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Abstract

We propose a coherent framework using support vector regression (SVR) for gener-
ating and ranking a set of high quality models for predicting emerging market sovereign
credit spreads. Our framework adapts a global optimization algorithm employing an
hv-block cross-validationmetric, pertinent formodels with serially correlated economic
variables, to produce robust sets of tuning parameters for SVR kernel functions. In
contrast to previous approaches identifying a single “best” tuning parameter setting, a
task that is pragmatically improbable to achieve in many applications, we proceed with
a collection of tuning parameter candidates, employing the Model Confidence Set test
to select the most accurate models from the collection of promising candidates. Using
bond credit spread data for three large emerging market economies and an array of
input variables motivated by economic theory, we apply our framework to identify rel-
atively small sets of SVRmodels with superior out-of-sample forecasting performance.
Benchmarking our SVR forecasts against random walk and conventional linear model
forecasts provides evidence for the notably superior forecasting accuracy of SVR-based
models. In contrast to routinely used linear model benchmarks, the SVR-based models
can generate accurate forecasts using only a small set of input variables limited to the
country-specific credit-spread-curve factors, lending some support to the rational ex-
pectation theory of the term structure in the context of emerging market credit spreads.
Consequently, our evidence indicates a better ability of highly flexible SVR to capture
investor expectations about future spreads reflected in today’s credit spread curve.
Keywords: Machine Learning; Support Vector Machine Regressions; Sovereign
credit spreads; Emerging Markets; Out-of-sample predictability; Model Confidence
Set.
JEL Classifications: G17; G15; C53.
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1 Introduction

The emerging economies bond market has become a core global asset class in the past decade,

playing an increasingly important role in portfolio allocation and risk management decisions of

international investors. Moreover, measures of sovereign credit spreads serve as benchmarks for

pricing other domestic assets such as corporate bonds and credit derivatives. Yet, very little is known

about their predictability in real-time, in sharp contrast to the voluminous literature on riskless bond

yields that has evolved in recent years; some prominent examples include Fama and Bliss (1987),

Diebold and Li (2006), Ang and Piazzesi (2003), and Ludvigson and Ng (2009). Furthermore, a

key role played by emerging debt markets in global financial stability provides additional important

motivation for developing accurate predictions of emerging market sovereign credit spreads.

However, recent empirical studies of sovereign emerging market credit spreads tend to focus on

their predictability in-sample; see, for example, Longstaff et al. (2011) and Comelli (2012). Such

evidence does not directly extend to predictions in real time. Furthermore, the few studies that

attempt such forecasts document that credit spreads are difficult to predict out-of-sample (OOS). In

particular, in a recent study Audzeyeva and Fuertes (2018) show that predictive models employing

country-specific credit-spread-curve factors, namely, the level, slope and curvature, known to

contain useful information for future yields in the context of riskless debt, cannot beat a random

walk for emerging market bonds. They find that employing additional global and country-specific

predictors improves the model predictive ability, but that even with these additional predictors the

model-based-forecasts cannot always outperform a random walk.

However, these forecasting results rely on assuming that expectations about future credit spreads

are a linear function of the level, slope and curvature factors of today’s credit spread curve. While this

is a plausible assumption, also advocated, for example, in Diebold and Li (2006) for U.S. Treasury

yields, it represents only one of many possible expectation mechanisms that, in fact, is likely to be

more complex in nature for globally-traded emerging market bonds. In particular, it is well known

that emerging market bond prices tend to be noisy and that their distributional properties change

over time, triggered, for example, by a domestic or external credit event, or a global economic

or financial market crisis. This complexity motivates the application of SVR for modeling and

forecasting of such series. The key advantages of SVRs, which are data-driven, non-parametric
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models, are that (a) unlike linear models, they do not require strong a-priori assumptions about

the relationship between the target variable and predictors, and (b) they are, by design, better able

to allay the issue of over-fitting inherent in the standard multivariate linear regression techniques.

Furthermore, SVRs have demonstrated superior performance in time series prediction relative to

both conventional modeling approaches and alternative machine learning techniques such as neural

networks; see Cao and Tay (2001) and Stasinakis et al. (2016) for comprehensive overviews of SVR

financial modeling applications.1

This study contributes, first, to the sparse literature on sovereign credit spread prediction by

applying SVR for the OOS forecasting of credit spreads of large emerging market borrowers.

To the best of our knowledge, this is the first study that applies the SVR methodology in the

context of emerging bond markets. In doing so, we extend the analysis of linear predictive models

underpinned by the assumption of linearly formed expectations in extant emerging market bond

studies by permittingmore complex expectationmechanisms afforded by highly-flexible SVRmodel

specifications. Furthermore, we go one step beyond many SVR forecasting studies of financial

market time series that, similar to technical analysis traders, tend to rely on predictive content in the

historical data of the target variable alone for constructing input variables. Examples are Law and

Shawe-Taylor (2017) who forecast the U.K. andU.S. based stockmarket indices, commodity futures,

government bond yields and corporate CDS, Stasinakis et al. (2016) and Sermpinis et al. (2017b)

who focus on predicting U.S. based commodity exchange traded funds (ETF) and European stock

market ETFs, respectively. In contrast, our predictive models are motivated by economic theory

and as such are aligned with investment strategies of more sophisticated fundamental traders,

employing as input variables an expanded array of predictors containing both global and domestic

fundamentals.

Second, we contribute to the forecasting methodology by proposing a coherent framework using

SVR for generating and ranking a robust set of high quality forecasting models. This contrasts with

extant studies advocating the selection of one "best" predictive model, a task that is pragmatically

improbable to achieve in many applications. To illustrate the issue, consider the methodology for

developing an SVR model that entails two important stages. During the first stage, the modeler

1Lu et al. (2009), for instance, link superior performance of the SVRs over neural networks to their greater
generalization capability in obtaining a unique solution.
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selects specific SVR kernels and must set a small number of tuning parameters that determine

how well the model produced by the subsequent SVR optimization stage will characterize the data

(Cao and Tay, 2001). While the methodology for the second, optimization stage is theoretically

sound and relatively straight forward to implement, Stasinakis et al. (2016), Law and Shawe-Taylor

(2017), Sermpinis et al. (2017a) and Sermpinis et al. (2017b) among others emphasize that SVR

forecasting performance is highly sensitive to the kernel, or tuning, parameters selected at the first

stage, pointing out that there is little formal guidance in the literature on how to set these parameters.

With lacking compelling theoretical guidance for setting tuning parameters, modelers tend to

resort to applying an optimization technique, with grid search being the most frequent choice,

in conjunction with a metric characterizing the goodness of fit, typically based on the forecast

RMSE; see, for example, Min and Lee (2005), Ding et al. (2008) and Gunduz and Uhrig-Homburg

(2011). Among few studies employing global optimization techniques with their measure of fitness,

Stasinakis et al. (2016) apply the Krill-Herd meta-heuristic optimization method to introduce Krill-

Herd SVRwhereas Sermpinis et al. (2017a) incorporate opposition based optimization to develop the

reverse adaptiveKrill global searchmethod in a search for the best tuning parameter setting. Law and

Shawe-Taylor (2017) apply a Bayesian approach that follows Gao (2002) in assuming the existence

of a most likely SVR prediction function generated by a Gaussian process. However, the mapping

from the data to the tuning parameters is highly non-linear and extremely challenging to compute.

To simplify the problem, the authors employ a Taylor-series approximation for the relationship,

performing global quasi-optimization to find the most likely values of tuning parameters.

A common assumption in all of these approaches is that they can identify with some degree

of certainty one “best" set of tuning parameter values producing a single best SVR forecasting

model for a given kernel. However, the complexity of the objective function and the existence of

many local optima makes it unattainable for even global optimization techniques to distinguish with

certainty between a number of potentially “best" solutions. The problem is further exacerbated by

typically limited data sets available to the modelers. Law and Shawe-Taylor (2017) highlight the

issue, proposing to calculate error bounds for their parameter values as a way to resolve it. However,

their error bound calculations depend on a number of approximations, with the resulting accuracy

requiring further analysis. As a result, there is no persuasive evidence that extant approaches can

successfully identify a unique global solution among perhaps many plausible local alternatives.
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Another issue faced by the modeler is that the standard SVR forecasting methodology may be

unsuitable for applications involving serially correlated data series that tend to generate serially

correlated forecast errors as is the case in our bond market application. In particular, Brabanter

et al. (2011) show that standard cross-validation schemes can interpret the serial correlation as a

high frequency relationship with small variance, leading to spurious parameter choices.2

To address the first methodological issue, contrary to previous SVR literature requiring the

modeler to select one best parameter setting, our forecasting framework permits that a chosen SVR

kernel can generate multiple profitable forecasts. The multiplicity of forecasts arises because a SVR

kernel can accommodate a set of viable choices for tuning parameters. Next, we propose a coherent

3-step strategy for managing such multiplicity. Our approach first uses a robust global optimization

algorithm, namely, multi-sequential number-theoretic optimization (MSNTO) put forward by Xu

et al. (2005), in conjunction with hv-block cross validation of Racine (2000) to generate a set

of promising model candidates. The advantage of the global optimization routine is that it is

more robust than alternative methods such as a grid search against choosing bad local optima and

does not require much guidance on what would be a good initial guess. Our choice of hv-block

cross validation as a measure of fitness is motivated by its robustness for serially correlated series

and forecast errors that are common in many economic and financial time series applications,

addressing the second methodological issue in the SVR forecasting literature caused by presence

of serial correlation in the data. In step two, predictor models from step one are estimated using

the standard SVR optimization methodology. In step three, we select a robust set of most accurate

models from the collection of promising candidates from the previous step by applying the Model

Confidence Set test of Hansen et al. (2011), known to be robust to data snooping, that permits

identifying a subset of a group of models with the best forecast accuracy.

We apply our framework to a quarter-ahead OOS forecasting of credit spreads for three large and

relatively mature emerging markets of Brazil, Mexico and Turkey. All three sovereign borrowers are

major emerging market economies and members of the G20. In our predictive analysis, we employ

the data set of Audzeyeva and Fuertes (2018). Our analysis employs SVR with linear, sigmoid,

2Among few studies aiming to address the issue of serial correlation, Bergmeir et al. (2018) argue that k-fold cross-
validation that they apply to both generated and real-life commodity data sets can be adequate for some applications
using non-parametric estimation that satisfy certain conditions. However, we find that our bond market application
does not meet their requirements.

4



RBF and polynomial kernels to generate credit spread forecasts using sets of input variables that are

motivated by economic theory. We find that our framework delivers a relatively small robust set of

high-quality SVR forecasting models for each sovereign borrower. The model sets are characterized

by country-specific preferred kernel functions. Our results provide evidence of notably superior

forecasting accuracy of the highly-ranked SVRmodels relative to both alternative SVR specifications

and standard benchmarks. We further find that our SVR models can deliver accurate credit spread

forecasts with only a small set of input variables limited to the credit-spread-curve factors forMexico

and Turkey and the credit-spread-curve factors augmented by global yield-curve factors for Brazil,

performing as well as or better than both other SVR and benchmark models using extended input

sets.

2 Data variables

2.1 Emerging market credit spreads and spread curve factors

The target variable in our predictability analysis is the credit spread on sovereign bonds of an

emerging market country c

yc,t (τ) ≡ Yc,t (τ)− YUS,t (τ) , (1)

where Yc,t (τ) and YUS,t(τ) are the time-t yield to maturity on τ -maturity zero-coupon bonds of

emerging-market country c and the U.S. Treasury, respectively. In our predictive analysis we set

τ = 5 years. The weekly frequency dataset of Audzeyeva and Fuertes (2018) contains the yields to

maturity on zero-coupon U.S. Treasuries and U.S. dollar-denominated Eurobonds of each country

we used to calculate the country-specific credit spreads.3

Adopting the Nelson and Siegel (1987) representation permits expressing the credit spread on

τ -maturity zero-coupon bond of the emerging-market sovereign c as a parsimonious function of its

3Audzeyeva and Fuertes (2018) extract yields on risky and riskless bonds from cross-sections of bond market prices
for a given emerging market country and U.S. Treasury bonds, respectively, by following an established methodology
that builds on seminal work of Fama and Bliss (1987), Svensson (1994) and Diebold and Li (2006).
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credit-spread-curve factors:

yc,t (τ) = βc0,t + βc1,t

(
1− e−λc,tτ
λc,tτ

)
+ βc2,t

(
1− e−λc,tτ
λc,tτ

− e−λc,tτ
)

(2)

where βc0,t, βc1,t and βc2,t, are the level, slope and curvature factors, respectively. The country

credit-spread-curve factors are available at the weekly frequency in our dataset.4

Figure 1 plots the evolution of credit spread curves for Brazil, Mexico and Turkey during our

December 2, 2008 to December 29, 2015 sample period while Table A1 in Appendix A gives

summary statistics for the target variable, 5-year credit spreads , and the credit-spread-curve

factors. Credit spreads and credit-spread-curve factors of all countries exhibit stylized persistence.

Figure 1 further shows that although the dynamics of credit spreads exhibit common trends across

the three emerging market economies, driven by various global market factors, country-specific

variations are, nevertheless, apparent. Such variations primarily reflect differences in country-

specific creditworthiness. In particular, in December 2008 Brazil and Mexico, both investment-

grade BBB-rated by the S&P credit rating agency, exhibited lower credit spreads than Turkey that

was rated as speculative-grade BB throughout the data sample period. While Mexico’s credit rating

remained stable, with its spreads experiencing a long-term downward trend, Brazil’s spreads rose

sharply with the S&P issuing a negative rating outlook for Brazil on June 6, 2013, followed by

several negative rating changes that led to Brazil’s downgrade to speculative-grade rating BB on

September 9, 2015. In Table A1, these differences in creditworthiness are reflected in the lower

mean credit spread and spread volatility at 139 and 65 basis points, respectively, for Mexico, with

the corresponding figures reaching 159 and 81 basis points for Brazil and even higher, 253 and 93

basis points, for Turkey.

2.2 Input variable selection

The selection of predictive variables for the input vector in our analysis is based on prior research on

predictability of sovereign emerging market spreads. We employ predictive variables, motivated by

economic theory, that have been previously analyzed inAudzeyeva and Fuertes (2018). Accordingly,

4Audzeyeva and Fuertes (2018) extract the credit curve level, slope and curvature factors from weekly cross-sections
of country-specific bond prices; see their paper for details.
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(a) Brazil (b) Mexico

(c) Turkey

Figure 1 Emerging market credit spreads

our Baseline model is rooted in the expectations theory of the term structure of interest rates of

Sargent (1972) and Roll (1970). The main idea is that investor expectations about future credit

spreads, reflected in today’s forward spreads, exploit all the available information. Consequently,

today’s credit spread curve, which embeds forward credit spreads, ought to contain all relevant

information for predicting future spreads. In line with this theory, the Baseline model employs

as input variables level, slope and curvature of the country-specific credit spread curve, known

to summarize the information content in today’s spread curve. Furthermore, as in Audzeyeva and

Fuertes (2018), we test two alternative model specifications that augment the input vector in the

Baseline model by (a) global macroeconomic variables, modelG, and (b) both global and domestic

macroeconomic variables, model GEM . Table 1 lists input variables in each predictive model and

Table A1 in Appendix A provides summary statistics of the data variables.

3 Forecasting framework

Our forecasting framework entails a three-step process. Step one involves specifying predictive

models by selecting SVR kernel functions and setting tuning parameters. In step two, predictive
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Table 1
Input variables in the forecasting models

Input Variables Models
Baseline G GEM

Country spread curve factors
(level, slope, curvature)

X X X

Global predictors
US yield curve factors
(level, slope, curvature)

X X

Volatility of US short-term rate X X

Domestic predictors
Country risk rating X
Trade balance level X
Trade balance volatility X
Terms-of-trade growth level X
Terms-of-trade growth volatility X

models obtained in step one are estimated using the standard SVR methodology, and their OOS

forecasting accuracy is subsequently assessed, permitting the selection of a sub-set of best per-

forming models in step three. For the OOS predictability analysis, we allocate for training the first

2/3Nobs consecutive weeks of the Nobs = 367 weekly observations available in the data sample

period, setting aside remaining 1/3Nobs weeks for OOS forecast evaluation (Hansen et al., 2011).

The forecasts are generated using rolling regressions.

In what follows we first introduce the standard SVR methodology (step two) for which kernel

specifications serve as inputs, subsequently outlining our methodology for setting SVR tuning

parameters (step one) and evaluating model forecasts for model selection (step three).

3.1 Support vector regression

SVR implements structural risk minimization, an important tenet of statistical learning theory, with

the purpose of constructing models with reliable OOS performance (Vapnik, 1995). Instead of

empirical risk minimization, which minimizes the error on observed data, as in linear regression

and most other conventional estimation methodologies, SVR seeks to minimize an upper bound on

the generalization error. As a consequence of its documented superior OOS predictive performance,

the technique has found wide acceptance in financial series forecasting; see, for example, Cao and
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Tay (2001), Min and Lee (2005), Stasinakis et al. (2016), Law and Shawe-Taylor (2017), Sermpinis

et al. (2017a), and Sermpinis et al. (2017b).

Using a training sample containing I observations of a scalar target variable y and a vector of

predictor variables x ∈ RQ , SVR constructs predictive models for q-step-ahead forecasts of y of

the form:

yt+q = f(xt) + ut = w0 +
I∑
i=1

wik(xi, xt; Υ) + ut (3)

We set q = 13 weeks, or one quarter, in our predictive analysis, as in Audzeyeva and Fuertes

(2018). Kernel function k(xi, x; Υ) in Eq.3 effectively maps the input data vector x into a higher

dimensional space representing a wi-weighted linear sum of terms that can better predict the target

variable y due to its superior flexibility. The vector of tuning parameters Υ provides a way for

varying aspects of the nonlinear mapping of the data. This non-linear mapping, often referred to

as “kernel trick”, provides a variety of parsimoniously parameterized nonlinear functional forms

(Hofmann et al., 2008). Our analysis employs four kernel functions described in Table 2: linear,

polynomial, radial basis and sigmoid functions.

SVR chooses a vector of weights wi that minimizes the regularized empirical risk function:

min
1

2
‖w‖+ C

I∑
i=1

(ξi + ξ∗i ), such that

yi+q − f(xi) ≤ ε+ ξi, f(xi)− yi+q ≤ ε+ ξ∗i ,

ξi, ξ
∗
i ≥ 0 for all i.

(4)

Here the bandwidth parameter, ε, determines an ε-insensitive region for characterizing empirical

risk, and the regularization parameter, C, determines the trade-off between a measure of flatness of

the function, ‖w‖, and the level of empirical risk.

The predictions of the parameterized function f(xi) can violate the constraint, but at a cost

proportional to C. With this so called "double-hinged” loss function, the loss will be zero when

|yi+q − f(xi)| ≤ ε, and increase linearly at the rate C for points where the predicted value falls

outside the ε-insensitive region. Based on statistical learning theory, this ε-SVR formulation

explicitly provides robustness against parameter-driven model over-fitting through the judicious
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Table 2
Kernel functions

Name Kernel function k(xi, x) Kernel-specific parameters1

Linear (xi
Tx) —

Radial basis functions2 e
− 1
ψ2||xi−x||2 ψ

Sigmoid3 tanh(γ(xi
Tx) + s) s, γ

Polynomial4 (γ(xi
Tx) + s)g s, g, γ

1 Each kernel function requires a choice of the regularization parameter, C, and the bandwidth
parameter, ε, along with any kernel-specific parameters, altogether comprising the vector of
tuning parameters Υ.

2 Parameter ψ controls the radius of influence of individual observations: larger ψ reduces the
radius of influence.

3 The sigmoid kernel retains some of the properties of a logistic curve but here the values range
between ±1. Reducing γ makes for a more gradual transition between the extreme values
and for the response to appear more linear for intermediate values. Whereas s determines the
location of the point where the kernel function value crosses zero.

4 The polynomial kernel generalizes the linear kernel function by providing a nonlinear response
to the dot product value: the larger the g, the more nonlinear the response. Here γ moderates
the sensitivity to the nonlinear interaction term while s determines the location of the zero
response.

choice of the regularization and bandwidth parameters (Smola and Schölkopf, 2004).5

The loss function, Eq. 4, has a dual Lagrangian of the form

L =
1

2
||w||2 + C

I∑
i=1

(ξi + ξ∗i )−
I∑
i=1

(ηiξi + η∗i ξ
∗
i )−

I∑
i=1

υi(ε+ ξi − yi + k(xi, x; Υ) + w0)−

I∑
i=1

υ∗i (ε+ ξ∗i + yi − k(xi, x; Υ)− w0)

(5)

5In an alternative ν-SVR formulation, the modeler specifies parameter ν determining an upper bound on the fraction
observations which can fall outside the ε-insensitive region and a lower bound of the fraction of support vectors
(Scholkopf et al., 2000). Then, ν is used to determine C and ε. Since there is no strong prior available regarding an
appropriate value for ν in our application, we have applied ε-SVR.

10



Eq. 5 constitutes a quadratic programming problem (QPP) with well known properties and solution

algorithms. The optimization produces a set of nonzero weights υi, υ∗i which identifies a collection

of "support vectors”, influential observations that determine the optimal set of weights – deleting

the other observations and again solving the QPP produces the same set of optimal weights.6

Note that in minimizing Eq. 4, we are only free to adjust w, ξi and ξ∗i . The aim is to obtain w

needed for constructing predictive models of credit spreads, Eq. 3. Two basic tuning parameters C

and ε and any other parameters in Υ defining the kernel function k(xi, x; Υ) serve here as inputs.

Consequently, the SVR model forecasting performance will depend upon the choice of the kernel

function, parametersC and ε, and additional tuning parameters, if any, inΥ. Given a kernel function

and a set of tuning parameters, the SVR approach will produce a single forecasting model. However,

changing tuning parameters would typically produce a different forecasting model. In Sections 3.2

and 3.3 we show how to accommodate this multiplicity.

3.2 Setting tuning parameters

This section outlines the procedure we propose for selecting tuning parameter candidates, Υ,

that serve as input into Eq.3. This procedure is nontrivial for two reasons. First, there is little

theoretical guidance for guessing appropriate tuning parameter values. Second, as in our bond

market application, when searching for appropriate tuning parameters, the modeler is likely to

encounter many local minima that are difficult to rank with any degree of certainty. Consequently,

to mitigate the risk of neglecting favorable tuning parameters we employ MSNTO, a robust global

optimization technique put forward by Xu et al. (2005). Furthermore, as predictive models in

our bond market application generate serially correlated forecast errors, we apply the hv-block

cross-validation algorithm of Racine (2000) together with MSNTO, as an appropriate metric for

evaluating the predictive performance of a given set of tuning parameters in this context.

We do not use any of the validation set for tuning parameter selection, employing the training

dataset alone at this stage. The resulting tuning parameter values are then fixed during our subsequent

OOS forecasting exercise. Wewill first describe the hv-Block cross-validation metric and thenmove

on to describe the global optimization routine.

6For our calculations, we have used the “C++” version of libsvm, a widely used open source SVR implementation.
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3.2.1 hv-Block cross-validation

Since SVR have been developed primarily for OOS prediction, researchers have routinely used

cross-validation procedures, estimating the magnitude of expected OOS forecast errors, to ensure

the robustness of forecasts. However, the presence of serial correlation in the data and forecast errors

can complicate the estimation process, making routinely used cross-validation techniques like k-

fold cross validation potentially unsuitable. This is because the shape and smoothness of the fitted

SVR functions depend critically upon the kernel bandwidth ε. Many cross-validation techniques

interpret the serial correlation as a high frequency relationship with small variance which can result

in setting ε too low for tracking the function variation (Brabanter et al., 2011). In other words, serial

correlation can cause the algorithm to favor narrower than appropriate bandwidths in order to more

effectively limit smoothing of the fitted function, erroneously taking the correlated observations as

part of variation in the function value instead of part of the error.

The hv-block cross-validation approach put forward by Racine (2000) provides a way to estimate

the accuracy of forecasts in the presence of autocorrelated forecast errors. Consider training data

set X =

x
y

 pictured in Figure 2.7 To apply hv-block cross-validation, for each observation i we

collect v observations on either side of the observation Xi =

xi
yi

 to construct a local validation

set for time t = i of size nv = 2v+1. Then h observations are removed from either side of the local

validation set, with the remaining nc = n− 2v− 2h− 1 observations forming the local training set

for time i.8 The algorithm then trains on each local training set of size nc, and computes errors on

each local validation set of size nv. Here h limits the impact of autocorrelation, maintaining “near”

independence between validation and training sets by h-blocking, whereas v ensures consistency of

the estimated forecast error variance.

Denote the validation data sub-set, designated “For Validation” in Figure 2, by X(i:v) =

7Note that all of the observations in Figure 2 come from the original training data set, so that the cross-validation
only uses data from within this data set.

8The actual count remaining will increase when the observation near the beginning or end of the available data as
one of the holdout sections shrinks.
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Holdout HoldoutFor Estimation For Estimation

Xi

v

h

ForV alidation

Figure 2 hv-Block cross-validation

(y(i:v), x(i:v)). The hv-block cross-validation estimate of the forecast error variance is given by:

Φ(Υ) =
1

(n− 2v)nv

n−v∑
i−v+1

||y(i:v) − ŷ(i:v)(Υ)||2 (6)

The guidelines in Racine (2000) supporth = 56, v = 28 for our training data set of 244 observations.

3.2.2 Multi-Sequential Number-Theoretic Optimization

When searching for optimal tuning parameter values, the modeler faces an optimization problem

that can have many local minima. To illustrate the problem, Figure 3 plots the−Φ(Υ)-surface given

by Eq.6 for Mexico, as an example, using the Baseline forecasting model with a linear kernel. The

figure shows many widely dispersed peaks representing local minima of the objective function, with

no clear dominating, or “best”, point among the parameter values. Furthermore, we do not have a

way to guess, with any precision, the regions where good parameter values might lie. Consequently,

this type of problem calls for a robust global optimization routine like MSNTO that can search

broadly yet will not be confounded by bad potential parameter choices.9

Consider a multivariate domain containing all of the parameter values we care to entertain

π = [a, b] ∈ Rl, aι ≤ Υι ≤ bι, for all ι ∈ {1, . . . , l} and a function, Φ(Υ), continuous on π. We

9Employing derivatives seems impractical due to excessive computational complexity in the optimization routine
for obtaining cross-validation values.
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Figure 3 −Φ(Υ)-surface, Eq. 6, for Mexico: Baseline model with a linear kernel

to seek to find

Υ∗ ∈ π such that Υ∗ = Φ(Υ∗) = min
Υ∈π

Φ(Υ)

We choose a set Υ = {Υι, ι = 1, . . . ,Λ} uniformly scattered on π, approximating Υ∗ by

Υ̂∗Λ ∈ Υ such that

Φ(Υ̂∗Λ) = min
ι∈{1,...,Λ}

Φ(Υι).

This simple strategy is known to converge slowly. Recursively contracting the search region

produces dramatic speed improvements. However, this sequential best choice scheme might find

only a local optimal. To avoid getting stuck at a local optimal, various authors propose implementing

multiple local searches based on clustering. We employ the MSNTO algorithm that generates

sample points using a number-theoretic sequence that maximizes dispersion. Then, at each step

the algorithm retains a small fraction, Π, of these points for clustering. Since the exact dispersion

evaluation would be costly, the algorithm uses an approximation for dispersion,

B̂(ρ, π) = max
1≤ι≤Λ

min
1≤θ≤Λ,ι6=θ

‖Υι −Υθ‖ ,

and calculates ρ = ρΦB̂(ρ, π), a small multiple of the estimate of dispersion. Here ρ determines the

range of points that should be included in a single cluster. The algorithm applies a user supplied

14
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Figure 4 MSNTO (−Φ(C, ε)) evaluation point clustering and contraction:
An example from an SVR with a linear kernel

parameter to determine the maximum amount of contraction toward the local minimum to apply to

each of the cluster regions.

These new cluster regions replace the old search regions during the next recursion. Xu et al.

(2005) show that starting out using a number theoretic sequence with a very large set of points, Λ1,

and continuing the recursion with a somewhat smaller set of points in the sequence, Λ2, improves

the algorithm’s performance. We used Λ1 = 100,Λ2 = 15,Π = 0.1, ρΦ = 1.2, σ = 0.5 and

generated points using a Niedreiter sequence (Niederreiter et al., 1983). Table B1 in Appendix B

gives the ranges for search for the parameters of each kernel. Figure 4 further illustrates this process

for a two dimensional Φ(C, ε) parameter search using a SVR with a linear kernel as an example.

The algorithm constructs clusters of points around each local minimum. The first set of points is

widely dispersed, covering a large region of the search space. The second iteration has identified

two clusters and retains the points associated with the two clusters. The third iteration further

refines the search to clusters that encompass a smaller region thereby increasing the precision of the

approximation for the location of the two local minima.

For a given kernel/model combination, applying the MSNTO algorithm to minimize the cross-

validation error produces a collection of candidate tuning parameter settings. Table B2 in Appendix

B shows our tally of distinct promising parameter settings for each kernel/model combination.
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3.3 Model selection and evaluation

We employ the expected value of the squared error loss to evaluate the predictive ability of the

quarter-ahead OOS forecasts generated by various SVR candidate models. However, when choosing

among a collection of forecasting models using a fixed data set, the "data snooping” issue arises:

model results that outperform may just be the result of luck. To overcome this issue, we evaluate

statistical significance of gains in predictive accuracy by means of the Model Confidence Set (MCS)

test of Hansen et al. (2011). The procedure uses forecast errors to identify a subset of a group of

models whose members likely have the best forecasting accuracy.

This subset of models, that the authors call a model confidence set, is constructed to contain all

the superior models with a specified level of confidence. The MCS test has a number of important

advantages over widely used alternative tests put forward by Diebold and Mariano (1995), White

(2000) and Hansen (2005). First, the MCS test provides additional information that is useful to the

modeler: a measure of uncertainty surrounding model selection. The second advantage is related

to the MCS test sensitivity to the utility of information in the available data such that informative

data produces a small collection of good models whereas uninformative data generates large model

confidence sets. Third, unlike alternative tests of pair-wise model comparisons, the MCS test does

not require a benchmark, facilitating direct comparisons of forecasting accuracy among multiple

competing model candidates which is particularly useful in our case.

Let the squared error loss function for the model j ′ prediction ŷj′ ,t of yt to be given by Lj′ ,t =

L(yt, ŷj′ ,t) = (ŷj′ ,t − yt)2. Define the measure of relative model performance as µj′j′′ ≡ E(Lj′ ,t −
Lj′′ ,t). Thus, model j ′ is preferred to model j ′′when µj′j′′ < 0. The authors assume that µj′j′′ is

finite and independent of t.

To define the MCS test procedure, consider a finite initial collection of forecasting models,M0.

LetM∗ denote the set of best models for a specified metric of model assessment:

M∗ ≡ {j ′ ∈M0 : µj′j′′ ≤ 0 for all j ′′ ∈M0}.

A model confidence set at level α, M∗
1−α, is then a subset ofM0 containing all ofM∗ with a

probability (1−α). For a given loss function and confidence level, the test uses sample information

about each model’s relative performance OOS to sequentially eliminate the poorest performing
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models, producing p-values for each model inM0. Small p-values indicate low probability that

the model is actually among the best. The test procedure estimates M̂∗
1−α via a sequence of

significance tests with null hypothesis H0,M : µj′j′′ = 0 for all j ′ , j ′′ ∈ M;M ⊂ M0 and

alternative, HA,M : µj′j′′ 6= 0 for some j ′ , j ′′ ∈ M. The sequential elimination from the model

confidence set continues until doing so reduces the coverage ratio, (1 − α), below the specified

confidence level.

The authors show that, since the procedure uses the same significance level in all tests, all

models with p-values greater than α are in M̂∗
1−α. When the test assigns relatively high p-values

to only one or few models, this serves as compelling evidence of their superior predictive accuracy

relative to the competitor models. Alternatively, when the evidence does not support a few strong

candidates, there may be many models with similarly high p-values. We employ the Hansen et al.

(2011) maximum t-statistic test for assessing model forecasting accuracy using OOS forecast errors

from rolling regression estimation.10

To contrast the accuracy of the SVR forecasts with that of standard benchmarks from the credit

spread forecasting literature, we add a variety of benchmark forecasts to the list of competing

forecasts in our MCS test. A random walk (RW) model makes the first natural benchmark as it

is documented to be difficult to beat in Audzeyeva and Fuertes (2018). To represent another set

of benchmarks, commonly utilized linear regression models, we employ three time-series OLS

regression models from Audzeyeva and Fuertes (2018) that use the same sets of input variables as

our SVR forecasts. Thus, we consider three additional OLS benchmark models. The first model,

OLS-Baseline, generates forecasts that utilize the predictive content in the credit-spread-curve

factors:

yc,t+q = ψc + κc0β̂c0,t + κc1β̂c1,t + κc2β̂c2,t + νc,t+q (7)

The secondOLS benchmark, OLS-G, augments OLS-Baseline with the vector of global macroeco-

nomic input variables,Gt:

yc,t+q = ψc + κc0β̂c0,t + κc1β̂c0,t + κc2β̂c2,t + θGc Gt + νc,t+q (8)

10We have used the ForecastEval package, a Julia implementation of the MCS.
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In the third OLS model, OLS-GEM, the input set is further augmented with the vector of domestic

macroeconomic variables, EM c,t:

yc,t+q = ψc + κc0β̂c0,t + κc1β̂c0,t + κc2β̂c2,t + θGc Gt + θEMc EM c,t + νc,t+q (9)

The predictive horizon here q = 13 weeks as before. The OLS benchmark predictions are obtained

using rolling regressions, based on the same training and OOS evaluation windows as respective

SVR predictions.

4 Empirical forecasting results

4.1 Predictive ability of SVR models

Accuracy of the quarter-ahead OOS SVR forecasts generated using models with various sets of

input variables: Baseline, G, and GEM , employing Linear, RBF, Sigmoid and Polynomial SVR

kernels, is evaluated by running a horse race among competing models. Table 3 reports the results

for twenty SVR-based forecasts that have the lowest RMSE for a given country, contrasting them

with forecast RMSE of benchmarks utilized in the literature. To gauge the statistical significance

of gains in forecast accuracy, we report MCS p-values, identifying model forecasts in M̂∗
75%,

M̂∗
50% and M̂∗

25%.11
,
12 The interpretation of the MCS test confidence level is analogous to that of a

confidence interval for a parameter whereMCS identifies from a collection of model candidates a

sub-set of models that contain the best model with a given level of confidence. Model forecasts are

ordered byMCS p-value, with those more likely to generate the most accurate forecasts listed first.

The wide range of reported p-values across models varying, for example, from p = 0.031 to p = 1

for Mexico, provides evidence of high information utility in each country’s data, unambiguously

identifying a sub-group of most accurate forecasts.

The OOS forecasting evidence confidently identifies superior predictive accuracy of the SVR-

based forecasts over the benchmarks. In particular, ten SVR-based forecasts but none of the

11We report levels of confidence that are more conservative than 90% and 75% reported in the forecasting exercise
by Hansen et al. (2011).

12Given the size of the data sample, increasing the size of the model set beyond 25 may affect the reliability of the
MCS test results (Hansen et al., 2011).
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benchmarks enter M̂∗
75% for Brazil. Gains in forecast accuracy are equally sizable in economic

terms as borne out by a substantial reduction in forecast errors afforded by the SVR models: the

ten M̂∗
75% models, all G-specifications of SV R, deliver, on average, a 9.1% and 4.7% reduction

in RMSE (1 − RMSESV R/RMSEOLS) over the benchmark employing the same set of input

variables, OLS-G, and the best performing benchmark, OLS-GEM , respectively. The evidence

is even more striking for Mexico and Turkey: eleven SVR-based forecasts for Mexico and four

SVR-based forecasts for Turkey enter M̂∗
25%; the superior model set is dominated byBaseline SVR

specifications for both countries. At the same time, similar to Brazil, all benchmark forecasts exhibit

relatively low p-values, clearly signaling their inferior predictive accuracy to SVR-based forecasts

for both countries. Evidence of substantive economic gains confirms this result: the reductions

in forecast RMSE afforded by the M̂∗
25% SVR models are 16.8% relative to OLS-Baseline and

12.9% relative to the best performing benchmark,OLS-GEM , forMexico. The respective gains are

equally sizable at 16.4% for Turkey, withOLS-Baseline being the same input-set-based benchmark

and best performing benchmark at the same time.

4.2 Further empirical observations

Table 3 further shows that there is no persuasive evidence for singling out a kernel function that

may be most suited for modeling credit spreads of various countries. Nevertheless, country-specific

evidence suggests that some kernel functions may be particularly well suited for modeling credit

spreads of a given country. For example, there is a clear preferred kernel, RBF, for Brazil, with

all models in M̂∗
75% being RBF-based. In contrast, Linear is the preferred kernel, used in 7 out

of 11 best performing models, for Mexico and Poly, featuring in 2 out of 4 best models, is the

preferred kernel for Turkey. Interestingly, Poly and Linear-based SVR appear among top performers

when employed in conjunction with a small input set such as Baseline whereas RBF-based SVR

perform well in conjunction with extended input sets likeG for Mexico andGEM in Turkey’s case.

However, this observation requires further more conclusive evidence.

Furthermore, the results reveal that SVR-based models require only a relatively small set of

input variables to deliver accurate forecasts across all three countries. In particular, the best

performing SVR employ the Baseline input set for Mexico and Turkey and G, an extension with

global but not domestic variables, for Brazil. This finding contrasts with the results for benchmark
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models where the benchmark using the largest set of input variables,GEM , containing both global

and domestic fundamentals, generates the lowest RMSE for Brazil and Mexico, with Baseline

delivering the lowest RMSE only for Turkey. Thus, our findings provide evidence of the SVR

models ability to deliver accurate forecasts when employing even smaller input sets than those used

by the benchmarks. Furthermore, adding global variables (G) or both global and domestic variables

(GEM ) to the input set does not deliver improvements in forecast accuracy over SVRBaseline that

exploits predictive content only in the credit spread curve for Mexico and Turkey. This SVR-based

finding contrasts with evidence for linear-model-based forecasts in our study and also those reported

in Audzeyeva and Fuertes (2018), suggesting that the Baseline OLS specification cannot always

outperform random walk and that its forecasting accuracy can be improved by additional predictors.

Only for Brazil, adding global (but not domestic) macroeconomic variables to the Baseline input

set helps improve forecast accuracy.13

Taken together, the SVR-based evidence lends some support to the rational expectation theory for

the term structure of credit spreads when the credit-spread-curve factors are not bounded to a strictly

linear relationship with future credit spreads as in the previous literature. A further investigation

into the factors that produce supportive evidence for some countries (Mexico and Turkey) but not

for others (Brazil) presents a fruitful direction for further research.

5 Conclusions

This paper proposes a coherent framework for producing a set of highly accurate SVR models

for forecasting credit spreads of emerging markets. In our main methodological contribution, we

put forward a systematic approach for setting robust parameter values for SVR kernel functions,

addressing a gap in the SVR literature. In contrast to previous studies aiming to select one "best"

kernel setting that serves as input into the "best" SVR predictive model, our approach generates

a robust set of viable tuning parameter values feeding into a set of SVR model candidates. We

manage this model multiplicity by adopting the MCS test to select a sub-set of most accurate mod-

13The significance of predictive content in global factors for Brazil is likely to be related to a sharp deterioration in
Brazil’s creditworthiness, forcing Brazil out of investment-grade BBB and into speculative-grade BB rating category
in September 2015 while credit ratings of Mexico and Turkey remained relatively stable. A consequent steep rise in
Brazil’s exposure to global risks may have been reflected in its current credit spread curve with some delay, enabling
global factors to add predictive content beyond the spread curve for future credit spreads.
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els. Furthermore, our approach accommodates novel economic and financial market applications

characterized by serially correlated data.

In the empirical analysis part, the evaluation of a quarter-ahead OOS performance of SVR

forecasts that our approach generates for three large sovereign emerging market borrowers using

various kernel functions and sets of input variables motivated by economic theory provides evidence

that our approach identifies a relatively small set of SVR models with a notably superior OOS

forecasting ability in economic and statistical terms relative to both other SVR specifications and

standard benchmarks utilized in the credit spreads literature. Moreover, our evidence confirms a

finding in Sermpinis et al. (2017b) for European stock market ETF disproving a widely-held belief

that the RBF kernel is the optimal choice for modeling financial market series, indicating that the

kernel choice may be country-specific for emerging market credit spreads.

Our results further suggests that our SVR approach can deliver accurate credit spread forecasts

with a small set of predictors limited to the credit curve level, slope and curvature factors, outper-

forming the random walk and linear-regression-based benchmarks using even larger predictor sets

and performing at least as well as SVR forecasts using extended sets of predictors. Consequently,

our findings for SVR-based credit spread forecasts lend support to the rational expectation theory of

the term structure in the context of emerging market credit spreads that has been previously rejected

for linear-model-based forecasts of emerging-market sovereign credit spreads in Audzeyeva and

Fuertes (2018) and mature-market (U.S.) corporate credit spreads in Krishnan et al. (2010). Hence,

our results provide indirect evidence that highly flexible SVR models may be better suited than

linear models, routinely employed in the literature, for capturing investor expectations about future

credit spreads on emerging market bonds. Further direct tests will constitute a fruitful avenue for

future research.
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Appendix A Data variables: Summary statistics

Table A1
Summary statistics of emerging market sovereign credit spreads and input variables

 

Variable

US

Yield curve level 0.043 0.008 0.027 0.058 0.986

Yield curve slope -0.028 0.013 -0.053 -0.004 0.981

Yield curve curvature -0.079 0.025 -0.139 -0.022 0.978

 Short-term rate volatility 0.000 0.001 0.000 0.004 0.977

Credit spread 0.016 0.008 0.004 0.050 0.973

Credit-curve-spread curve level 0.025 0.010 0.012 0.061 0.974

Credit-curve-spread curve slope -0.011 0.020 -0.061 0.062 0.887

Credit-curve-spread curve curvature -0.025 0.040 -0.154 0.069 0.925

Country risk rating 39.196 3.146 32.500 45.500 0.978

Trade balance 0.067 0.081 -0.159 0.379 0.978

Trade balance volatility 0.054 0.027 0.021 0.157 0.990

Terms-of-trade growth 0.052 8.790 -13.276 19.361 0.997

Terms-of-trade growth volatility 2.747 1.560 0.389 8.899 0.991

Credit spread 0.014 0.006 0.006 0.047 0.972

Credit-curve-spread curve level 0.021 0.006 0.013 0.044 0.930

Credit-curve-spread curve slope -0.009 0.014 -0.044 0.024 0.874

Credit-curve-spread curve curvature -0.021 0.032 -0.086 0.063 0.930

Country risk rating 40.289 1.908 35.500 43.000 0.978

Trade balance -0.033 0.071 -0.272 0.085 0.958

Trade balance volatility 0.066 0.032 0.024 0.135 0.992

Terms-of-trade growth -2.778 9.850 -22.243 19.394 0.998

Terms-of-trade growth volatility 3.609 2.973 0.356 14.099 0.994

Credit spread 0.025 0.009 0.013 0.073 0.964

Credit-curve-spread curve level 0.029 0.008 0.013 0.063 0.961

Credit-curve-spread curve slope -0.007 0.017 -0.055 0.061 0.797

Credit-curve-spread curve curvature -0.006 0.030 -0.124 0.127 0.796

Country risk rating 33.740 2.550 27.000 37.500 0.981

Trade balance -0.816 0.227 -1.253 -0.202 0.993

Trade balance volatility 0.110 0.041 0.042 0.209 0.989

Terms-of-trade growth 0.857 4.350 -8.864 9.667 0.995

Terms-of-trade growth volatility 1.732 1.183 0.241 5.320 0.993

AR(1)
Country

Mean StDev Min Max

Turkey

Brazil

Mexico
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Appendix B MSNTO: Implementation details

Table B1
MSNTO tuning parameter search ranges

Kernel Parameter Value Search Regions

Linear C ∈ (1., 200), ε ∈ (0.0001, 0.1)

RBF C ∈ (1., 200), ε ∈ (0.0001, 0.1), ψ ∈ (0.0001, 40)

Sigmoid C ∈ (1., 200), ε ∈ (0.0001, 0.1), γ ∈ (0.0001, 40), s ∈ (−13, 13)

Polynomial C ∈ (1., 200), ε ∈ (0.0001, 0.1), γ ∈ (−13, 13), s ∈ (0.01, 20), g ∈ (1, 6)

Table B2
Number of unique tuning parameter values

Kernel
MODELS

Baseline G GEM

Brazil
Linear 112 100 3
RBF 88 341 84
Sigmoid 190 291 45
Poly 160 246 10

Mexico
Linear 110 63 8
RBF 44 254 100
Sigmoid 34 90 80
Poly 66 199 152

Turkey
Linear 21 63 31
RBF 215 1292 38
Sigmoid 37 18 20
Poly 65 256 19
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