𝑓𝑓𝑀𝑀𝑀𝑀𝑅𝑅𝑃𝑃𝑡𝑡 + 𝑣𝑣𝑃𝑃,𝑡𝑡, 𝑡𝑡 = 1, … ,𝑇𝑇        (9) 

where the regressors are the excess returns of the AVG portfolio as proxy for overall commodity 

risk, and the excess returns of the term-structure, hedging pressure and momentum portfolios as 

proxies for backwardation/contango risk following the literature (Bakshi et al., 2017; Basu and 

Miffre, 2013, among others). We test for the significance of the intercept (or alpha) that represents 

the excess returns of the commodity-FEAR portfolio that are not a compensation for the included 

risk factors. The betas (factor loadings) capture the risk exposures to each of the four factors. We 

consider the above specification as employed by Fernandez-Perez et al. (2018) and Bianchi et al. 

(2018) inter alia, and simple versions with one factor at a time. Table 5 reports the results. 

[Insert Table 5 around here] 

Confirming our prior findings from the portfolio correlation analysis in Table 4 (Panel B), the 

betas of HP and Mom are positive, whereas the beta of TS is negative. The alpha of the CFEAR 

portfolio is economically sizeable and statistically significant in all the models averaging 6.69% 

per annum (𝑡𝑡 >  3), slightly down from 6.96% in average excess returns. Therefore, risk exposure 

does not tell the whole story since while the CFEAR portfolio has significant exposure to 
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backwardation-contango related risks, it still provides substantial risk-adjusted returns (alpha). 

Since this time-series regression results suggest that the CFEAR factor is clearly not subsumed by 

traditional risk factors, it may improve the cross-sectional pricing ability when added to a model 

that includes the benchmark factors. We examine this conjecture in the next section.   

3.4 Cross-sectional pricing tests 

In this cross-sectional asset pricing analysis we employ, for consistency, the same benchmarks as 

in the preceding time-series tests. Specifically, the two questions we seek to address empirically 

are: i) Is exposure to the CFEAR factor priced?, iii) Does the CFEAR factor improve the 

explanatory power (and reduce the average pricing error) of an extant commodity pricing model? 

As previous commodity pricing studies we employ two sets of test assets. The first is a set of 

portfolios defined as the quintiles resulting from sorting the individual commodity futures 

according to the roll-yield, momentum, hedging pressure, and CFEAR signals, and the six sub-

sector portfolios (𝑁𝑁 = 5 × 4 + 6 = 26 portfolios).19  As Daskalaki et al. (2014) inter alia point 

out, a bias may emerge as regards the significance of the prices of risk from the fact that the test 

assets are portfolios sorted by the same criterion used to construct the risk factors. To lessen this 

concern we add portfolios based on (sub)sectoral criteria, and to fully to alleviate the concern, the 

second set of test assets are the 28 individual commodities whose cross-section of returns is harder 

to price and represents a hurdle for a new factor (Daskalaki et al., 2014; Boons and Prado, 2019). 

For the portfolio-level tests, as in Boons and Prado (2019), we estimate full-sample betas at 

step one by time-series OLS regressions of each portfolio excess returns on the risk factors  

𝑃𝑃𝑖𝑖,𝑡𝑡 = 𝛼𝛼𝑖𝑖 + 𝜷𝜷𝑖𝑖 ∙ 𝑭𝑭𝑡𝑡 + 𝜀𝜀𝑖𝑖,𝑡𝑡, 𝑡𝑡 = 1, … ,𝑇𝑇                                         (9) 

                                                                 
19 The metals sector is used as portfolio instead of considering base metal and precious metal subsectors 
because our cross-section only contains only one base metal, copper, within the former. Moreover, the 
classification is not clearcut; copper is sometimes listed as a precious metal because it is used in currency 
and jewelry, but it is not a precious metal as it is plentiful and readily oxidizes in moist air. 
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where 𝑭𝑭𝑠𝑠 = (𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝑡𝑡, 𝑃𝑃𝐶𝐶𝐴𝐴𝐴𝐴,𝑡𝑡 , 𝑃𝑃𝑀𝑀𝑓𝑓𝑀𝑀,𝑡𝑡, 𝑃𝑃𝑇𝑇𝑆𝑆,𝑡𝑡, 𝑃𝑃𝐻𝐻𝑃𝑃,𝑡𝑡)′ is the week t excess return of different portfolios, 

and 𝜀𝜀𝑖𝑖,𝑡𝑡 is an error term. As in Kan, Robotti and Shanken (2013) and Boons and Prado (2019), at 

step two we estimate a single CS regression of the average excess returns on the full-sample betas  

�̅�𝑃𝑖𝑖 = 𝜆𝜆0 + 𝝀𝝀𝜷𝜷�𝑖𝑖 + 𝜖𝜖𝑖𝑖, 𝑖𝑖 = 1,2, … ,𝑁𝑁                    (10) 

where 𝝀𝝀 = (𝜆𝜆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 , 𝜆𝜆𝐶𝐶𝐴𝐴𝐴𝐴 , 𝜆𝜆𝑀𝑀𝑓𝑓𝑀𝑀, 𝜆𝜆𝑇𝑇𝑆𝑆, 𝜆𝜆𝐻𝐻𝑃𝑃)′ are the prices of risk. Table 5 reports the OLS 

estimates ��̂�𝜆0, 𝝀𝝀�  �, and test their significance using t-statistics  based on Shanken (1992) standard 

errors (𝑡𝑡𝑆𝑆, to correct for error-in-variables in 𝜷𝜷�) and Kan, Robotti and Shanken (2013) standard 

errors (𝑡𝑡𝐾𝐾𝐶𝐶𝑆𝑆, to additionally correct for conditional heteroscedasticity and model misspecification). 

We also report the explanatory power, adjusted 𝐶𝐶2(%), and mean absolute pricing error, 

𝑀𝑀𝐶𝐶𝑃𝑃𝐸𝐸(%) = 100
𝑁𝑁
∑ |𝜀𝜀�̂�𝑖|𝑁𝑁
𝑖𝑖=1 , of Equation (10) to assess the merit of adding the CFEAR factor.20  

 For the 28 individual commodities as test assets, an unbalanced panel, we adopt the traditional 

Fama and MacBeth (1973) approach. Since the betas of individual commodities are notably time-

varying, as in Boons and Prado (2019) we obtain first the conditional commodity-level betas by 

estimating Equation (8) over a one-year rolling window of weekly returns up to week t-1. At step 

two, with the betas 𝜷𝜷�𝑖𝑖,𝑡𝑡−1 at hand, we estimate week-by-week cross-sectional OLS regressions 

𝑃𝑃𝑖𝑖,𝑡𝑡 = 𝜆𝜆𝑡𝑡0 + 𝝀𝝀𝑡𝑡𝜷𝜷�𝑖𝑖,𝑡𝑡−1 + 𝜖𝜖𝑖𝑖,𝑡𝑡, 𝑖𝑖 = 1,2, … ,𝑁𝑁            (11) 

where 𝝀𝝀𝑡𝑡 are the sequential (weekly) prices of risk. We report the average prices of risk from step 

two alongside t-statistics computed with both the Fama-MacBeth (1973) standard error formulae, 

𝑡𝑡𝐶𝐶𝑀𝑀, and the Shanken (1992) corrected version, 𝑡𝑡𝐶𝐶𝑀𝑀𝑆𝑆. As in Boons and Prado (2019), to ensure 

comparability with the portfolio-level tests, the adjusted R2(%) and MAPE(%) are from regressions 

of the average excess returns of the individual commodities on the full-sample betas.21   

                                                                 
20 Like Boons and Prado (2019) we use this approach for the portfolio-level tests so as to compute the Kan, 
Robotti and Shanken (2013) t-statistics. The results of the portfolio level-tests are similar when we deploy 
the Fama-MacBeth approach based on Shanken t-statistics as shown in Table A.2 of the online Annex. 
21 A further reason for obtaining the R2 from a single averaged-return regression is that the average R2 from 
the weekly regressions can be high even when the ex ante (average) risk premium is zero, as the ex post 
risk premia could be large but positive in some weeks and large but negative in others (Kan et al., 2013). 
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 [Insert Table 6 around here] 

As shown in Panel A for the 26 commodity portfolios, the parsimonious single-factor Model 

1 with the CFEAR factor only reveals that the hazard fear-risk is significantly positively priced at 

8.13% per annum. The cross-sectional fit of this model (adjusted 𝐶𝐶2 of 48.49% and MAPE of 

0.049%) is superior to that of parsimonious Models 2 to 5 with each of the traditional factors in 

turn as suggested by an adjusted 𝐶𝐶2 in the range 0.25% (AVG factor) to 37.61% (HP factor) and 

similarly by MAPE.  When the traditional AVG, momentum, basis and HP factors are considered 

together with the CFEAR factor (Model 7), the price of hazard-fear risk remains statistically and 

economically unchanged at 8.28% p.a. In fact, the cross-sectional fit of Model 7 as borne out by 

an adj.-𝐶𝐶2 of 72.32% and a weekly MAPE of 0.032% is notably better than that of the traditional 

four-factor Model 6 with counterpart measures of 45.90% (adj.-𝐶𝐶2) and 0.049% (MAPE). These 

findings are reaffirmed in Panel B for the 28 individual commodities, despite representing a more 

challenging hurdle for any new factor; specifically, the price of the CFEAR risk factor is a 

significant 7.6% p.a. in the model that includes also the four traditional factors.22  

5. WHAT ECONOMIC FORCES DRIVE THE CFEAR EFFECT? 

Having established that the CFEAR signal has in-sample and out-of-sample predictive ability for 

commodity excess returns that is independent of traditional signals (basis, hedging pressure and 

momentum) and that the CFEAR factor is a key determinant of cross-sectional variation in 

commodity excess returns, we seek to understand the underlying economic forces. 

4.1 Is the CFEAR premium a skewness premium in disguise? 

The theoretical motivation to formulate this question is that the commodity futures contracts in the 

short quintile Q5 are those with the most positive 𝛽𝛽𝑖𝑖,𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 characteristic in Equation (6); hence, these 

                                                                 
22 The findings of the commodity-level tests as regards the pricing ability of the CFEAR factor are not 
challenged when we estimate rolling 5-year betas at step one of the Fama-MacBeth approach. 
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are the commodities most strongly associated with hazards that dramatically reduce the supply or 

increase the demand and hence, experience upward price swings that materialize as large positive 

skewness. Vice versa the commodity futures contracts in Q1 (most negative 𝛽𝛽𝑖𝑖,𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 characteristic) 

are those most strongly associated with hazards that harshly reduce the demand (or increase the 

supply) and hence, exhibit violent downward price movements and large negative skewness. 

Hence, the negative (positive) returns of the Q5 (Q1) quintiles might simply reflect the investors’ 

dislike for negatively skewed assets, that is, the CFEAR premia may be fully rationalized as 

exposure to the commodity skewness risk factor documented by Fernandez-Perez et al. (2018).  

To address this question, as in Fernandez-Perez et al. (2018), we construct the skewness risk 

factor using as signal the realized skewness of each commodity based on daily returns in the prior 

year. First, in time-series regressions we address the question of whether the CFEAR portfolio 

returns can be explained as compensation for exposure to the skewness risk factor. Second, in 

cross-sectional regressions we ask whether the CFEAR factor retains its pricing ability once we 

control for the pricing ability of the skewness risk factor. Table 7 reports the results.23 

[Insert Table 7 around here] 

The time-series regression of CFEAR portfolio returns on the skewness risk factor (Model i in 

Panel A of Table 7) confirm the above rationale in suggesting that the CFEAR portfolio has a 

significantly positive skewness beta of 0.1325 (𝑡𝑡 = 2.59) but a significant alpha of 6.37% p.a. 

remains. More importantly, the CFEAR portfolio alpha at 6.68% in the traditional four-factor 

Model ii, drops insignificantly to 6.34% (𝑡𝑡 = 2.95) when the skewness risk factor is added.  

We turn now to the cross-sectional regressions employing the same set of 26 portfolios as test 

assets for comparison. Panel B of Table 7 reports the results. The cross-sectional adjusted 𝐶𝐶2 of 

                                                                 
23 Online Annex Table A.3 shows that the skewness portfolio captures a premia of 4.44% p.a. over the 
sample period. Consistent with the above theoretical motivation, the excess returns of the skewness 
portfolio and the CFEAR portfolio are significantly positively correlated at 14%.   
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Model 1 in Table 6 that includes only the CFEAR factor at 48.49% is similar to that of the model 

that includes only the skewness factor at 45.32% (Model 1 in Table 7). We observe that exposure 

to skewness risk captures a significant positive price of risk in Model 1 at 0.1439 (𝑡𝑡𝐾𝐾𝐶𝐶𝑆𝑆 = 2.17). 

When we add the CFEAR factor in Model 2 the economic and statistical significance of the 

skewness factor lessens to 0.1059 (𝑡𝑡𝐾𝐾𝐶𝐶𝑆𝑆 = 1.64) while the cross-sectional fit improves notably (the 

adjusted 𝐶𝐶2 increases from 45.32% in Model 1 to 65.55% in Model 2) and the MAPE falls from 

0.047 to 0.037. Overall, the CFEAR factor retains its strong cross-sectional pricing ability in 

models that include the skewness risk factor (Model 2 and Model 4). The cross-sectional regression 

results using the individual commodities do not challenge these findings and are reported in the 

Online Table A.4 to preserve space. These results reinforce the insights from the time-series tests 

in suggesting that the CFEAR factor relates to but is not subsumed by skewness risk. 

4.2 Basis-Momentum, illiquidity and volatility risk 

In a recent study by Boons and Prado (2019) a signal related to the slope and curvature of the 

commodity futures curve, referred to as basis-momentum, it shown to be an excellent predictor of 

commodity excess returns. Their evidence suggests that the basis-momentum factor is priced in 

the cross-section of commodities and commodity portfolios. Theoretically, this novel factor is 

consistent with imbalances in supply and demand of futures contracts that materialize when the 

market-clearing ability of speculators and financial intermediaries is impaired such as in episodes 

when overall commodity market volatility or illiquidity is higher.  Since the commodity hazards 

we are concerned with may create fear-induced imbalances in supply and demand of commodity 

futures, we test whether the CFEAR premium relates to exposure to basis-momentum risk. 

As in Boons and Prado (2019) we define the basis-momentum signal as the difference between 

the average past returns (momentum) in a first- and second-nearby futures contract 

𝐵𝐵𝑀𝑀𝑖𝑖𝑡𝑡 ≡
1
𝑊𝑊
� 𝑃𝑃𝑖𝑖,𝑡𝑡−𝑗𝑗

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡
𝑊𝑊−1

𝑗𝑗=0
−    

1
𝑊𝑊
� 𝑃𝑃𝑖𝑖,𝑡𝑡−𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑑𝑑

𝑊𝑊−1

𝑗𝑗=0
                                    (12) 
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using a one-year lookback period (𝑊𝑊 = 52 weeks). 

[Insert Table 8 around here] 

The basis-momentum portfolio captures a premium of 5.19% p.a. that exceeds the momentum and 

basis premia, in line with the findings in Boons and Prado (2019), despite differences in our sample 

periods (c.f. Table 4 and Online Annex Table A.3). The basis-momentum factor is positively 

correlated with the momentum and basis portfolio at 0.36 and 0.24, respectively, also in line with 

the findings in Boons and Prado (2019). Panel A of Table 8 suggests that the CFEAR excess returns 

reflect compensation for exposure to the basis-momentum factor as borne out by a significantly 

positive BM beta in Model i and Model iii. However, the alpha of the CFEAR strategy in the 

traditional four-factor Model ii at 6.68% p.a. (𝑡𝑡 = 3.14) decreases very little and remains 

significant at 6.23% p.a. (𝑡𝑡 = 2.80) after controlling for the BM factor. 

 The cross-sectional regressions in Panel B of Table 8 reveal first, in line with the findings 

in Boons and Prado (2019) that that exposure to basis-momentum is priced. Augmenting the 

traditional four-factor model with the BM factor improves the pricing model notably from 45.90% 

(adj.-R2) and 0.049% (MAPE) to 74.07% and 0.034%, respectively (c.f. Table 6 and Table 8). 

However, the significant pricing ability of the CFEAR factor is not challenged. Overall, we thus 

conclude that CFEAR predictability is not fully captured by the basis-momentum effect. 

Next we test whether the CFEAR risk is directly related to illiquidity risk. We consider two 

illiquidity risk factors. One is a tradeable risk factor constructed, following Marshall et al. (2012) 

and Szymanowska et al. (2014), as the excess returns of a long-short portfolio based on the 

Amivest liquidity measure obtained at each portfolio formation time as the dollar daily-volume 

over absolute daily excess return during the prior 2 months 𝐿𝐿𝐶𝐶𝑖𝑖𝑡𝑡 = 1
𝐷𝐷
∑ $𝐴𝐴𝑓𝑓𝑙𝑙𝑉𝑉𝑀𝑀𝑠𝑠𝑖𝑖𝑖𝑖

|𝑓𝑓𝑖𝑖𝑖𝑖|
𝐷𝐷
𝑑𝑑=1  where D is 

the number of days. We employ the inverse 1/𝐿𝐿𝐶𝐶𝑖𝑖𝑡𝑡 as illiquidity signal and take long positions in 

Q1 (most illiquid commodities) and short positions in Q5 (less illiquid commodities) using the 

portfolio approach described above in Section 3. The second illiquidity risk factor is the first-
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difference in the TED spread, the spread between the 3-month certificate of deposit and the T-bill 

rate, as proxy for innovations to funding illiquidity as in Boons and Prado (2019), Koijen et al. 

(2017) and Nagel (2016) inter alia. Table 9 reports the results. 

[Insert Table 9 around here] 

The time-series results in Panel A suggest that the CFEAR portfolio is significantly negative 

exposed to illiquidity shocks. Specifically, the negative beta of the Amivest-based illiquidity risk 

factor suggests that that the commodities in Q5 (those with the most positive CFEAR) are 

relatively illiquid. This may suggest that when there are imminent hazards that are likely to reduce 

the supply or increase the demand (which might be difficult to mitigate with inventories since the 

inventory cannot be negative) those commodities most affected become less liquid. This might be 

because the exchanges increase the margins as a way to avoid a large upward swing in the 

commodity price. However, the constant coefficient of Models i and iv of Table 9 which has an 

alpha interpretation as all the risk factors are tradeable, and that of Models ii and v remain 

economically large and significant at 7% p.a. (𝑡𝑡 >  3). Overall, these findings suggest that the 

CFEAR portfolio is exposed to illiquidity risk but it also captures a premium unrelated to this. 

The cross-sectional tests in Panel B suggest that illiquidity risk is negatively priced. These 

pricing findings concur with those in Boons and Prado (2019) even though the 26 commodity 

portfolios we employ as test assets somewhat differ from theirs. In line with their argument, the 

negative price of risk may suggest that investors are willing to pay for insurance against positive 

shocks to illiquidity. Interestingly, when we control for the CFEAR factor the price of the 

illiquidity risk decreases notably in magnitude and is statistically insignificant. This suggests that 

the CFEAR factor is priced partly because it exposes investors to illiquidity risk shocks. 

 
Last but not least, we examine the extent to which the CFEAR premia captures imbalances in 

the supply-demand of futures contracts that increase with commodity market volatility. For this 

purpose, we compute at each portfolio formation time (week-start) two distinct measures of 
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commodity market volatility using past 22-daily excess return data. As in Boons and Prado (2019), 

we compute an aggregate market volatility measure, 𝐶𝐶𝐿𝐿𝐿𝐿𝑃𝑃𝑉𝑉𝑎𝑎𝑃𝑃, as the variance of the excess 

returns of the AVG portfolio (equally-weighted portfolio of all 28 commodities), and an average 

market volatility measure, 𝐶𝐶𝑣𝑣𝑃𝑃𝑉𝑉𝑎𝑎𝑃𝑃,  as the average of the variances of the excess returns of each 

of the 28 commodities. We first-difference both measures (annualized) to proxy for innovations in 

commodity market volatility. Table 10 reports the time-series and cross-sectional tests. 

[Insert Table 10 around here] 

The time-series regressions suggest that CFEAR portfolio is negatively exposed to commodity 

market volatility risk but a significant alpha remains, and the cross-section regressions suggest that 

the price of volatility risk is substantial but is reduced notably and becomes insignificant when we 

control for the CFEAR factor. The similarity of findings for the volatility risk and illiquidity risk 

analyses is not surprising given that volatility acts as proxy for state variables driven the market 

liquidity, namely, the ability of speculators to clear the market (Boons and Prado, 2019). 

To shed light on the negative exposure of the CFEAR portfolio returns, following Boons and 

Prado (2019), we estimate predictive time-series regressions to ascertain how past illiquidity or 

past volatility affects the CFEAR portfolio returns. The model specification employed is 

𝑃𝑃𝑖𝑖,𝑡𝑡+1:𝑡𝑡+𝑘𝑘
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑎𝑎0 + 𝑎𝑎1𝑧𝑧𝑡𝑡 + 𝜀𝜀𝑖𝑖,𝑡𝑡+1:𝑡𝑡+𝑘𝑘                                                      (13) 

where t denotes each portfolio formation time (week-start in our analysis),  𝑃𝑃𝑖𝑖,𝑡𝑡+1:𝑡𝑡+𝑘𝑘
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  are the 

CFEAR portfolio weekly returns compounded over k={1, 4, 24, 52} weeks, and the predictor 

denotes either the (standardized) TED spread, aggregate commodity market variance or average 

commodity market variance 𝑧𝑧𝑡𝑡 = {TED, AggVar, AvgVar}. Table 11 reports the estimated 

coefficients and significant t-statistics based on Newey-West h.a.c. robust standard errors.  

[Insert Table 11 around here] 
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The results suggest that the predictive coefficient 𝑎𝑎1 is significant and positive in all three cases. 

Thus, commodity market volatility and funding illiquidity predict the CFEAR returns with a 

positive sign. An explanation for why the CFEAR returns increase in lagged volatility or illiquidity 

(i.e., positive 𝑎𝑎1 in Equation (6)) but the CFEAR returns are contemporaneously negatively 

exposed to volatility and illiquidity shocks (i.e., negative betas in the contemporaneous time-series 

pricing regressions) can be found in the Fama and French (1987) definition of the expected future 

spot price as the current futures price plus a risk premium, 𝐸𝐸𝑡𝑡(𝑆𝑆𝑡𝑡+𝑇𝑇) = 𝐹𝐹𝑡𝑡𝑇𝑇 + 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡.  Specifically, 

since the CFEAR premium is increasing in lagged volatility or illiquidity, holding 𝐸𝐸𝑡𝑡(𝑆𝑆𝑡𝑡+𝑇𝑇) 

constant, a volatility/illiquidity shock will lower the futures price contemporaneously.  

4.3 Uncertainty and sentiment  

We now turn to the question of whether the CFEAR premia is influenced by investor uncertainty 

and sentiment. Specifically, using uncertainty and sentiment as our criteria for this purpose we 

classify the sample weeks as those of high versus low uncertainty (and bearish versus bullish 

sentiment) and re-evaluate the performance of the long-short CFEAR portfolio per regime. Next 

we address the research question via a regression analysis to conduct statistical tests. 

We first consider financial uncertainty as proxied by the CBOE implied volatility index (VIX) 

also known as the “investor fear gauge” that measures the expected price fluctuations of the S&P 

500 options over the next 30 days. Although this is an equity-related proxy, widely used as 

sentiment signal, the equity market is still the most liquid and hence, proxies from this market are 

typically adopted as representative of general financial market sentiment (Gao and Süss, 2015). 24 

                                                                 
24 The CBOE applies its proprietary VIX methodology to create indices that reflect expected volatility for 
options on crude oil, silver, gold and energy ETFs but the time-series available are short (starting in 2007 
for oil, 2010 for gold and 2011 for silver and energy) and there are no commodity market-wide implied 
volatility indices available to date. For instance, the Crude Oil ETF Volatility Index ("Oil VIX", Ticker - 
OVX) measures the market's expectation of 30-day volatility of crude oil prices by applying the VIX 
methodology to United States Oil Fund, LP (Ticker - USO) options spanning a wide range of strike prices.  

http://www.cboe.com/uso
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Additionally, we employ the financial uncertainty index constructed by Jurado, Ludvigson 

and Ng (2015) for the 1-month-ahead horizon that exploits the information from 148 financial 

variables – these include valuation ratios such as the dividend-price ratio and earnings-price ratio, 

growth rates of aggregate dividends and prices, default and term spreads, yields on corporate bonds 

of different ratings and grades, yields on Treasuries and yield spreads, and a broad cross-section 

of industry, size, book-market, and momentum portfolio equity returns.25  

In order to focus on uncertainty that is more tightly linked to the macroeconomy, we employ 

the macroeconomic uncertainty index constructed by Jurado, Ludvigson and Ng (2015) for the 1- 

month-ahead horizon.  This index subsumes the information content of 132 macroeconomic 

variables in different categories such as real output and income (e.g., Industrial Production Index), 

labour market (e.g. unemployment), housing, consumption, orders, and inventories, money and 

credit (e.g., M1, M2), interest and exchange rates (e.g., Treasury Bill), and prices (e.g., CPI, PPI).  

Fourth, we consider uncertainty about the commodity market inventory. For this purpose, we 

proxy for each commodity the current inventory level by the roll-yield, as it is usual practice since 

the inventory data available is noisy or unavailable (Gorton et al., 2012). The aggregate commodity 

inventory uncertainty measure at each portfolio formation time (week start) is the average of the 

N variances of the daily roll-yields of each commodity in the preceding month.   

Finally, we proxy for commodity price uncertainty by measuring the average commodity 

market (realized) variance at each portfolio formation time as the equal-weight combination of the 

sum of squared daily excess returns of individual commodities in the preceding month. 

                                                                 
25 We obtain the data from Professor Sydney C. Ludvigson’s website which we gratefully acknowledge. In 
the Jurado et al. (2015) diffusion index forecasting framework, uncertainty is based on multiple indicators 
(collapsed into a small set of common factors), and is measured as the conditional 12-month ahead forecast 
error variance. We map their monthly uncertainty indices into weekly ones by simple interpolation. 
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Using the mean of each uncertainty measure as cutoff, we classify the weekly CFEAR 

portfolio returns into those occurring in high versus low uncertainty weeks. Table 12 reports the 

CFEAR premia, alpha (in the context of the traditional four-factor model) and Sharpe ratio with 

Newey-West h.a.c. robust t-statistics to test 𝐻𝐻0: 𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
ℎ𝑖𝑖𝐿𝐿ℎ = 𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑙𝑙𝑓𝑓𝑤𝑤  vs 𝐻𝐻0: 𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

ℎ𝑖𝑖𝐿𝐿ℎ > 𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑙𝑙𝑓𝑓𝑤𝑤  where 

𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
ℎ𝑖𝑖𝐿𝐿ℎ  denotes the CFEAR return or risk-adjusted return in the high uncertainty period. 

[Insert Table 12 around here] 

The results reveal that the CFEAR premium is much higher in the high VIX (bearish sentiment) 

period than in the low VIX (bullish sentiment) in magnitude ant the differential is strongly 

significant at the 1% level or better. Specifically, the CFEAR premium is 15.59% per annum (𝑡𝑡 =

3.81) in high VIX periods versus an insignificant 2.30% (𝑡𝑡 = 0.82) in low VIX periods. The same 

observation can be made as regards the CFEAR alpha of 0.1527 (high VIX) versus 0.0209 (low 

VIX), and Sharpe ratio of 1.5081 (high VIX) versus 0.2470 (low VIX).  

Likewise, we observe that the CFEAR premium (and alpha) is larger in high-uncertainty weeks 

as suggested by the the Jurado et al. (2015) financial uncertainty and macroeconomic uncertainty 

indices, the commodity price uncertainty, and the commodity inventory. But the corresponding  

high-vs-low CFEAR premium (and alpha) differentials are not reliably different from zero.  The 

contrasting result between the VIX as uncertainty indicator and the above measures (namely, the 

more pronounced risk-adjusted CFEAR premium in high versus low VIX periods, both 

economically and statistically) suggests that investor-sentiment plays a key role.   

 The rationale is that the “investor fear gauge” VIX is commonly perceived as capturing time-

varying risk aversion but is also a widely-perceived as a reliable market-based measure of investor 

sentiment (see e.g. Da et al., 2014; Gao and Süss, 2016). In fact, it has been shown that the 

fluctuations in the VIX are often too large to be fully rationalized as changes in economic 

uncertainty and global risk-aversion (e.g., Bloom, 2014). While highly correlated with the VIX at 

83%, as shown in Panel B of the Table 12, the financial uncertainty index of Jurado et al. (2015) 
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is less likely to reflect sentiment since none of the many financial variables it aggregates is 

regarded as a sentiment proxy in the literature. Overall, these results suggest that the premium 

demanded by commodity futures speculators for absorbing the hazard-fear induced changes in net 

positions of hedgers is more pronounced in periods of adverse (pessimistic) sentiment in financial 

markets. Thus, we assert that sentiment induced-mispricing also drives the CFEAR premium.  

 A natural question is whether a long-short commodity portfolio based on overall financial 

market sentiment as proxied by the VIX is as effective as the CFEAR portfolio to capture the 

hazard-fear premium. To assess this, we re-deploy Equation (4) replacing the CFEAR index by 

the log changes in the VIX. Unreported results, to preserve space, suggest that the resulting premia 

is small at 2.99% p.a. (t=0.90) and the correlation of the CFEAR portfolio returns and VIX-based 

commodity portfolio returns is very low at 0.03. This confirms that, although the CFEAR premium 

demanded by speculators increases in bearish (pessimistic) investor sentiment periods, the CFEAR 

signal captures specific commodity-hazard fear that the VIX is unable to capture. The CFEAR 

premium is influenced by overall financial market sentiment but not subsumed by it.  

6. EXTENSIONS AND ROBUSTNESS CHECKS 

In additional tests we begin by accounting for transaction costs, then we cycle through several 

aspects of the CFEAR signal construction method and long-short portfolio construction method.  

5.1. Turnover and transaction costs 

To get a sense of how trading intensive each strategy is, we measure the portfolio turnover (TO) 

defined as the time average of all the trades incurred 

𝑇𝑇𝑇𝑇𝑗𝑗 = 1
𝑇𝑇−1

∑ ∑ ��𝑤𝑤𝑗𝑗,𝑖𝑖,𝑡𝑡+1 − 𝑤𝑤𝑗𝑗,𝑖𝑖,𝑡𝑡+��𝑁𝑁
𝑖𝑖=1

𝑇𝑇−1
𝑡𝑡=1     (14) 

𝑡𝑡 = 1, … ,𝑇𝑇 denotes each of the (weekly) portfolio formation periods in the sample, 𝑤𝑤𝑗𝑗,𝑖𝑖,𝑡𝑡+1 is the 

ith commodity allocation weight dictated at week t by the jth strategy, 𝑤𝑤𝑗𝑗,𝑖𝑖,𝑡𝑡+ ≡ 𝑤𝑤𝑗𝑗,𝑖𝑖,𝑡𝑡 × 𝑃𝑃𝑓𝑓𝑖𝑖,𝑖𝑖+1  is 
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the actual portfolio weight right before the next rebalancing at 𝑡𝑡 + 1, 𝑃𝑃𝑖𝑖,𝑡𝑡+1 is the weekly return of 

the ith commodity from week-start 𝑡𝑡 to week-start 𝑡𝑡 + 1. Thus the TO measure also captures the 

mechanical evolution of the allocation weights due to within-week price dynamics (e.g., 

𝑤𝑤𝑗𝑗,𝑖𝑖,𝑡𝑡 increases to 𝑤𝑤𝑗𝑗,𝑖𝑖,𝑡𝑡+ when 𝑃𝑃𝑖𝑖,𝑡𝑡+1 > 0). The TO measure ranges from 0 with the buy and hold 

strategy to 2 when all the portfolio constituents change. Figure 4, Panel A graphs the TOs. 

[Insert Figure 4 around here] 

The results from Figure 4 suggest that the trading intensity of the commodity CFEAR portfolio 

with a TO of 0.10 is notably less than that of the basis (TO = 0.38), momentum (0.27), Skewness 

(0.21), and basis-momentum (0.37) portfolios,  similar to that of the illiquidity portfolio (0.10) 

but slightly more trading intensive than the HP portfolio (0.06). 

We also calculate the net return of each long-short portfolio as 

 𝑃𝑃𝑃𝑃,𝑡𝑡+1 = ∑ 𝑤𝑤𝑖𝑖,𝑡𝑡𝑃𝑃𝑖𝑖,𝑡𝑡+1 − 𝑇𝑇𝐶𝐶 ∑ �𝑤𝑤𝑖𝑖,𝑡𝑡 − 𝑤𝑤𝑖𝑖,𝑡𝑡−1+�𝑁𝑁
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1                           (15) 

using proportional trading costs of 8.6 bps (Marshall et al., 2012). Figure 4, Panel B, shows the 

Sharpe ratios before and after TC for the CFEAR long-short portfolio, and all other long-short 

commodity portfolios considered in the paper. It is noticeable that transaction costs subsume only 

a small part of the returns of the CFEAR strategy and accordingly, it still affords a very attractive 

performance both in relatively terms (vis-à-vis traditional strategies) and in absolute terms.  

5.2. CFEAR index measurement  

We now consider alternative ways to construct the CFEAR trading signal and then reappraise the 

magnitude of the CFEAR premia and its ability as risk factor to explain the cross-sectional 

variation of the same 26 commodity portfolios considered earlier. First, we sidestep the 

construction of the CFEAR index, Equation (4), and defined the CFEAR characteristic for each 
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commodity as the median of the slope coefficients obtained regressing its past excess returns on 

the GSVI changes by each of the 149 keywords as explained in Section 2.1.  

Second, we consider US Google searches (by the IP address of the user). Third, we sidestep 

the winsorization of the Google search changes ∆𝑆𝑆𝑗𝑗,𝑤𝑤 at step one to accommodate the possibility 

that large changes in the search volume from one week to the next reflect information as opposed 

to noise. Fourth, we sidestep instead the deseasonalization of the ∆𝑆𝑆𝑗𝑗,𝑤𝑤 series. Finally, we construct 

four alternative CFEAR indices by excluding each of the four keyword classes (WE, DI, GP and 

EC) in turn. Table 13 summarizes in Panel A the excess returns of the long-short CFEAR portfolio 

and Panel B reports the price of the CFEAR risk factor as obtained in a cross-sectional regression 

that includes the traditional AVG, hedging pressure, basis and momentum factors for the same 26 

commodity portfolios as employed above, and the cross-sectional adjusted 𝐶𝐶2(%). 

[Insert Table 13 around here] 

Column (1) of Panels A and B suggest that the alternative approach that sidesteps the 

construction of the CFEAR factor and defines the trading signal as the median slope across the 

149 keyword-related regressions does not challenge the key findings. As shown in cols. (2) and 

(3), the CFEAR premia is a bit stronger when using world searches than when considering only 

the US searches, as one might expect, since hazard-fear is not necessarily confined to the US. The 

winsorization of the Google searches somewhat increases the CFEAR premia, as shown in col. 

(4), confirming that it filters out the noise induced by the construction of the Google search series.  

Skipping the deseasonalization of the Google search volume changes increases the CFEAR 

premium suggesting that there is periodicity in some of the hazards (e.g., certain weather events 

are more likely to occur in one season than another) which is informative. Finally, the CFEAR 

premia obtained when we exclude the DI, GP and EC keywords, in turn, remains significant 

throughout as shown in cols. (5) to (8). When we exclude the WE keywords,, the CFEAR premium 

shrinks but the CFEAR factor retains its cross-sectional pricing ability. Nevertheless, it is difficult 
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for us to say whether the decrease in the CFEAR premia when we exclude the WE keywords is 

driven by the stronger role played by the weather hazards or instead the result is an artifact of the 

much larger number of WE keywords (76% of the total) in the sample.26 

5.3. CFEAR portfolio construction 

We now consider alternative portfolio formation methods. First, the ranking period is a fixed-

length window of 10 years (𝐿𝐿 = 520 weeks). Second, we focus on the extreme quintiles (Q1 and 

Q5 with 𝑁𝑁/5 commodities in each) as in the main analysis, but instead of equally-weighting the 

constituents, we weigh them by |𝜃𝜃𝑖𝑖,𝑘𝑘,𝑡𝑡| so that the size of the positions depends on the strength of 

the standardized signal. Next we consider various approaches that include in the long-short 

portfolios all N commodities (i.e., 𝑁𝑁/2 commodities in the long portfolio and the remaining 𝑁𝑁/2 

in the short portfolio) with various weighting schemes. The binary weighting scheme gives the 

same weight +1/𝑁𝑁 to each of the constituents of the long portfolio and −1/𝑁𝑁 to the constituents 

of the short portfolio. The standardized rankings approach weighs each of the constituents by their 

standardized ranking. The standardized signals approach weighs each of the constituents by 

|𝜃𝜃𝑖𝑖,𝑘𝑘,𝑡𝑡|. The winsorized-and-standardized signals approach is similar but we winsorize the signals 

cross-sectionally {𝑥𝑥𝑖𝑖,𝑘𝑘,𝑡𝑡} 𝑖𝑖 = 1, … ,𝑁𝑁 prior to standardizing them to mitigate the distorting effect of 

outliers in the portfolio allocations.27 Again in all of these cases, we appropriately scale the 

commodity weights to ensure  ∑ 𝜃𝜃�𝑖𝑖,𝑡𝑡𝐿𝐿𝑖𝑖 = ∑ �𝜃𝜃�𝑖𝑖,𝑡𝑡𝑆𝑆 �𝑖𝑖 = 0.5. Finally, we restrict the cross-section of 

commodities to the 80% commodities with the largest weekly open interest (number of outstanding 

                                                                 
26 We regress the CFEAR index on the hedging pressure, basis and momentum returns and define the filtered 
CFEAR index as the residuals seeking better to isolate the search behavior purely associated with fear 
(sentiment) as opposed to that driven by the fundamental backwardation-contango cycle. The unreported 
results to preserve space reveal a significant mean CFEAR excess return of 6.43% p.a. (𝑡𝑡 = 2.41) which is 
able significantly to price the cross-section of commodity portfolios (𝜆𝜆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 0.0903 (𝑡𝑡 = 2.87). 
27 Following DeMiguel et al. (2019), at each portfolio formation time we shrink the observations for the kth 
characteristic {𝑥𝑥𝑖𝑖,𝑘𝑘,𝑡𝑡} 𝑖𝑖 = 1, … ,𝑁𝑁above the upper threshold 𝑄𝑄3,𝑘𝑘 + 3 ∙ 𝐶𝐶𝑘𝑘 to this threshold value, and those 
below the lower threshold 𝑄𝑄1,𝑘𝑘 − 3 ∙ 𝐶𝐶𝑘𝑘 to this threshold value; 𝑄𝑄1,𝑘𝑘 and 𝑄𝑄3,𝑘𝑘 are the first and third quartiles 
of the distribution {𝑥𝑥𝑖𝑖,𝑘𝑘,𝑡𝑡} 𝑖𝑖 = 1, … ,𝑁𝑁  and 𝐶𝐶𝑘𝑘 is the interquartile range 
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contracts) at each portfolio formation time. This is further to make sure (alongside working with 

the front contracts) that the excess returns of the CFEAR portfolio do not reflect compensation for 

illiquidity. Table 14 reports the results.  

[Insert Table 14 around here] 

The main findings survive the alternative portfolio construction methods. The CFEAR 

premium is economically sizeable at 7.63% (versus 6.96% for an expanding lookback period 

starting from 52 weeks; c.f. Table 4) when the lookback period of 𝐿𝐿 = 52 ∙ 10 weeks is considered. 

This is aligned with our discussion in Section 2.2, noting that for the commodity-specific CFEAR 

signal to be reliable may require a long ranking period in order to provide reliable signals as most 

of the hazards occur infrequently (twice or once within a given year or less infrequently). However, 

the CFEAR premium is more mildly significant which relates to the fact that the sample of returns 

is notably shorter, by 10 years, from December 2008 to December 2018. 

Finally, we construct the CFEAR portfolio using the traditional approach of rebalancing at 

each month end (instead of weekly rebalancing) and holding the corresponding long-short 

positions for one month. We use the same approach for the AVG, momentum, basis and hedging 

pressure portfolios. The results are shown in Table 14. 

[Insert Table 14 around here] 

The results confirm that the momentum and basis strategies may have lost some of their “flavor” 

in the 2004-2018 period (see e.g., Barroso and Santa-Clara, 2015). The CFEAR premia remains 

economically sizeable and statistically significant at 6.42% (𝑡𝑡 = 2.78) translating into a Sharpe 

ratio of 0.7209 versus a hedging pressure premium of 5.16% (𝑡𝑡 = 1.99) and Sharpe ratio of 0.5592. 

Accordingly, we assert that our findings are not an artifact of the weekly portfolio frequency. 
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7. Conclusions 

This paper introduces a commodity hazard-fear signal related to commodity price expectations 

driven by fear about impending hazards that shift the commodity supply or demand. We find that 

commodity hazard-fear as proxied by the volume of Google searches by 149 weather, disease, 

geopolitical and economic hazard-related keywords has in-sample predictive ability for 

commodity excess returns. We address the out-of-sample predictability question through a 

portfolio framework with asset pricing implications. Hazard-fear is a good predictor of commodity 

excess returns and exposure to the CFEAR factor is priced and is a key determinant of cross-

sectional variation in individual commodity returns and commodity portfolio returns. 

The CFEAR excess returns reflect some compensation for exposure to various risk factors such 

as commodity skewness, basis-momentum and illiquidity, but this is not the whole story. The 

CFEAR premium is significantly more pronounced in bearish (pessimistic) investor sentiment 

periods suggesting that the premium also reflects sentiment-induced mispricing.  The findings are 

robust to transaction costs, CFEAR signal measurement and portfolio construction methods.  
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Table 1. Google search keywords  
This table lists all the search terms (J=149) used to construct the CFEAR index grouped according 
to the category of hazard or vulnerability that they represent. An asterisk indicates queries carried 
out specifically within the weather category of Google Trends.  

   
Crisis, financial crisis, economic crisis, recession, the recession, economic recession, recession 2008,
recession depression, unemployment, unemployment rate, US recession, US unemployment 

Weather (WE; 113 keywords) 
Adverse weather conditions, adverse weather warning, adverse weather, blizzard risk, blizzard warning,
blizzard*, catastrophic events, catastrophic weather, catastrophic weather events, climate change, climate
disturbance, cold spell, cold weather, cold*, cyclogenesis, cyclone, cyclone risk, cyclone warning, drought
risk, drought warning, drought, droughts, dry weather, el Niño weather, extreme cold temperatures,
extreme cold, extreme heat, extreme rain, extreme temperatures, extreme weather, extreme wind, flood
risk, flood warning, flood, flooding, floods, forest fire, forest fires, freeze warning, frost*, frosts*,frost risk,
frost warning, global warming, gust*, gusts*, hail, hail risk, hail warning, hail damage, hail storm, hail storm
warning, Harmattan wind, heat*,heatwaves, heatwave, heat waves, heat wave, heavy rain*, heavy rain fall, 
heavy rain risk, heavy rain warning, high temperature, high temperatures, hot weather, hurricane,
hurricanes*, hurricane risk, hurricane warning, natural disaster, natural hazard, rain*, severe heat, severe
weather, severe weather risk, snow*, snow risk, snow warning, snow storm warning, storm*, storm risk,
storm warning, strong wind, strong wind gust, tornado, tornado risk, tornado warning, torrent rain,
tropical cyclone, tropical cyclone risk, tropical cyclone warning, tropical storm, tropical storm risk, tropical
storm warning, tropical weather, typhoon, typhoon risk, typhoon warning, weather blizzard warning,
weather risk, weather warning, wet weather, wildfire*, wildfires, wildfire risk, wildfire warning, wind*,
wind gust, wind gusts, wind risk,  wind speed, wind storm, wind warning.

Crop diseases, crop pest, crop pests, crop pest risk, ebola, insect pest, la roya, pest control, pest risk, rust
coffee.

Africa instability, Africa terrorism, Libya crisis, Middle East conflict, Middle East instability, Middle East
terrorism, oil crisis, oil embargo, oil outage, Russia crisis, Syrian war, terrorism, terrorist attack, terrorist
attacks.
Economic (EC; 12 keywords)

Agricultural diseases (DI; 10 keywords)

Geopolitical (GP; 14 keywords)
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Table 2. Commodities sample  
This table lists the 28 futures contracts, main exchanges where they are traded, first and last observation date, annualized mean of excess returns (front contract), 
standard deviation, and first-order  autocorrelation with significant t-statistic,  primary uses (feed animals FA, feed people FP, feedstock for fuel production FF, 
industrial oil or lubricant OL, industrial uses IU, jewelry JW, power generation PG), and main hazards (weather WE, diseases DI, geopolitical GP, and economic 
EC) they are subject to. The panel is unbalanced and the longest time period covered is Jan 2004 (week1) to Dec 2018 (week 4). 

 

Mean StDev AR1 (t  stat) FA FP FF OL IU JW PG WE DI GE GP EC
I. Agricultural sector (N=17)
Corn Cereal grains CBOT 20040105 20181231 -0.0671 0.2912 -0.0021 (-0.04) √ √ √ √ √ √
Oats Cereal grains CBOT 20040105 20181231 0.0120 0.3475 -0.0339 (-1.05) √ √ √ √ √
Rough rice Cereal grains CBOT 20040105 20181231 -0.0819 0.2488 0.0101 (0.23) √ √ √ √ √
Wheat CBT Cereal grains CBOT 20040105 20181231 -0.1227 0.3152 0.0129 (0.34) √ √ √ √ √ √
Cotton no.2 Oilseeds NYMEX/ICE 20040105 20181231 -0.0220 0.2872 0.0085 (0.23) √ √ √ √ √
Soybeans Oilseeds CBOT 20040105 20181231 0.0525 0.2486 0.0256 (0.66) √ √ √ √ √ √
Soybean meal Oilseeds CBOT 20040105 20181231 0.1092 0.2872 0.0462 (1.14) √ √ √ √ √ √
Soybean oil Oilseeds CBOT 20040105 20181231 -0.0467 0.2460 -0.0176 (-0.46) √ √ √ √ √ √
Feeder cattle Meats CME 20040105 20181231 0.0270 0.1659 -0.0479 (-1.30) √ √ √ √
Lean hogs Meats CME 20040105 20150706 -0.0662 0.2377 0.0650 (1.27) √ √ √ √
Live cattle Meats CME 20040105 20181231 -0.0075 0.1602 -0.0618 (-2.05) √ √ √ √
Frozen pork bellies Meats CME 20040105 20110705 -0.0228 0.2979 -0.0570 (-0.93) √ √ √ √
Cocoa Misc. other softs NYMEX/ICE 20040105 20181231 0.0253 0.2948 -0.0237 (-0.68) √ √ √ √
Coffee C Misc. other softs NYMEX/ICE 20040105 20181231 -0.0551 0.3115 0.0115 (0.27) √ √ √
Frozen Orange juice Misc. other softs ICE/NYMEX 20040105 20181231 0.0176 0.3414 0.0344 (0.93) √ √ √
Sugar no.11 Misc. other softs NYMEX/ICE 20040105 20181231 -0.0417 0.3141 -0.0351 (-0.87) √ √ √ √
Lumber Misc. other softs CME 20040105 20181231 -0.1229 0.3087 0.0074 (0.21) √ √ √ √ √
II. Energy sector (N=6)
Light crude oil Energy NYMEX 20040105 20181231 -0.0753 0.3400 -0.0200 (-0.41) √ √ √ √
Electricity JPM Energy NYMEX 20040105 20150727 -0.1454 0.4428 0.0619 (0.97) √ √ √
Gasoline RBOB Energy NYMEX 20051010 20181231 -0.0305 0.3227 0.0404 (0.72) √ √ √
Heating oil Energy NYMEX 20040105 20181231 -0.0125 0.3095 0.0227 (0.50) √ √ √ √
Natural gas Energy NYMEX 20040105 20181231 -0.3633 0.4224 -0.0102 (-0.26) √ √ √ √
NY unleaded gas Energy NYMEX 20040105 20070102 0.1768 0.3686 -0.0146 (-0.21) √ √ √
III. Metals (N=5)
Copper (High Grade) Base metals COMEX 20040105 20181231 0.0682 0.2720 0.0188 (0.32) √ √
Gold 100oz (CMX) Precious metals COMEX 20040105 20181231 0.0560 0.1785 -0.0090 (-0.24) √ √ √ √
Palladium Precious metals NYMEX 20040105 20181231 0.0988 0.3148 0.0220 (0.52) √ √ √ √
Platinum Precious metals NYMEX 20040105 20181231 -0.0114 0.2302 0.0167 (0.48) √ √ √
Silver 5000 oz Precious metals COMEX 20040105 20181231 0.0421 0.3196 0.0117 (0.27) √ √ √

Primary uses HazardsExcess return 
Commodity First obs 

YYYYMMDD
Last obs 

YYYYMMDD
ExchangesSub-sector
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Table 3. Panel regressions: Predictive ability of CFEAR characteristic  
The table presents the estimation results of panel regressions of the weekly excess returns of the 28 commodities on one-week lagged commodity 
characteristics, Equation (6). The models reported in columns (1) to (5) only include the 𝛽𝛽𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 measure. The models in cols. (6)-(8) only include 
the roll-yield, momentum and HP(S) measures, respectively. The models in columns (9) and (10) include all four commodity characteristics. POLS 
is a pooled regression with an unreported intercept, FE are fixed effects models and PMG is the panel mean group estimator of Pesaran and Smith 
(1995). t-statistics for the POLS/FE estimator are calculated using Newey-West h.a.c standard errors (in parenthesis), standard errors clustered in 
the time dimension (curly brackets), and commodity dimension (angle brackets). t-statistics for the PMG estimator and based on the standard 
deviation of the individual time-series coefficients. 

   
 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)
POLS PMG PMG

CFEAR -12.4841 -12.5989 -11.2446 -10.4937 -22.1841 -10.9702 -26.1549
(-3.80) (-3.02) (-3.53) (-2.45) (-3.54) (-2.52) (-3.09)
{-2.52} {-1.87} {-2.66} {-1.77} {-1.86}
<-3.66> <-4.41> <-2.95> <-3.19> <-3.28>

Roll-yield -0.0145 -0.0200 -0.0120 0.0070
(-1.14) (-0.55) (-0.92) (0.15)
{-0.90} {-0.73}
<-1.24> <-0.95>

Mom -0.0788 -0.0949 -0.0836 -0.2255
(-1.18) (-2.02) (-1.15) (-2.73)
{-0.82} {-0.81}
<-1.59> <-1.57>

HP(S) 0.0000 -0.0051 0.0007 0.0005
(-0.02) (-1.51) (0.41) (0.11)
{-0.02} {0.39}
<-0.02> <0.65>

Comm FE No Yes No Yes Yes Yes Yes Yes 
Time FE No No Yes Yes Yes Yes Yes Yes 
Adj-R ²  (%) 0.09 0.28 21.17 21.36 0.29 21.34 21.34 21.33 0.36 0.09 0.12 21.38 0.96

Model FE FE PMG FE
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Table 4. CFEAR factor and benchmark commodity factors    
The table reports the performance of the long-short CFEAR portfolio, the equally-weighted long-only portfolio of all 28 commodities (AVG), and 
the traditional long-short roll yield, hedging pressure, and momentum portfolios. Q1 (Q5) is the quintile of commodities with the most negative 
(positive) 𝛽𝛽𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 characteristic. Newey-West robust h.a.c. t-statistics are shown in parenthesis. Panel B reports the pairwise correlations with 
significance p-values in curly brackets. The sample period is January 2004 (week 1) to December 2018 (week 4). 

 

Long (Q1) Q2 Q3 Q4 Short (Q5) Q1-Q5
Panel A: Summary statistics
Mean 0.0342 -0.0047 -0.0367 -0.0644 -0.1049 0.0696 -0.0332 0.0151 0.0346 0.0598

(0.78) (-0.09) (-0.76) (-1.42) (-2.11) (3.00) (-0.86) (0.51) (1.27) (2.32)
StDev 0.1710 0.1728 0.1670 0.1641 0.1870 0.0972 0.1336 0.1168 0.1021 0.1009
Downside volatility (0%) 0.0562 0.0582 0.0574 0.0519 0.0615 0.0284 0.0461 0.0363 0.0323 0.0294
Skewness -0.2840 -0.3671 -0.4806 -0.0799 -0.0910 0.0550 -0.4596 -0.1676 -0.1454 0.0318
Excess Kurtosis 1.3942 1.0673 2.0951 0.8222 1.4493 0.5264 1.7672 0.7764 0.5940 0.6147
JB normality test p -value 0.0010 0.0010 0.0010 0.0010 0.0010 0.0166 0.0010 0.0010 0.0044 0.0070
AR(1) 0.0153 0.0564 0.0698 0.0527 -0.0220 -0.0607 0.0501 -0.0379 0.0152 -0.0511
99% VaR (Cornish-Fisher) 0.0665 0.0671 0.0721 0.0598 0.0728 0.0311 0.0562 0.0421 0.0356 0.0331
% of positive months 52% 52% 50% 48% 47% 56% 50% 50% 54% 54%
Maximum drawdown -0.3831 -0.5348 -0.6181 -0.6623 -0.8131 -0.1465 -0.5392 -0.2872 -0.1905 -0.1828
Sharpe ratio 0.1999 -0.0273 -0.2200 -0.3924 -0.5611 0.7152 -0.2486 0.1296 0.3387 0.5926
Sortino ratio 0.6082 -0.0809 -0.6397 -1.2403 -1.7066 2.4509 -0.7197 0.4173 1.0720 2.0331
Omega ratio 1.0749 0.9902 0.9227 0.8677 0.8113 1.2914 0.9130 1.0472 1.1297 1.2342
CER (power utility) -0.0402 -0.0813 -0.1090 -0.1330 -0.1952 0.0459 -0.0790 -0.0192 0.0084 0.0343
Panel B: Correlation structure
AVG -0.03

{0.48}
Momentum 0.29 0.02

{0.00} {0.66}
Term Structure -0.03 0.05 0.36

{0.40} {0.20} {0.00}
Hedging pressure 0.12 0.09 0.33 0.27

{0.00} {0.01} {0.00} {0.00}

Hedging 
pressure

CFEAR
AVG Mom Term 

structure
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Table 5. Time-series tests: alpha of long-short CFEAR portfolio   
The table reports estimation results for time-series regressions to test whether the CFEAR 
portfolio provides alpha in the context of a four-factor benchmark model that includes the 
AVG, momentum, term structure (or basis) and hedging pressure factors (Fernandez-Perez et 
al., 0218; Bianchi et al., 2018) and individual factor models. Alongside the alpha, we report 
the betas (risk exposures) with Newey West h.a.c. t-statistics in parenthesis, and adjusted-R2. 
The sample period is January 2004 (week1) to December 2018 (week 4). 
 

 
 

 

annualized 
alpha AVG Momentum 

Term 
structure HP

Adj-R² 
(%)

Model 1 0.0689 -0.0191 -0.07
(3.01) (-0.58)

Model 2 0.0659 0.2437 8.44
(2.94) (5.97)

Model 3 0.0706 -0.0296 -0.04
(3.05) (-0.61)

Model 4 0.0625 0.1180 1.36
(2.70) (2.66)

Model 5 0.0668 -0.0214 0.2778 -0.1577 0.0557 10.57
(3.14) (-0.75) (6.56) (-3.02) (1.24)
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Table 6. Cross-sectional pricing tests   
The table presents cross-sectional pricing tests using the four-factor model of  Fernandez-Perez et al. (2018) 
and Bianchi et al. (2018) inter alia that includes the average commodity factor (AVG), momentum factor 
(Mom), term structure or basis factor, and hedging pressure (HP) factor. The test assets are the 26 portfolios 
(quintiles resulting from sorting the individual commodity futures by the momentum, roll-yield, hedging 
pressure, and CFEAR signals, and the six sub-sector portfolios) in Panel A, and the 28 individual 
commodities in Panel B. For the portfolio-level tests, we report the (annualized) prices of risk from a cross-
sectional regression of average portfolio excess returns on full-sample betas with Shanken (1992) corrected 
(for errors-in-variables) t-statistics in parentheses, and Kan, Robotti and Shanken (2013) corrected (for 
additional model misspecification and heteroscedasticity) t-statistics in curly brackets. For the commodity-
level tests, we report the (annualized) average prices of risk obtained in sequential (weekly) cross-sectional 
regressions on sequential betas with Fama-MacBeth (1973) t-statistics in curly brackets and Shanken (1992) 
corrected t-statistics in parentheses. The adjusted 𝐶𝐶2 and mean absolute prediction error (MAPE) reported 
in both Panels A and B are from a cross-sectional regression of average returns on full-sample betas, to 
ensure comparability of the models’ fit in both panels. The period is January 2004 to December 2018. 

 
 

  

Constant CFEAR AVG Mom
Term 

structure HP
Adj.-R² 

(%)
MAPE 

(%)

Model 1 -0.0006 0.0813 48.49 0.049
(-0.85) (2.53)
{-0.78} {2.61}

Model 2 -0.0004 -0.0115 0.25 0.068
(-0.44) (-0.19)
{-0.44} {-0.16}

Model 3 -0.0007 0.0731 31.96 0.056
(-0.96) (2.08)
(-0.73) {2.28}

Model 4 -0.0007 0.0531 17.20 0.056
(-1.02) (1.65)
{-0.80} {1.68}

Model 5 -0.0008 0.0709 37.61 0.050
(-1.17) (2.20)
{-0.87} {2.16}

Model 6 0.0001 -0.0353 0.0548 0.0230 0.0643 45.90 0.049
(0.06) (-0.58) (1.60) (0.77) (2.08)
{0.06} {-0.53} {1.67} {0.80} {2.01}

Model 7 -0.0010 0.0828 0.0204 0.0276 0.0387 0.0561 72.32 0.032
(-1.13) (2.80) (0.35) (0.86) (1.32) (1.82)
{-1.13} {2.80} {0.34} {0.88} {1.37} {1.81}

Panel A: Commodity portfolios (N=26 test assets)
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  Table 6. (cont.) 

 
 
 

Constant CFEAR AVG Mom
Term 

structure HP
Adj.-R² 

(%)
MAPE 

(%)

Model 1 -0.0007 0.0491 37.75 0.120
<1.06> <1.76>
(-1.04) (1.73)

Model 2 -0.0004 -0.0223 -2.32 0.144
<0.58> <0.51>
(-0.58) (-0.51)

Model 3 -0.0006 0.0220 66.92 0.087
<0.85> <0.61>
(-0.85) (0.61)

Model 4 -0.0009 0.0075 11.79 0.119
<1.30> <0.20>
(-1.30) (0.20)

Model 5 -0.0008 0.0466 43.16 0.114
<1.10> <1.59>
(-1.09) (1.57)

Model 6 0.0003 -0.0578 0.0347 0.0020 0.0587 79.77 0.065
<0.34> <1.23> <0.94> <0.05> <2.00>
(0.32) (-1.17) (0.90) (0.05) (1.90)

Model 7 0.0002 0.0756 -0.0543 0.0139 0.0095 0.0450 80.49 0.059
<0.20> <2.76> <1.14> <0.37> <0.25> <1.51>
(0.18) (2.57) (-1.06) (0.35) (0.23) (1.41)

Panel B: Individual commodities (N=28 test assets)
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Table 7. CFEAR risk versus skewness risk 
The table reports in Panel A estimation results of time-series regressions to test whether the CFEAR 
portfolio provides alpha in the context of Models i and ii that include the skewness factor of Fernandez-
Perez et al. (2018). The traditional four-factor Model ii is reported for comparison. Alongside the alpha, we 
report the betas (risk exposures) with Newey West h.a.c. t-statistics in parenthesis. Panel B reports cross-
sectional pricing tests for the same 26 commodity portfolios as in Tables 6-7 for comparison. We report the 
(annualized) prices of risk from cross-sectional regressions of average excess returns on full-sample betas 
and Shanken (1992) t-statistics corrected for error-in-variables in parentheses, and Kan, Robotti and 
Shanken (2013) t-statistics additionally corrected for model misspecification and heteroskedasticity in curly 
brackets. The sample period is January 2004 (week1) to December 2018 (week 4). 

Panel A: Time-series tests 

 
Panel B: Cross-sectional tests 

 
  

 alpha AVG Mom TS HP Skewness Adj-R²
Model i 0.0637 0.1325 1.69

(2.69) (2.59)
Model ii 0.0668 -0.0214 0.2778 -0.1577 0.0557 10.57

(3.14) (-0.75) (6.56) (-3.02) (1.24)
Model iii 0.0634 -0.0219 0.2820 -0.1748 0.0240 0.1295 12.04

(2.95) (-0.74) (6.47) (-3.40) (0.51) (2.71)

Constant CFEAR AVG Mom TS HP Skewness Adj.-R² (%) MAPE (%)

Test assets: Commodity portfolios (N=26)
Model 1 -0.0007 0.1439 45.32 0.047

(-1.07) (2.33)
{-0.73} {2.17}

Model 2 -0.0007 0.0712 0.1059 65.55 0.037
(-0.98) (2.22) (1.66)
{-0.82} {2.26} {1.64}

Model 3 -0.0004 -0.0122 0.0477 0.0221 0.0498 0.1011 51.55 0.047
(-0.40) (-0.20) (1.42) (0.73) (1.73) (1.50)
{-0.44} {-0.19} {1.43} {0.72} {1.76} {1.22}

Model 4 -0.0011 0.0820 0.0228 0.0272 0.0380 0.0537 0.0439 72.48 0.032
(-1.15) (2.78) (0.38) (0.85) (1.31) (1.87) (0.62)
{-1.18} {2.84} {0.39} {0.87} {1.30} {1.90} {0.56}
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Table 8. CFEAR risk versus basis-momentum risk 
The table reports in Panel A estimation results of time-series regressions to test whether the CFEAR 
portfolio provides excess returns after controlling for exposure to the basis-momentum (BM) risk factor of 
Boons and Prado (2019). The traditional four-factor model with the AVG, momentum, term structure or 
basis and hedging pressure risk factors is also reported for comparison. We report the alpha and betas (risk 
exposures) with Newey West h.a.c. t-statistics in parenthesis. Panel B reports cross-sectional pricing tests 
for the same 26 commodity portfolios as in Tables 6-7 for comparison. We report the (annualized) prices 
of risk from cross-sectional regressions of average excess returns on full-sample betas and Shanken (1992) 
t-statistics corrected for error-in-variables in parentheses, and Kan, Robotti and Shanken (2013) t-statistics 
additionally corrected for model misspecification and heteroskedasticity in curly brackets. The sample 
period is January 2004 (week1) to December 2018 (week 4). 

Panel A: Time-series tests 

 
Panel B: Cross-sectional tests 

  

 alpha AVG Mom TS HP BM Adj.-R² (%)   

Model i 0.0608 0.1687 2.68
(2.49) (3.14)

Model ii 0.0668 -0.0214 0.2778 -0.1577 0.0557 10.57
(3.14) (-0.75) (6.56) (-3.02) (1.24)

Model iii 0.0623 -0.0185 0.2508 -0.1702 0.0629 0.0961 11.22
(2.80) (-0.63) (5.71) (-3.33) (1.40) (1.73)

Constant CFEAR AVG Mom TS HP BM Adj.-R² (%) MAPE (%)
Model 1 -0.0005 0.1413 48.20 0.050

(-0.72) (2.41)
{-0.63} {2.51}

Model 2 -0.0005 0.0624 0.0911 57.18 0.046
(-0.76) (2.10) (1.59)
{-0.69} {2.08} {1.64}

Model 3 -0.0011 0.0253 0.0259 0.0429 0.0656 0.2100 74.07 0.034
(-1.08) (0.39) (0.81) (1.50) (2.10) (2.39)
{-1.11} {0.37} {0.83} {1.53} {2.00} {1.95}

Model 4 -0.0015 0.0663 0.0458 0.0158 0.0478 0.0597 0.1542 83.92 0.028
(-1.53) (2.40) (0.74) (0.50) (1.68) (1.94) (1.74)
{-1.59} {2.59} {0.74} {0.53} {1.77} {1.89} {1.50}
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Table 9. CFEAR risk versus iliquidity risk 
The table reports in Panel A the estimation results for time-series regressions of the returns of the CFEAR 
portfolio on the returns of a long-short commodity portfolio based on the (inverse of) the Amivest liquidity 
measure as proxy for a tradable iliquidity risk factor, and the first difference of the TED spread as proxy 
for innovations to funding iliquidity (non-tradeable risk factor); we also include the four traditional factors. 
Alongside the annualized constant (with an alpha interpretation in models i, iii and iv), we report the betas 
(risk exposures) with Newey West h.a.c. t-statistics in parentheses. Panel B reports cross-sectional pricing 
tests using as test assets the same commodity portfolios as in Tables 6-8, for comparison. We report the 
(annualized) prices of risk from cross-sectional regressions of average excess returns on full-sample betas 
and Kan, Robotti and Shanken (2013) t-statistics corrected for error-in-variables, model misspecification 
and heteroskedasticity in curly brackets. The Shanken (1992) t-statistics corrected for error-in-variables, 
produce qualitatively similar inferences and are not reported for space constraints. The sample period is 
January 2004 (week1) to December 2018 (week 4). 

Panel A: Time-series tests 

 
Panel B: Cross-sectional tests 

 
  

Constant AVG Mom TS HP Iliquidity ∆TED Adj-R² (%)
Model i 0.0692 -0.1991 3.75

(3.08) (-3.70)
Model ii 0.0696 -0.0051 0.14

(3.02) (-2.28)
Model iii 0.0668 -0.0214 0.2778 -0.1577 0.0557 10.57

(3.14) (-0.75) (6.56) (-3.02) (1.24)
Model iv 0.0663 -0.0166 0.2532 -0.1367 0.0557 -0.1337 12.11

(3.16) (-0.60) (5.76) (-2.71) (1.27) (-2.68)
Model v 0.0667 -0.0271 0.2776 -0.1572 0.0543 -0.0051 10.72

(3.15) (-0.91) (6.55) (-3.02) (1.21) (-1.92)

Constant CFEAR AVG Mom TS HP Iliquidity ∆TED Adj.-R² (%) MAPE (%)
Model 1 -0.0005 -0.0824 27.47 0.060

{-0.63} {-1.68}
Model 2 -0.0021 -0.0708 22.62 0.062

{-2.08} {-1.62}
Model 3 -0.0006 0.0752 -0.0369 49.81 0.049

{-0.67} {2.63} {-0.76}
Model 4 -0.0016 0.0854 -0.0500 58.82 0.045

{-2.11} {2.79} {-1.15}
Model 5 0.0000 -0.0342 0.0286 0.0428 0.0687 -0.0949 69.23 0.039

{0.02} {-0.54} {0.94} {1.61} {2.07} {-1.88}
Model 6 -0.0003 -0.0174 0.0413 0.0283 0.0609 -0.0765 61.04 0.044

{-0.29} {-0.27} {1.29} {0.94} {1.87} {-2.19}
Model 7 -0.0008 0.0670 0.0066 0.0171 0.0479 0.0612 -0.0677 81.15 0.030

{-0.90} {2.61} {0.11} {0.58} {1.85} {1.93} {-1.38}
Model 8 -0.0010 0.0804 0.0215 0.0244 0.0391 0.0555 -0.0460 76.70 0.031

{-1.11} {2.83} {0.36} {0.79} {1.36} {1.77} {-1.39} 
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Table 10. CFEAR risk versus volatility risk 
The table reports in Panel A the estimation results of time-series regressions of the returns of the CFEAR 
portfolio on two non-tradeable volatility risk factors:  aggregate volatility risk factor and average volatility 
risk factor which are obtained, respectively, as the innovations (first-difference) in the aggregate commodity 
market variance and average commodity market variance; we also include the four traditional factors. We 
report the annualized constant (with an “alpha” interpretation in Model iii only), and the betas (risk 
exposures) with Newey West h.a.c. t-statistics in parenthesis. Panel B reports cross-sectional pricing tests 
using as test assets the same 26 commodity portfolios as in Tables 6-9 for comparison. We report the 
(annualized) prices of risk from cross-sectional regressions of average excess returns on full-sample betas 
and Kan, Robotti and Shanken (2013) t-statistics corrected for error-in-variables, model misspecification 
and heteroskedasticity in curly brackets. The Shanken (1992) t-statistics corrected for error-in-variables, 
produce qualitatively similar inferences and are not reported for space constraints. The sample period is 
January 2004 (week1) to December 2018 (week 4). 

Panel A: Time-series tests 

  
Panel B: Cross-sectional tests 

 
 
  

Constant AVG Mom TS HP ∆AggrVar ∆AvgVar Adj.-R² (%)

Model i 0.0695 -0.1174 0.15

(3.02) (-1.27)

Model ii 0.0695 -0.0538 0.30

(3.02) (-2.05)

Model iii 0.0668 -0.0214 0.2778 -0.1577 0.0557 10.57

(3.14) (-0.75) (6.56) (-3.02) (1.24)
Model iv 0.0668 -0.0238 0.2761 -0.1583 0.0541 -0.0718 10.55

(3.15) (-0.82) (6.62) (-3.03) (1.21) (-0.96)
Model v 0.0668 -0.0233 0.2760 -0.1556 0.0519 -0.0287 10.57

(3.15) (-0.80) (6.58) (-3.04) (1.16) (-1.03)

Constant CFEAR AVG Mom TS HP ∆AggrVar ∆AvgVar Adj.-R² (%) MAPE (%)
Model 1 -0.0018 -0.0038 36.17 0.053

     {-1.79} {-1.68}
Model 2 -0.0016 -0.0105 51.25 0.048

{-1.48} {-2.42}
Model 3 -0.0014 0.0787 -0.0025 61.55 0.040

{-1.57} {2.58} {-1.22}
Model 4 -0.0012 0.0640 -0.0067 59.40 0.044

{-1.27} {2.14} {-1.48}
Model 5 -0.0003 -0.0174 0.0555 0.0216 0.0606 -0.0016 47.38 0.049

{-0.21} {-0.20} {1.69} {0.74} {1.87} {-0.39}
Model 6 -0.0014 0.0423 0.0412 0.0369 0.0689 -0.0105 60.83 0.040

{-1.14} {0.53} {1.30} {1.23} {2.06} {-1.74}
Model 7 -0.0009 0.0825 0.0166 0.0269 0.0393 0.0569 0.0003 72.42 0.032

{-0.85} {2.83} {0.24} {0.87} {1.40} {1.84} {0.11}
Model 8 -0.0017 0.0762 0.0551 0.0244 0.0439 0.0600 -0.0061 76.37 0.032

{-1.39} {2.65} {0.76} {0.80} {1.57} {1.89} {-1.03}
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Table 11. Predictive ability of volatility and illiquidity for CFEAR returns 
The table reports estimation results of time-series regression of the CFEAR portfolio returns compounded 
over 1, 4, 12 and 52 weeks, 𝑃𝑃𝑖𝑖,𝑡𝑡+1:𝑡𝑡+𝑘𝑘

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 , on predictive variable at t either the (standardized) aggregate 
commodity market variance, average commodity market variance or TED spread, 𝑧𝑧𝑡𝑡 =
{AggVar, AvgVar, TED}. The table reports the OLS coefficients and t-statistics based on Newey-West h.a.c. 
robust standard errors. The sample period is January 2004 (week1) to December 2018 (week 4).  

 
 
 
  

horizon (in weeks) Constant TED [t]
Aggr. Market 
Variance [t]

Average Market 
Variance [t] adj.-R ² (%)

k=1 0.0014 0.0007 0.10
(3.06) (1.55)
0.0014 0.0009 0.30
(3.08) (2.22)
0.0014 0.0010 0.41
(3.07) (2.33)

k=4 0.0056 0.0030 1.29
(3.47) (2.19)
0.0056 0.0039 2.32
(3.49) (3.56)
0.0056 0.0039 2.22
(3.47) (3.03)

k=12 0.0168 0.0073 3.05
(4.77) (2.28)
0.0168 0.0084 4.08
(4.79) (2.82)
0.0168 0.0058 1.86
(4.72) (1.71)

k=52 0.0684 0.0217 7.33
(9.14) (5.14)
0.0684 0.0188 5.49
(9.05) (4.51)
0.0683 0.0181 5.06
(9.03) (3.56)

Dependent variable: CFEAR(t+1:t+k)
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Table 12. Subsample analysis of CFEAR premia in periods of high/low uncertainty     
This table reports in Panel A the CFEAR premia and alpha using the traditional AVG, term 
structure, momentum and HP factors in col (3) and the latter augmented with the basis-momentum 
illiquidity (∆𝑇𝑇𝐸𝐸𝑇𝑇) and volatility (∆𝐶𝐶𝐿𝐿𝐿𝐿𝑃𝑃𝑉𝑉𝑎𝑎𝑃𝑃) factors in col (5)) with significance t-ratios in 
parenthesis. The t-statistics in cols (2), (4) and (6) are for 𝐻𝐻0: 𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

ℎ𝑖𝑖𝐿𝐿ℎ = 𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑙𝑙𝑓𝑓𝑤𝑤  vs 𝐻𝐻0: 𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
ℎ𝑖𝑖𝐿𝐿ℎ ≠

𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑙𝑙𝑓𝑓𝑤𝑤  where 𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
ℎ𝑖𝑖𝐿𝐿ℎ (𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑙𝑙𝑓𝑓𝑤𝑤 ) denotes the CFEAR return or risk-adjusted return in the high (low) 

uncertainty period. The last column reports the Sharpe ratio of the CFEAR portfolio in each 
regime. The criteria for classifying the sample weeks into sub-periods is either the VIX, financial 
uncertainty or macroeconomic uncertainty indices for 1-month horizon of Jurado, Ludvigson and 
Ng (2015), commodity price uncertainty and inventory uncertainty as proxied by the averaged N 
variances of the daily excess return and daily roll-yield of all commodities, respectively, in the 
preceding month.  Panel B reports the correlations among uncertainty proxies. Bold shaded denotes 
strongly significant at the 5% or 1 % level. Newey-West s.e. are used for all test statistics. 

 
 

 
  
 
 
 

(1) (2) (3) (4) (5) (6) (7)
CFEAR 
premia

t -stat      
Ho: diff=0

CFEAR 
alpha

t -stat      
Ho: diff=0

CFEAR 
alpha

t -stat      
Ho: diff=0

Sharpe 
ratio

VIX uncertainty
    I.  High 0.1559 2.6183 0.1527 2.7822 0.1367 2.4541 1.5081

(3.81) (4.06) (3.51)
    II. Low 0.0230 0.0209 0.0194 0.2470

(0.82) (0.80) (0.72)
Financial uncertainty index of Jurado et al. (2015)

    I.  High 0.1035 1.1120 0.1081 1.4794 0.0881 0.9831 1.0327
(2.76) (3.15) (2.44)

    II. Low 0.0506 0.0440 0.0445 0.5295
(1.74) (1.66) (1.63)

Macroeconomic uncertainty index of Jurado et al. (2015)

    I.  High 0.1050 1.0352 0.0905 0.7180 0.0718 0.3452 0.9942
(2.41) (2.15) (1.58)

    II. Low 0.0524 0.0555 0.0542 0.5640
(1.98) (2.30) (2.23)

Commodity price uncertainty (variance)
    I.  High 0.1235 1.6172 0.1262 1.9858 0.1128 1.6993 1.1212

(2.79) (3.19) (2.68)
    II. Low 0.0378 0.0323 0.0294 0.4264

(1.40) (1.31) (1.17)
Inventories uncertainty (variance)
    I.  High 0.1483 2.0267 0.1287 1.5947 0.1320 1.8037 1.3607

(3.11) (2.71) (2.59)
    II. Low 0.0367 0.0408 0.0292 0.4008

(1.42) (1.69) (1.24)

Panel A: Sub-sample analysis by uncertainty level
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Table 12. (cont.) 

 

Panel B: Correlations VIX
Fin. Unc. 

index 

Macro. 
Unc. 
index 

0.84
{0.00}

0.72 0.79
(Jurado et al. 2015) {0.00} {0.00}

0.77 0.73 0.79
(Jurado et al. 2015) {0.00} {0.00} {0.00}

-0.03 -0.09 -0.08 -0.01
{0.43} {0.01} {0.03} {0.84}

Comm. 
Price Unc.

Fin. Unc. index 

Macro. Unc. index 

Comm. Price Unc.

Inventory Unc.

(Jurado et al. 2015)
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Table 13. Robustness tests: alternative CFEAR index construction methods  
The table summarizes the performance of the long-short CFEAR portfolio based on a commodity-
hazard fear index that is constructed using the approach described in Section 2.1 sidestepping the 
construction of the CFEAR index in col. (1), using US Google searches (2), without winsorization 
(3), and without de-seasonalization (4). Finally, in cols (5) to (8) we exclude each category of 
keywords, in turn from the CFEAR index. Panel B reports the annualized price of the CFEAR risk 
in the model with the AVG, hedging pressure, basis and momentum factors for the 26 commodity 
portfolios (Model 7 in Table 6) with Shanken (1992) t-statistics in parentheses, and Kan, Robotti 
and Shanken (2013) t-statistics in curly brackets.  

         
  

(1) (2) (3) (4) (5) (6) (7) (8)
Median beta 
of keywords

US 
searches

Without 
wins. 

Without 
de-seas. 

Excl. EC 
keywords

Excl. GP 
keywords

Excl. DI 
keywords

Excl. WE 
keywords

Panel A: Summary statistics (CFEAR portfolio)
Mean 0.0571 0.0422 0.0595 0.0780 0.0565 0.0737 0.0670 0.0381

(2.24) (1.80) (2.45) (2.88) (2.51) (3.09) (2.69) (1.38)
StDev 0.0972 0.0865 0.0980 0.1043 0.0941 0.0978 0.1006 0.0993
Downside volatility (0%) 0.0293 0.0247 0.0296 0.0317 0.0277 0.0281 0.0291 0.0294
Skewness -0.0603 0.0324 -0.0921 -0.1114 0.0378 0.1274 0.1122 -0.0362
Excess Kurtosis 0.4395 0.0839 0.4172 0.6241 0.5975 0.7721 0.5111 0.3244
JB normality test p -value 0.0417 0.5000 0.0416 0.0044 0.0082 0.0010 0.0132 0.1696
99% VaR (Cornish-Fisher 0.0322 0.0270 0.0327 0.0354 0.0307 0.0312 0.0316 0.0327
% of positive months 56% 52% 55% 57% 55% 56% 54% 50%
Maximum drawdown -0.2188 -0.1685 -0.1635 -0.1469 -0.1592 -0.1298 -0.1660 -0.2002
Sharpe ratio 0.5875 0.4878 0.6075 0.7482 0.6006 0.7533 0.6653 0.3838

Panel B: Cross-sectional asset pricing tests (N=26 commodity portfolios)

λCFEAR 0.0992 0.0918 0.0920 0.0894 0.0894 0.0903 0.0886 0.1086
(2.88) (2.83) (2.87) (2.90) (2.90) (2.87) (2.80) (2.40)

     {2.68} {2.61} {2.80} {2.89} {2.89} {2.76} {2.65} {2.33} 
adj-R² (%) 67.16 67.64 73.92 70.65 70.65 68.07 70.99 71.91

Alternative CFEAR factors
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Table 14. Robustness tests: alternative CFEAR portfolio construction methods  
The table summarizes in Panel A the alternative CFEAR factor obtained through different portfolio 
formation methods. In column (1) the ranking period is a rolling window of 10 years, in col. (2)  
the Q1 and Q5 quintile constituents are weighed by the strength of the standardized signals. In 
cols. (3)-(6) all the commodities are included in the long-short portfolios, either equally-weighted 
(col. 4), weighted by the standardized rankings (col. 5), weighted  by the standardized signals (col. 
6), or weighted by the winsorized and standardized signals (col. 6). In col. (7) we consider at each 
portfolio formation time only the 80% of the commodities with the largest trading volume on the 
prior week. Panel B reports the price of the CFEAR risk factor in the model with the AVG, 
momentum, term structure and hedging pressure factor for the 26 commodity portfolios (Model 7 
in Table 6) with Shanken (1992) t-statistics in parentheses, and Kan, Robotti and Shanken (2013) 
t-statistics in curly brackets.  

 
 
  

(1) (2) (3) (4) (5) (6) (7)

Panel A: Summary statistics
Mean 0.0763 0.0684 0.0437 0.0528 0.0530 0.0530 0.0915

(1.69) (2.85) (2.75) (2.88) (2.72) (2.72) (3.70)
StDev 0.1030 0.1006 0.0585 0.0713 0.0784 0.0785 0.1016
Downside volatility (0%) 0.0313 0.0300 0.0185 0.0212 0.0233 0.0233 0.0291
Skewness -0.1468 0.0245 -0.1528 -0.0191 -0.0354 -0.0355 0.1058
Excess Kurtosis 0.4001 0.4397 0.4627 0.3821 0.3496 0.3464 0.9006
JB normality test p -value 0.2164 0.0487 0.0137 0.0961 0.1306 0.1351 0.0010
99% VaR (Cornish-Fisher) 0.0345 0.0323 0.0198 0.0230 0.0255 0.0255 0.0328
% of positive months 57% 55% 55% 55% 55% 55% 55%
Maximum drawdown -0.1321 -0.1559 -0.0950 -0.1169 -0.1105 -0.1105 -0.1417
Sharpe ratio 0.7408 0.6800 0.7457 0.7407 0.6758 0.6754 0.9008
Sortino ratio 2.4340 2.2800 2.3562 2.4918 2.2752 2.2754 3.1462
Omega ratio 1.3032 1.2770 1.3083 1.3019 1.2697 1.2695 1.3776
CER (power utility) 0.0497 0.0431 0.0350 0.0400 0.0376 0.0375 0.0656

Panel B: Cross-sectional asset pricing tests (N=26 commodity portfolios)

λCFEAR 0.0459 0.0883 0.0463 0.0609 0.0693 0.0693 0.0957
(0.83) (2.81) (2.55) (2.87) (2.88) (2.88) (2.79)

     {0.89} {2.83} {2.35} {2.69} {2.76} {2.75} {2.79}
adj-R² (%) 68.11 72.27 61.31 68.13 70.10 70.07 71.74

Std. 
rankings

Std. signals
Winsor. 

Std. 
signals

80% most 
liquid comm

Alternative CFEAR factors 

Rolling 
windows 

(L=10 years)

Quintiles 
Std. signals

Binary 
weights
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Table 15. Robustness tests: CFEAR factor and benchmark commodity factors with monthly rebalancing 
The table reports results for the CFEAR portfolio and benchmarks re-constructed using the conventional end-of-month portfolio formation point 
(instead of the weekly rebalancing). Q1 (Q5) is the quintile of commodities with the most negative (positive) 𝛽𝛽𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 characteristic. Newey-West 
robust h.a.c. t-statistics are shown in parenthesis. Panel B reports the pairwise correlations with significance p-values in curly brackets. The sample 
period is January 2004 (week 1) to December 2018 (week 4). 

Long (Q1) Q2 Q3 Q4 Short (Q5) Q1-Q5
Panel A: Summary statistics

Mean 0.0294 -0.0052 -0.0193 -0.0760 -0.0989 0.0642 -0.0330 0.0068 0.0516 0.0516
(0.63) (-0.08) (-0.37) (-1.64) (-1.68) (2.78) (-0.72) (0.24) (1.62) (1.99)

StDev 0.1721 0.1981 0.1769 0.1770 0.1814 0.0890 0.1471 0.1108 0.1030 0.0923
Downside volatility (0%) 0.1240 0.1700 0.1293 0.1217 0.1305 0.0489 0.1170 0.0677 0.0587 0.0516
Skewness -0.5401 -1.2012 -0.2950 -0.3251 -0.4383 0.3068 -0.8037 0.2467 0.3772 0.1402
Excess Kurtosis 1.4056 3.1821 1.8981 0.8594 1.7247 0.2179 3.1259 0.7557 1.5263 0.3367
JB normality test p -value 0.0021 0.0010 0.0011 0.0239 0.0013 0.1700 0.0010 0.0488 0.0027 0.4535
99% VaR (Cornish-Fisher) 0.1438 0.1955 0.1525 0.1456 0.1643 0.0490 0.1474 0.0729 0.0656 0.0568
% of positive months 54% 55% 50% 44% 43% 58% 50% 50% 55% 55%
Maximum drawdown -0.3643 -0.5182 -0.5496 -0.6981 -0.8180 -0.1553 -0.5394 -0.2533 -0.1977 -0.2070
Sharpe ratio 0.1710 -0.0262 -0.1089 -0.4296 -0.5452 0.7209 -0.2244 0.0618 0.5015 0.5592
Sortino ratio 0.2374 -0.0306 -0.1491 -0.6249 -0.7580 1.3136 -0.2822 0.1011 0.8797 0.9996
Omega ratio 1.1360 0.9795 0.9182 0.7264 0.6593 1.7251 0.8357 1.0480 1.4558 1.5001
CER (power utility) -0.0504 -0.1263 -0.1041 -0.1642 -0.1958 0.0444 -0.0943 -0.0235 0.0257 0.0304

Panel B: Correlation structure
AVG 0.04

{0.65}
Momentum 0.31 0.21

{0.00} {0.01}
Term Structure 0.01 0.14 0.26

{0.86} {0.08} {0.00}
Hedging pressure 0.32 0.11 0.41 0.17

{0.00} {0.16} {0.00} {0.03}

Hedging 
pressure

CFEAR AVG Mom Term 
structure
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Figure 1. Google searches and commodity prices. 
The graphs plots the evolution of monthly intensity of the Google Search Volume Index (GSVI; denoted Sj,t) by a hazard keyword, alongside the 
monthly average of the daily commodity futures price.  
 

  Panel A: hurricane (WE) searches vs lumber price                 Panel B: ebola (DI) searches vs feeder/live cattle prices 

                                                           
                        Panel C: oil crisis (GP) searches vs light crude oil price                   Panel D: unemployment (EC) searches vs natural gas price 
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  Figure 2. Frequency of commodities in long and short CFEAR-based commodity portfolios  
This graph plots the percentage of portfolio formation weeks in the sample period from January 2004 
(week 1) to May 2018 (week 4) when each of the 28 commodities enters the long CFEAR portfolio 
(quintile Q1) and short CFEAR portfolio (quintile Q5). The graph is organized per sector. 
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  Figure 3. Future value of $1 invested in commodity portfolios.  
The graph shows the evolution of $1 invested in the long-only portfolio that equally-weights with weekly rebalancing all commodities (AVG), 
and the long-short term structure (TS), momentum (Mom), hedging pressure (HP) and CFEAR portfolios.  
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            Figure 4. Turnover and transaction costs of commodity portfolios  
Panel A plots the turnover of each of the long-short commodity portfolios formed 
according to the CFEAR, momentum, roll-yield, hedging pressure (speculators), 
skewness, basis-mom or illiquidity signals. Panel B plots the Sharpe ratios of each of the 
portfolios before and after transaction costs. 

 
Panel A: Turnover 

 
 

Panel B: Sharpe ratios 
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Table A.1 Panel regressions: Predictive ability of CFEAR characteristic  
The table presents the estimation results of panel regressions of the weekly excess returns of the 
28 commodities on one-week lagged commodity characteristics, Equation (6), and the lagged 
returns. The models reported in columns (1) to (5) add the 𝛽𝛽𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 measure. The models in cols. 
(6)-(8) add the roll-yield, momentum and HP(S) measures, respectively. The models in columns 
(9) and (10) add all four commodity characteristics. POLS is a pooled regression with an 
unreported intercept, FE are fixed effects models and PMG is the panel mean group estimator of 
Pesaran and Smith (1995). t-statistics for the POLS/FE estimator are calculated using Newey-West 
h.a.c standard errors (in parenthesis), standard errors clustered in the time dimension (curly 
brackets), and commodity dimension (angle brackets). t-statistics for the PMG estimator and based 
on the standard deviation of the individual time-series coefficients. 

  

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

POLS PMG PMG

CFEAR -12.35 -12.49 -11.21 -10.49 -21.88 -10.96 -26.36
(-3.80) (-3.02) (-3.52) (-2.45) (-3.55) (-2.53) (-3.05)
{-2.49} {-1.86} {-2.65} {-1.77} {-1.86}
<3.66> <4.41> <2.96> <3.21> <3.28>

Roll-yield -0.0148 -0.0253 -0.0123 0.0013
(-1.18) (-0.71) (-0.95) (0.03)
{-0.93} {-0.76}
<1.21> <0.94>

Mom -0.0815 -0.1116 -0.0872 -0.2443
(-1.22) (-2.49) (-1.20) (-2.46)
{-0.84} {-0.83}
<1.52> <1.59>

HP(S) 0.0000 -0.0049 0.0007 0.0015
(-0.02) (-1.52) (0.44) (0.29)
{-0.02} {0.41}
<0.02> <0.69>

Return(t ) 0.0128 0.0109 0.0032 0.0008 0.0088 0.0024 0.0025 0.0011 0.0095 0.0120 0.0097 0.0035 0.0089
(1.29) (1.10) (0.33) (0.08) (1.56) (0.25) (0.25) (0.11) (1.58) (2.02) (1.67) (0.35) (1.35)
{0.79} {0.67} {0.26} {0.06} {0.20} {0.20} {0.08} {0.28}
<2.17> <1.80> <0.42> <0.10> <0.28> <0.30> <0.13> <0.39>

Comm FE No Yes No Yes Yes Yes Yes Yes 
Time FE No No Yes Yes Yes Yes Yes Yes 
Adj-R ²  (%) 0.11 0.29 21.17 21.36 0.38 21.34 21.34 21.33 0.47 0.20 0.22 21.38 1.07

FEModel FE FE PMG
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Table A.2 Portfolio pricing tests using sequential weekly cross-sectional regressions 
The table presents cross-sectional pricing tests using the four-factor model of  Fernandez-Perez et al. (2018) 
and Bianchi et al. (2018) inter alia that includes the average commodity factor (AVG), momentum factor 
(Mom), term structure factor, and hedging pressure (HP) factor. The test assets are the 26 portfolios 
(quintiles resulting from sorting the individual commodity futures by the momentum, roll-yield, hedging 
pressure, and CFEAR signals, and the six sub-sector portfolios). We report the (annualized) average prices 
of risk obtained in sequential (weekly) cross-sectional regressions on full-sample betas with t-statistics 
based on Fama-MacBeth (1973) standard errors in curly brackets and Shanken (1992) corrected version in 
parentheses. The adj-𝐶𝐶2 and the mean absolute prediction error (MAPE) are from a cross-sectional 
regression of average returns on full-sample betas. The period is January 2004 to December 2018. 

 
 
  

Constant CFEAR AVG Mom TS HP
Adj-R² 

(%)
MAPE 

(%)

Model 1 -0.0008 0.0571 43.65 0.0507
<1.13> <2.08>
(-1.11) (2.03)

Model 2 -0.0008 -0.0047 -3.52 0.069
<0.92> <0.10>
(-0.92) (-0.10)

Model 3 -0.0007 0.0336 30.80 0.055
<1.07> <1.06>
(-1.07) (1.05)

Model 4 -0.0008 0.0272 14.50 0.056
<1.21> <0.92>
(-1.20) (0.92)

Model 5 -0.0009 0.0439 33.13 0.050
<1.30> <1.57>
(-1.28) (1.55)

Model 6 -0.0004 -0.0229 0.0376 0.0202 0.0507 32.81 0.049
<0.46> <0.43> <1.18> <0.72> <1.80>
(-0.45) (-0.42) (1.15) (0.70) (1.75)

Model 7 -0.0007 0.0610 -0.0059 0.0260 0.0384 0.0495 63.08 0.033
<0.80> <2.29> <0.11> <0.84> <1.40> <1.77>
(-0.76) (2.18) (-0.10) (0.80) (1.33) (1.68)

Commodity portfolios (N=26 test assets)
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Table A.3 Alternative commodity risk factors    
The table reports the performance of the long-short skewness, basis-mom and illiquidity risk 
portfolios. Newey-West robust h.a.c. t-statistics are shown in parenthesis. Panel B reports the 
pairwise correlations with significance p-values in curly brackets between the long-short CFEAR 
portfolio and the long-short skewness, basis-momentum and iliquidity portfolios. The sample 
period is January 2004 (week 1) to December 2018 (week 4). 

 
  

Panel A: Summary statistics
Mean 0.0444 0.0519 -0.0019

(1.62) (1.93) (-0.07)
StDev 0.0991 0.0967 0.0963
Downside volatility (0%) 0.0266 0.0283 0.0292
Skewness 0.2256 -0.0180 0.0084

(2.49) (-0.20) (0.09)
Excess Kurtosis 0.3258 0.6157 0.9454

(1.80) (3.40) (5.22)
JB normality test p -value 0.0134 0.0071 0.0010
AR(1) -0.0015 0.0133 0.0673
99% VaR (Cornish-Fisher) 0.0296 0.0323 0.0340
% of positive months 51% 52.8% 48%
Maximum drawdown -0.2955 -0.2376 -0.5200
Sharpe ratio 0.4481 0.5368 -0.0194
Sortino ratio 1.6714 1.8340 -0.0640
Omega ratio 1.1707 1.2097 0.9930
CER (power utility) 0.0200 0.0285 -0.0251

Panel B: Correlation structure
CFEAR 0.14 0.17 -0.20

{0.00} {0.00} {0.00}

Basis-Mom riskSkewness risk Iliquidity risk
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Table A.4 Cross-sectional pricing tests for 28 commodities with additional risk factors.   
The table presents cross-sectional pricing regressions for the N=28 commodities as test assets to assess the 
pricing ability of the CFEAR factor controlling for the skewness risk factor of Fernandez-Perez et al. (2018) 
in Panel A, the basis-momentum risk of Boons and Prado (2019) in Panel B, a tradeable illiquidity risk 
factor and non-tradeable iliquidity risk factor (TED spread) in Panel C, and two non-tradeable volatility 
risk factors (innovations in aggregate commodity market variance and average commodity market 
variance). The table reports the (annualized) prices of risk from sequential cross-sectional regressions of 
weekly commodity excess returns on sequential betas with Fama-MacBeth t-statistics based on Shanken 
(1992) standard errors in parenthesis. The period is January 2004 (week 1) to December 2018 (week 4). 

 

 
 
  

Constant CFEAR AVG Mom TS HP Skewness Adj.-R² (%) MAPE (%)
Panel A: Skewness risk factor

Model 1 -0.0006 0.0878 14.28 0.116
(-0.85) (2.60)

Model 2 -0.0006 0.0582 0.0900 45.07 0.114
(-0.76) (1.92) (2.50)

Model 3 0.0006 -0.0735 0.0170 -0.0072 0.0506 0.0735 78.45 0.066
(0.64) (-1.39) (0.42) (-0.17) (1.61) (2.01)

Model 4 0.0005 0.0641 -0.0731 -0.0058 0.0022 0.0361 0.0747 79.65 0.061
(0.59) (2.13) (-1.36) (-0.14) (0.05) (1.14) (2.02)

Constant CFEAR AVG Mom TS HP BM Adj.-R² (%) MAPE (%)
Panel B: Basis-Momentum risk factor

Model 1 -0.0004 0.0308 1.12 0.135
(-0.55) (0.97)

Model 2 -0.0004 0.0502 0.0508 33.35 0.1226
(-0.58) (1.71) (1.51)

Model 3 -0.0001 -0.0398 0.0136 -0.0131 0.0596 0.0315 75.50 0.070
(-0.10) (-0.78) (0.33) (-0.31) (1.90) (0.91)

Model 4 -0.0002 0.0638 -0.0379 0.0007 -0.0015 0.0518 0.0405 74.96 0.068
(-0.18) (2.14) (-0.73) (0.02) (-0.04) (1.63) (1.15)
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Table A.4 (Cont.) 
 

 

  

Constant CFEAR AVG Mom TS HP Iliquidity ∆TED Adj.-R² (%) MAPE (%)
Panel C: Iliquidity risk factors

Model 1 -0.0006 -0.0307 1.32 0.138
<-0.92> <-1.04>

Model 2 -0.0005 0.0090 -3.82 0.143
<-0.69> <0.78>

Model 3 -0.0006 0.0635 -0.0176 31.27 0.124
<-0.94> <2.26> <-0.59>

Model 4 -0.0004 0.0459 0.0056 34.14 0.120
<-0.64> <1.67> <0.49>

Model 5 0.0000 -0.0427 0.0231 0.0216 0.0567 -0.0198 71.77 0.077
<-0.04> <-0.92> <0.61> <0.56> <1.95> <-0.69>

Model 6 0.0005 -0.0701 0.0446 0.0053 0.0620 0.0166 79.41 0.064
<0.64> <-1.45> <1.21> <0.14> <2.14> <1.52>

Model 7 -0.0001 0.0819 -0.0409 0.0054 0.0258 0.0443 -0.0100 73.76 0.073
<-0.13> <2.95> <-0.86> <0.14> <0.67> <1.51> <-0.34>

Model 8 0.0005 0.0712 -0.0719 0.0147 0.0129 0.0506 0.0095 81.32 0.058
<0.65> <2.59> <-1.49> <0.39> <0.33> <1.72> <0.87>

Constant CFEAR AVG Mom TS HP ∆AggrVar ∆AvgVar Adj.-R² (%) MAPE (%)
Panel D: Volatility risk factors

Model 1 -0.0007 0.0001 18.27 0.128
(-0.94) (0.29)

Model 2 -0.0008 -0.0010 9.64 0.138
(-1.12) (-0.81)

Model 3 -0.0005 0.0524 0.0004 45.57 0.113
(-0.71) (1.79) (0.88)

Model 4 -0.0007 0.0572 0.0004 45.12 0.1168
(-0.97) (2.00) (0.31)

Model 5 0.0002 -0.0550 0.0372 0.0092 0.0592 0.0004 79.39 0.0642
(0.24) (-1.10) (0.93) (0.22) (1.91) (0.82)

Model 6 0.0001 -0.0481 0.0349 -0.0030 0.0544 -0.0009 80.05 0.06
(0.07) (-0.98) (0.89) (-0.07) (1.77) (-0.66)

Model 7 0.0003 0.0709 -0.0603 0.0150 0.0200 0.0477 0.0004 80.08 0.059
(0.32) (2.36) (-1.16) (0.36) (0.48) (1.50) (0.81)

Model 8 0.0000 0.0739 -0.0454 0.0147 0.0071 0.0426 -0.0001 79.17 0.06
(-0.02) (2.54) (-0.89) (0.36) (0.17) (1.36) (-0.04)
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Table A.5 Cross-sectional pricing tests with an enlarged set of 31 test portfolios.   
The table presents cross-sectional pricing tests using the four-factor model of Fernandez-Perez et al. (2018) 
and Bianchi et al. (2018) adding the skewness risk (Panel A), the basis-mom risk (Panel B) and the 
illiquidity risk (Panel C) portfolios. The test assets are N=31 portfolios; the former 26 portfolios (quintiles 
sorted on momentum, roll-yield, hedging pressure, and CFEAR), the 6 sectoral portfolios, and the additional 
5 portfolios (quintiles sorted on skewness risk in Panel A, basis-momentum in Panel B, and illiquidity  in 
Panel C). We report the (annualized) prices of risk from a cross-sectional regression of average portfolio 
excess returns on full-sample betas with Shanken (1992) t-statistics in parentheses corrected for errors-in-
variables, and Kan, Robotti and Shanken (2013 t-statistics in curly brackets additionally corrected for model 
misspecification and heteroscedasticity. The period is January 2004 to December 2018. 

 
 

 

Constant CFEAR AVG Mom TS HP
Altern. 

comm. risk Adj-R² (%) MAPE (%)
Model i -0.0007 0.0824 35.33 0.050

(-1.03) (2.43)
{-0.72} {2.19}

Model ii -0.0006 0.0733 0.0673 60.12 0.0411
(-0.93) (2.29) (2.01)
{-0.78} {2.35} {2.00}

Model iii -0.0002 -0.0214 0.0525 0.0234 0.0509 0.0574 49.16 0.047
(-0.23) (-0.36) (1.54) (0.78) (1.70) (1.96)
{-0.25} {-0.33} {1.61} {0.77} {1.66} {1.84}

Model iv -0.0011 0.0814 0.0256 0.0278 0.0394 0.0486 0.0477 68.94 0.034
(-1.25) (2.76) (0.44) (0.86) (1.35) (1.62) (1.64)
{-1.23} {2.79} {0.43} {0.88} {1.35} {1.61} {1.58}

Model i -0.0006 0.0858 39.59 0.056
(-0.81) (2.64)
{-0.60} {2.69}

Model ii -0.0005 0.0707 0.0614 57.09 0.047
(-0.80) (2.30) (2.11)
{-0.74} {2.29} {2.05}

Model iii -0.0003 -0.0193 0.0419 0.0269 0.0646 0.0739 58.26 0.045
(-0.28) (-0.32) (1.27) (0.89) (2.05) (2.58)
{-0.31} {-0.28} {1.34} {0.93} {2.01} {2.41}

Model iv -0.0011 0.0776 0.0268 0.0219 0.0410 0.0564 0.0627 75.39 0.032
(-1.27) (2.67) (0.46) (0.69) (1.38) (1.80) (2.24)
{-1.33} {2.71} {0.45} {0.72} {1.45} {1.81} {2.11}

Model i -0.0006 -0.0391 12.28 0.060
(-0.84) (-1.25)
{-0.66} {-1.05}

Model ii -0.0006 0.0781 -0.0144 44.78 0.047
(-0.84) (2.52) (-0.48)
{-0.68} {2.87} {-0.42}

Model iii -0.0002 -0.0210 0.0427 0.0359 0.0620 -0.0368 49.26 0.044
(-0.23) (-0.34) (1.32) (1.25) (2.00) (-1.23)
{-0.26} {-0.34} {1.43} {1.31} {1.93} {-1.02}

Model iv -0.0012 0.0771 0.0291 0.0235 0.0457 0.0538 -0.0233 70.30 0.032
(-1.31) (2.76) (0.49) (0.74) (1.60) (1.74) (-0.80)
{-1.36} {2.98} {0.49} {0.80} {1.74} {1.72} {-0.69}

Panel A: Skewness risk

Panel B: Basis-Mom risk

Panel C: Illiquidity risk


