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Abstract

We study the formation of R&D networks when each firm benefits from the

research done by other firms it is connected to. Firms can be either myopic or

farsighted when deciding about the links they want to form. We propose the notion

of myopic-farsighted stable set to determine the R&D networks that emerge in the

long run. When the majority of firms is myopic, stability leads to R&D networks

consisting of either two asymmetric components with the largest component com-

prises three-quarters of firms or two symmetric components of nearly equal size with

the largest component having only myopic firms. But, once the majority of firms

becomes farsighted, only R&D networks with two asymmetric components remain

stable. Firms in the largest component obtain greater profits, with farsighted firms

having in average more collaborations than myopic firms that are either loose-ends

or central for spreading the innovation within the component. Besides myopic and

farsighted firms, we introduce yes-firms that always accept the formation of any link

and never delete a link subject to the constraint of non-negative profits. We show

that yes-firms can stabilize R&D networks consisting of a single component that

maximize the social welfare. Finally, we look at the evolution of R&D networks

and we find that R&D networks with two symmetric components will be rapidly

dismantled, single component R&D networks will persist many periods, while R&D

networks consisting of two asymmetric components will persist forever.
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1 Introduction

R&D alliances are coordinating devices among two or more partners, where members seek

access to new knowledge that would be in mutual advantage, and at the same time they

risk to disclose unintentionally some strategic information. Such collaborative agreements

introduce external effects on competitors, who can reply by searching for their own al-

liances.1 Given that the increase of innovation is acknowledged to enhance both growth

and welfare, it is important to analyze the bilateral incentives competing firms have to

form alliances and how these alliances add up to form R&D network alliances. The ob-

jective of the paper is to analyze the R&D networks that would arise in the long run in

presence of both myopic or farsighted firms.

We consider a n-firm industry, where initially firms produce an homogeneous good at

a given marginal cost. Each firm is able to reduce its cost by forming a link with another

competitor. The marginal cost of production reduction for one firm is proportional to the

number of firms it is connected to. When a new link is formed between two firms already

linked with others, all connected firms benefit from that link.2 The collection of all the

bilateral links define the R&D network which in turn determines the marginal cost profile

for the n oligopolists. Once the R&D network is formed, firms compete in quantities.3

Up to now, it has been assumed that all firms are either myopic or farsighted when they

decide with which firms they want to form a partnership. Goyal and Moraga-Gonzalez

(2001) among others adopt the notion of pairwise stability to predict the R&D networks

that one might expect to emerge in the long run. A R&D network is pairwise stable

if no firm benefits from cutting a collaboration and no two firms benefit from forming

a collaboration between them. Forming a link requires the consent of both firms, while

deleting a link can be done unilaterally. Pairwise stability presumes that firms are myopic:

they do not anticipate that other firms may react to their changes. But farsighted firms are

able to anticipate that once they add or delete some links, other firms could add or delete

links afterwards. For instance, Mauleon, Sempere-Monerris and Vannetelbosch (2014)

1The number of alliances worldwide seems to be increasing, according to the CATI (Cooperative

Agreements and Technology Indicators) database, in 2006, about 900 new worldwide business technology

alliances were formed, approximately two-thirds of which involved at least one U.S.-owned company

regardless of location.
2In Mauleon, Sempere-Monerris and Vannetelbosch (2008), the reduction in marginal costs also de-

pends on the total number of connected firms, but the marginal effect of that reduction decreases with

the distance. In Goyal and Joshi (2003), the reduction in marginal costs only depends on the number of

direct links. As if each firm was able to isolate the knowledge coming from each firm to whom it is linked.

In Goyal and Moraga-Gonzalez (2001), firms even benefit, although imperfectly, from the research done

by firms to whom they are not connected. All these papers study the emergence of R&D networks among

only myopic firms. See also König, Battiston, Napoletano and Schweitzer (2011, 2012) or Dawid and

Hellmann (2014) among others.
3Firms collaborate in R&D but do not cooperate on R&D effort choices. For a general background on

R&D cooperation in oligopoly the reader is directed to Amir (2000), d’Aspremont and Jacquemin (1988),

Kamien, Muller, and Zang (1992) and Katz (1986), among others.
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show that farsighted firms may not put an end to some R&D link that appears in deficit

to them as this can induce the formation of other competing links, ultimately lowering

their profits.4 However, Kirchsteiger, Mantovani, Mauleon and Vannetelbosch (2016)

find experimental evidence in favor of a mixed population consisting of both myopic and

farsighted agents. Hence, we are interested in addressing the following questions. Which

R&D networks are likely to emerge in the long run with myopic and farsighted firms?

Which firms are more likely to occupy key positions in the R&D network? What is the

relationship between the stable R&D networks and the social welfare?

We propose the notion of myopic-farsighted stable set to determine the R&D networks

that emerge when some firms are myopic while others are farsighted. A myopic-farsighted

stable set is the set of networks satisfying internal and external stability with respect to

the notion of myopic-farsighted improving path. That is, a set of networks is a myopic-

farsighted stable set if there is no myopic-farsighted improving path between networks

within the set and there is a myopic-farsighted improving path from any network outside

the set to some network within the set. A myopic-farsighted improving path is simply a

sequence of networks that can emerge when farsighted firms form or delete links based

on the improvement the end network offers relative to the current network while myopic

firms form or delete links based on the improvement the resulting network offers relative

to the current network.5

When the majority of firms are myopic, the myopic-farsighted stable set consists of

R&D networks having either two "asymmetric" components of different sizes (close to

3n/4 and n/4) with farsighted firms occupying key positions in the largest component

and myopic firms as loose-ends or medians,6 or two "symmetric" components of nearly

equal size (close n/2 + 1 and n/2 − 1) with the largest component having only myopic

firms (n is the total number of firms).7 In the case all firms are myopic, the myopic-

farsighted stable set consists only of the networks having two components of nearly equal

size, namely the pairwise stable networks.

However, when the majority of firms becomes farsighted, networks having two com-

ponents of nearly equal size are now unstable. The myopic-farsighted stable set consists

only of the networks having two components of different sizes (close to 3n/4 and n/4)

with possibly myopic firms as loose-ends or medians in the largest component. Hence,

4Mauleon and Vannetelbosch (2016) provide a comprehensive overview of the (myopic and farsighted)

solution concepts for solving network formation games.
5One could interpret myopia and farsightedness as a proxy for its past experience in running R&D

collaborations. For instance, well-established firms that have gained enough experience to acquire a better

understanding of R&D collaboration could be more likely farsighted.
6A firm is called a loose-end node when it only has a single link. In a minimally connected component, a

firm is called a median node if (by cutting one of its links) it cannot split the component in two components

with one having a size strictly greater than n/2. A myopic loose-end or median firm has no incentive to

delete a link.
7In our model, firms belonging to the largest component of size close to 3n/4 obtain their best payoff

among all networks consisting of at most two components.
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even if there is a large majority of farsighted firms, firms will not necessarily end up

segregated: farsighted firms can be mixed with myopic firms in the largest component,

with farsighted firms having more collaborations on average. In the largest component,

myopic firms enjoy greater profits than the farsighted and myopic firms that end up in the

smallest component. In addition, some myopic firms (median nodes) have a high (if not

the highest) betweenness centrality.8 Thus, even if myopic firms are less active in terms

of R&D collaborations they may play a crucial role for spreading the innovation within

the component.

Beside having myopic together with farsighted firms we next introduce another type of

firms: the yes-firms. Yes-firms always accept the formation of any link and never delete a

link subject to the constraint of non-negative profits. Yes-firms could be viewed as public

sector firms or universities that usually agree to add a new collaboration, if their profits

are positive in the resulting network.9 Which R&D network structure is likely to emerge

when the majority of firms are myopic and others are farsighted or yes-firms? In fact,

three types of stable networks can emerge. We still obtain the networks having either

two components of different sizes (close to 3n/4 and n/4) with myopic firms as loose-ends

or medians in the largest component and all yes-firms in the smallest component, or two

components of nearly equal size (close n/2 + 1 and n/2 − 1) with only myopic firms in

the largest component and so all yes-firms in the other component. But now, a third

type of networks can arise consisting of a single component with yes-firms bridging all

other firms and myopic firms as loose-ends. Hence, yes-firms may play a crucial role by

bridging myopic and farsighted firms and helping the society to reach a socially optimal

state: R&D networks consisting of a single component maximize both social welfare and

consumer surplus.

One could argue that yes-firms are myopic too. What would happen if they were

farsighted instead? Farsighted firms look at the ending network instead of the resulting

one. Nothing would change since all firms always make non-negative profits in any network

configuration at equilibrium.10 Thus, yes-firms can be interpreted both as myopic or

farsighted yes-firms. Statistics about the R&D networks in Japan are in line with our

theoretical predictions. From Table 1 we have one component or two components of

different sizes depending on the region. For instance, in Tohoku and Kanto, there are two

8The betweenness centrality is a measure that captures how important an agent is in terms of con-

necting other agents.
9An important feature of collaboration agreements is that they often engage both private and public

firms or universities. See Zikos (2010) for a theoretical analysis of the formation of links between private

and public firms and Roesler and Broekel (2017) for an empirical study of the role of universities in the

subsidized network of R&D collaboration in the German biotechnology industry.
10Given that single component networks are the best networks in terms of social welfare, adding links

subject to the constraint of non-negative profits is consistent with the objective of maximizing the social

welfare. However, if yes-firms would maximize their number of collaborations, being myopic or farsighted

could potentially matter.
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components with the size of the largest component close to 3n/4. In Okinawa, there are

two components with the size of the largest one close to n/2+1. In addition, we observe a

much higher degree centrality for universities and public sector, except in Okinawa where

the major industry is tourism.

Degree centrality N◦ components Size of largest

Region N◦ firms Industry Academy Public with #firms ≥ 10 component

Hokkaido 245 5.92 12.47 9.44 1 238

Tohoku 261 6.93 10.72 14.24 2 215

Kanto 686 5.85 8.67 14.88 2 547

Chubu 369 5.89 9.43 14.50 1 336

Kinki 528 6.19 13.53 20.84 1 496

Chugoku 302 6.72 13.43 21.21 1 298

Shikoku 220 6.02 11.13 17.56 1 203

Kyushu 381 5.67 13.63 15.67 1 357

Okinawa 65 5.02 6.07 7.00 2 32

Table 1: Descriptive statistics of the R&D networks in Japan under the METI programme

"Consortium R&D Project for Regional Revitalization" during the period 2001-2007.

Source: Yokura, Matsubara and Sternberg (2013).

Finally, we look at the evolution and dynamics of R&D networks with a group of

myopic firms that are initially unconnected to each other. Over time, pairs of firms meet

and decide whether or not to form or sever links with each other. A link can be severed

unilaterally but agreement by both firms is needed to form a link. Since all firms are

initially myopic, they decide to form or sever links if doing so increases their current

profits. The length of a period is suffi ciently long so that the process can converge to

some stable R&D network. At the beginning of each period, some myopic firms become

farsighted. It can be interpreted as if some myopic firms have gained enough experience

to acquire a better understanding of R&D collaborations. Depending on their positions

in the network, the process either stays at the same R&D network or converges to another

stable R&D network. We study this process and show that it can reproduce and predict

most features that have been observed empirically.11 Starting from the empty network,

the process converges to either a network consisting of two components of nearly equal

sizes or a single component network with the yes-firms bridging all other firms. In the

case the process reaches first a network consisting of two components of nearly equal

sizes, it suffi ces that next one firm belonging to the largest component becomes farsighted

for dismantling the network and converging to a network consisting of two components of

11For the German biotechnology industry during the period 2007-2010, Roesler and Broekel (2017) find

that universities dominate the network as partners in many subsidized R&D projects: knowledge links

among universities form the core of the network and universities are central for facilitating knowledge

diffusion by connecting local private firms to inter-regional knowledge networks.
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different sizes.12 However, in the case the process reaches first a single component network,

one would need that a large number of myopic firms become farsighted to move away from

it. Hence, this single component network that maximize social welfare will persist many

periods before moving to a network consisting of two components of different sizes that

will persist forever.

The formation of research collaborations is also studied using the group formation

approach where collaborations are modeled in terms of a coalition structure which is a

partition of the set of firms (i.e. each firm can only belong to one coalition). Bloch (1995)

proposes a sequential game for forming associations of firms. In equilibrium, firms form

two asymmetric associations, with the largest one comprising roughly three-quarters of

industry members. So, the sizes of the two associations coincide with those we obtain

when the majority of firms are farsighted. In fact, by assuming that all connected firms in

a network fully benefit from a new link, we recover the assumption in Bloch (1995) where

the benefits from cooperation increase linearly in the size of the association. The network

approach differs from the group formation approach by focusing on bilateral relationships

and allowing for a richer class of collaborations. It also differs in the decision making

for establishing R&D collaborations. Mutual consent is needed for forming a new link

between two firms, whereas the consent of all members of the association is required when

a firm joins the association.13 Both approaches lead to similar conclusions only if some

firms are farsighted and anticipate the reactions of other firms to the decisions they take.14

Farsightedness helps firms to better exploit all the collaborative opportunities they face.15

The paper is organized as follows. Section 2 describes the model. Section 3 introduces

the notion of a myopic-farsighted improving path and the concept of a myopic-farsighted

stable set. Section 3 also characterizes the stable set when myopic firms interact with

farsighted firms. Section 4 provides a characterization of the myopic-farsighted stable

sets when some firms are yes-firms. Section 5 studies the evolution and the dynamics

of R&D networks. Section 6 concludes and discusses the robustness of our results with

respect to costly link formation, product competition, spillovers and reduction in marginal

costs decreasing with the distance.

12Along the transition from a network consisting of two components of nearly equal sizes to a network

consisting of a two components of different sizes, single component networks are likely to be visited.
13An exception is the open membership game. Yi (1997) finds that only the grand coalition is stable,

but this result is not always robust when firms are not identical (see Belleflamme, 2000; Yi and Shin,

2000). See Bloch (2005) for a survey on group and network formation in industrial organization.
14Mauleon, Sempere-Monerris and Vannetelbosch (2016) show that if firms are myopic (∆-stability)

there is no stable association structure for n ≥ 8.
15Roketskiy (2018) studies collaboration between farsighted firms competing in a tournament and finds

that stable networks consist of two asymmetric mutually disconnected complete components.
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2 The Model

We consider a two-stage game in a setting with n competing firms that produce some

homogenous good. In the first stage, firms decide the bilateral R&D collaborations (or

links) they are going to establish in order to maximize their respective profits. Let N =

{1, 2, ..., n} be the set of firms.16 A network g of R&D collaborations is a list of which

pairs of firms are linked to each other and ij ∈ g indicates that i and j are linked under
g. The complete network on the set of firms S ⊆ N is denoted by gS and is equal to the

set of all subsets of S of size 2. It follows in particular that the empty network is denoted

by g∅. The set of all possible networks on N is denoted by G and consists of all subsets
of gN . The network obtained by adding link ij to an existing network g is denoted g+ ij

and the network that results from deleting link ij from an existing network g is denoted

g − ij. Let N(g) = {i |there is j such that ij ∈ g} be the set of firms who have at least
one link in the network g. A path in a network g between i and j is a sequence of firms

i1, . . . , iK such that ikik+1 ∈ g for each k ∈ {1, . . . , K − 1} with i1 = i and iK = j. A

network g is connected if for all i ∈ N and j ∈ N \{i}, there exists a path in g connecting
i and j. A non-empty subnetwork h ⊆ g is a component of g, if for all i ∈ N(h) and

j ∈ N(h) \ {i}, there exists a path in h connecting i and j, and for any i ∈ N(h) and

j ∈ N(g), ij ∈ g implies ij ∈ h. The set of components of g is denoted by C(g). A

component h of g is minimally connected if h has #N(h) − 1 links (i.e. every pair of

firms in the component are connected by exactly one path). Knowing the components of

a network, we can partition the firms into groups within which firms are connected. Let

Π(g) denote the partition of N induced by the network g. That is, S ∈ Π(g) if and only

if either there exists h ∈ C(g) such that S = N(h) or there exists i /∈ N(g) such that

S = {i}. We denote by S(i) the coalition S ∈ Π(g) such that i ∈ S.
R&D collaborations reduce marginal costs of production. Given a network g, the

marginal cost for firm i is given by

ci(g) = c0 − (1 +
∑
j 6=i

δt(ij)−1)

where c0 is a firm’s initial marginal cost, δ ∈ (0, 1] and t(ij) is the number of links in

the shortest path between i and j (setting t(ij) = ∞ if there is no path between i and

j). That is, each firm benefits both from its own R&D (reducing its marginal cost by 1)

and from the R&D done by the firms its is connected to (reducing its marginal cost by∑
j 6=i δ

t(ij)−1). Let Nk
i (g) = {j | t(ij) = k} be the set of firms that are connected to firm

i by a path of at least k links. Then,

ci(g) = c0 − 1−
n−1∑
k=1

#Nk
i (g)δk−1.

16Throughout the paper we use the notation ⊆ for weak inclusion, ⊂ for strict inclusion, and int(·) for
the integer part. Finally, # will refer to the notion of cardinality.
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We mainly focus on the case where each firm fully benefits from the research done by

the firms it is connected to, i.e. δ = 1. Since the knowledge flows perfectly through the

component, we assume that a firm bears an infinitesimally small costs for maintaining

redundant (or superfluous) links. In a network g, a component h ∈ C(g) has no redundant

links if and only if h is minimally connected. It reflects the idea that firms avoid wasting

resources. When a firm deletes a redundant or superfluous link, it remains connected to

the same set of firms and so still benefits from the same reduction in marginal costs.17

In the second stage, firms compete in quantities in the oligopolistic market, taking as

given the costs of production. Let p = a−
∑

i∈N qi with a > 0 be the linear inverse demand

function. For any given R&D network g, one can easily show that there exists a unique

Cournot equilibrium on the market, and that each firm’s profit ui(g) is a monotonically

increasing function of the following valuation or payoff function,18

Ui(g) = a− c0 + (n+ 1)#S(i)−
∑
S∈Π(g)

(#S)2. (1)

In fact, Ui(g) = (n + 1)
√
ui(g) = (n + 1)qi(g) where qi(g) is the equilibrium output.

We focus our analysis on the case where there are at least eight firms. Notice that R&D

networks connecting all firms are the ones that maximize social welfare, i.e. the sum of the

profits and the consumer surplus. For n ≥ 8, this payoff function satisfies some general

properties that are useful for characterizing the networks that will emerge in the long

run. A first property is that linking two components decreases the payoffs of the firms

that do not belong to those components: Ui(g + jk) < Ui(g) if S(i) 6= S(j) 6= S(k) and

S(i), S(j), S(k) ∈ Π(g). A second property is that, in any R&D network, firms belonging

to bigger components obtain greater payoffs: Ui(g) > Uj(g) if and only if #S(i) > #S(j).

A third property is that firms belonging to the two smallest components obtain greater

payoffs by bridging the two components: in any g with #Π(g) ≥ 3, Ui(g + ij) > Ui(g)

and Uj(g + ij) > Uj(g) if S(i) 6= S(j), S(i), S(j) ∈ Π(g), and #S ≥ max{#S(i),#S(j)}
for all S ∈ Π(g), S 6= S(i), S(j). Throughout the paper we illustrate our main results

by means of an example with eight firms. In Table 2 we give the equilibrium payoffs

for a − c0 = 42. We make a slight abuse of notation. For instance, {5, 2, 1} should be
interpreted as a network, composed of three "components" of size 5, 2 and 1, that can be

formed by eight firms. Firms in the component of size 5 obtain a payoff of 57, firms in

the component of size 2 obtain a payoff of 30, and the (isolated) firm in the "component"

of size 1 obtains a payoff of 21.

17Assuming infinitesimally small costs for maintaining redundant links means that we focus on the

strategic positioning within the network rather than on the payoff one.
18Excluding infinitesimally small costs for maintaining redundant links.
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Networks: {8} {5, 3} {5, 2, 1} {3, 3, 2} {3, 3, 1, 1}
Profits: (50) (53, 35) (57, 30, 21) (47, 47, 38) (49, 49, 31, 31)

Networks: {7, 1} {4, 4} {4, 3, 1} {5, 1, 1, 1} {3, 2, 2, 1}
Profits: (55, 1) (46, 46) (52, 43, 25) (59, 23, 23, 23) (51, 42, 42, 33)

Networks: {6, 2} {6, 1, 1} {4, 2, 2} {4, 2, 1, 1} {2, 2, 2, 2}
Profits: (56, 20) (58, 13, 13) (54, 36, 36) (56, 38, 29, 29) (44, 44, 44, 44)

Table 2: Payoffs for the 8-firm case with a− c0 = 42.

3 Myopic-Farsighted Stable Set of R&D Networks

3.1 Myopic-farsighted improving paths and stable sets

We propose the notion of myopic-farsighted stable set to determine the R&D networks

that emerge in the long run when some firms are myopic while others are farsighted. A

set of networks is a myopic-farsighted stable set if (internal stability) there is no myopic-

farsighted improving path between networks within the set and (external stability) there

is a myopic-farsighted improving path from any network outside the set to some network

within the set.19 A myopic-farsighted improving path is a sequence of networks that can

emerge when farsighted firms form or delete links based on the improvement the end

network offers relative to the current network while myopic firms form or delete links

based on the improvement the resulting network offers relative to the current network.

Since we only allow for pairwise deviations, each network in the sequence differs from

the previous one in that either a new link is formed between two firms or an existing

link is deleted. If a link is deleted, then it must be that either a myopic firm prefers the

resulting network to the current network or a farsighted firm prefers the end network to

the current network. If a link is added between some myopic firm i and some farsighted

firm j, then the myopic firm i must prefer the resulting network to the current network

and the farsighted firm j must prefer the end network to the current network.20 Let Nm
be the set of myopic firms and Nf be the set of farsighted firms, N = Nm ∪Nf .

Definition 1. A myopic-farsighted improving path from a network g to a network g′ 6= g

is a finite sequence of networks g1, . . . , gK with g1 = g and gK = g′ such that for any

k ∈ {1, . . . , K − 1} either

(i) gk+1 = gk− ij for some ij such that Ui(gk+1) > Ui(gk) and i ∈ Nm or Uj(gK) > Uj(gk)

and j ∈ Nf ; or
19Herings, Mauleon and Vannetelbosch (2017b) define the myopic-farsighted stable set for two-sided

matching problems.
20Along a myopic-farsighted improving path, myopic players do not care whether other players are

myopic or farsighted, while farsighted players know exactly who is farsighted and who is myopic.
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(ii) gk+1 = gk + ij for some ij such that Ui(gk+1) > Ui(gk) and Uj(gk+1) ≥ Uj(gk) if

i, j ∈ Nm, or Ui(gK) > Ui(gk) and Uj(gK) ≥ Uj(gk) if i, j ∈ Nf , or Ui(gk+1) ≥ Ui(gk)

and Uj(gK) ≥ Uj(gk) (with one inequality holding strictly) if i ∈ Nm, j ∈ Nf .

If there exists a myopic-farsighted improving path from a network g to a network g′,

then we write g → g′. The set of all networks that can be reached from a network g ∈ G by
a myopic-farsighted improving path is denoted by φ(g), φ(g) = {g′ ∈ G | g → g′}. A set of
networks G is a myopic-farsighted stable set if the following two conditions hold. Internal

stability: for any two networks g and g′ in the myopic-farsighted stable set G there is no

myopic-farsighted improving path from g to g′ (and vice versa). External stability: for

every network g outside the myopic-farsighted stable set G there is a myopic-farsighted

improving path leading to some network g′ in the myopic-farsighted stable set G (i.e.

there is g′ ∈ G such that g → g′).

Definition 2. A set of networks G ⊆ G is a myopic-farsighted stable set if: (IS) for every
g, g′ ∈ G, it holds that g′ /∈ φ(g); and (ES) for every g ∈ G\G, it holds that φ(g)∩G 6= ∅.

When all firms are farsighted, the notion of myopic-farsighted improving path reverts

to Jackson (2008) or Herings, Mauleon and Vannetelbosch (2009) notion of farsighted

improving path, and the myopic-farsighted stable set is simply the farsighted stable set

as defined in Herings, Mauleon and Vannetelbosch (2009), Mauleon, Vannetelbosch and

Vergote (2011) or Ray and Vohra (2015).21 When all firms are myopic, the notion of

myopic-farsighted improving path reverts to Jackson and Watts (2002) notion of improv-

ing path, and the myopic-farsighted stable set is simply the farsighted stable set as defined

in Herings, Mauleon and Vannetelbosch (2017a) for two-sided matching problems.

3.2 More myopic firms than farsighted ones

Suppose first that the majority of firms are myopic. We say that firm i is a loose-end node

in network g if it only has a single link, i.e. # {j | ij ∈ g} = 1. If a loose-end firm deletes

its single link, it becomes an isolated firm with no R&D collaboration. Since the profit of

being involved in R&D collaborations is always greater than the profit of being isolated,

a myopic loose-end firm will never delete its link. In a minimally connected component

h ∈ C(g), we say that firm i ∈ N(h) is a median node if @ ij ∈ h and h′ ∈ C(h− ij) such
that #N(h′) > n/2. That is, a firm is called a median node if by cutting one of its link

it cannot split the component in two components with one having a size strictly greater

than n/2. In our model, a myopic firm only benefits from splitting its component if it

belongs to a component of a size strictly greater than n/2 after the split. Thus, a myopic

median node will never delete one of its links in any minimally connected network.

21Alternative notions of farsightedness are suggested by Chwe (1994), Dutta, Ghosal and Ray (2005),

Dutta and Vohra (2017), Herings, Mauleon and Vannetelbosch (2004, 2018), Page, Wooders and Kamat

(2005), Page and Wooders (2009) among others.
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Mauleon, Sempere-Monerris and Vannetelbosch (2014) show that a network g is pair-

wise stable22 if and only if g consists of two minimally connected components with the

cardinality of the largest component equal to int((n + 3)/2) for n even and to (n + 1)/2

for n odd. Formally, G1/2 = {g | C(g) = (h1, h2), h1 and h2 are minimally connected,

N(h1) ∪ N(h2) = N , #N(h1) = int((n + 3)/2) if n even and #N(h1) = (n + 1)/2 if n

odd} is the set of pairwise stable networks.
Let g ∈ G

3/4
fm = {g | C(g) = (h1, h2), h1 and h2 are minimally connected, N(h1) ∪

N(h2) = N , #N(h1) = int((3n+ 1)/4), Nf ∩N(h1) 6= ∅, and for any i ∈ N(h1) ∩Nm we
have either # {j | ij ∈ g} = 1 or i is a median node}. That is, R&D networks belonging
to G3/4

fm are such that they consist of two minimally connected components of different

size close to 3n/4 and n/4, respectively. In both components, there can be myopic and

farsighted firms. Myopic firms in the largest component are either loose-end nodes or

median nodes.

Let G1/2
m = {g | C(g) = (h1, h2), h1 and h2 are minimally connected, N(h1)∪N(h2) =

N , N(h1) ⊆ Nm, #N(h1) = int((n + 3)/2) if n even and #N(h1) = (n + 1)/2 if n odd}.
That is, R&D networks belonging to G1/2

m are such that they consist of two minimally

connected components of nearly equal size n/2+1 and n/2−1, respectively. In the largest

component, there are only myopic firms. In fact, G1/2
m ⊆ G1/2.

Proposition 1 shows that when the majority of firms are myopic, the myopic-farsighted

stable set consists of R&D networks having either two components of different sizes (close

to 3n/4 and n/4) with farsighted firms occupying key positions in the largest component

and myopic firms as loose-ends or medians, or two components of nearly equal size (close

n/2 + 1 and n/2− 1) with the largest component having only myopic firms. In Figure 1

we depict two networks belonging to G3/4
fm and one network belonging to G

1/2
m when n = 8,

firms 1 and 3 are farsighted, and all other firms are myopic. In g′ ∈ G3/4
fm, firms 2 and 4

are median nodes while firms 5 and 6 are loose-end nodes.

Proposition 1. If 0 < #Nf < n/2 then the set of networks G3/4
fm ∪ G

1/2
m is a myopic-

farsighted stable set.

All the proofs can be found in the appendix. We now provide the intuition behind the

proof of Proposition 1. The set of networks G3/4
fm ∪ G

1/2
m is a myopic-farsighted stable set

if both internal and external stability conditions are satisfied.

(IS) Internal stability follows because from any network g ∈ G3/4
fm ∪ G

1/2
m there is no

myopic-farsighted improving path ending at g′ ∈ G3/4
fm ∪G

1/2
m , g′ 6= g. Indeed, if g ∈ G1/2

m ,

g is pairwise stable and then no myopic firm will delete or form a link from g. Only

farsighted firms in the smallest component could form or delete a link from g. However,

farsighted firms cannot modify g so that myopic firms in the largest component would

like to modify the resulting network afterwards. Adding a link between farsighted firms

does not change the profit of the myopic firms in the largest component, and deleting a

22A network g is pairwise stable if (i) for all ij ∈ g, Ui(g) ≥ Ui(g− ij) and Uj(g) ≥ Uj(g− ij), and (ii)
for all ij /∈ g, if Ui(g) < Ui(g + ij) then Uj(g) > Uj(g + ij) (Jackson and Wolinsky, 1996).
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Figure 1: Stable R&D networks when #Nf < n/2.
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link would split the smallest component increasing even more the profits of the myopic

firms in the largest component. Moreover, from any g ∈ G
3/4
fm, no myopic or farsighted

firm in the largest component has an incentive to form or to delete a link (myopic firms

because they are loose-end or median nodes in g, and farsighted firms because they are

either equally well off or worse off at any g′ ∈ G3/4
fm ∪G

1/2
m compared to g 6= g′). As before,

firms in the smallest component cannot modify g so that firms in the largest component

would like to modify the resulting network afterwards.

(ES) Given that profits only depend on the cardinality of the component and infinites-
imally small costs for maintaining redundant links, we only need to check that there is a

myopic-farsighted improving path from any minimally connected network g /∈ G3/4
fm ∪G

1/2
m

to some g̃ ∈ G3/4
fm. Three cases have to be considered:

(a) First, we consider any minimally connected network g connecting the n firms of the
industry. From g, looking forward to some g̃ ∈ G

3/4
fm, farsighted firms build links

between them until we reach a network g′ in which all the farsighted firms would

still be connected once all links involving some myopic firm have been deleted from

g′. From g′, myopic and farsighted firms delete links until they reach a minimally

connected network g′′ such that all the farsighted firms remain connected once all

links involving some myopic firm have been deleted from g′′. Hence, at g′′ there is

no myopic firm in any path between two farsighted firms. From g′′, some myopic

firm linked to another myopic firm being a loose-end deletes its link to the loose-end

node reaching a network with two components of sizes n − 1 and 1, respectively.

Next, some farsighted firm forms a link to the isolated myopic firm reaching again

a minimally connected network with a single component. We repeat this two-step

process until we reach a minimally connected network ĝ connecting the n firms of

the industry in which the sum of all farsighted firms and the myopic firms that are

loose-end nodes and are linked to a farsighted firm is equal to int((3n+1)/4). From

ĝ, a farsighted firm looking forward to some g̃ ∈ G3/4
fm, deletes its link to a myopic

firm that is not loose-end obtaining a network ĝ′ with two components and such

that all farsighted firms belong to the largest component. From ĝ′, a farsighted firm

deletes its link to another myopic firm that is not loose-end obtaining a network

ĝ′′ with three components and such that all farsighted firms belong to the largest

component. From ĝ′′, two myopic firms in the two smallest components form a link

to bridge the two smallest components obtaining a network ĝ′′′ with two components

and such that all farsighted firms belong to the largest component. We then repeat

this three-step process until we reach some g̃ ∈ G
3/4
fm where all farsighted firms

belong to the largest component of size int((3n + 1)/4) and myopic firms in the

largest component are loose-ends.

(b) Second, we consider any minimally connected network g /∈ G
3/4
fm ∪ G

1/2
m with two

components, h1, h2, with #N(h1) > #N(h2). Three types of networks have to

be considered. In the first type, #N(h1) 6= int((3n + 1)/4) and there is at least
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a farsighted firm in the largest component h1. Then, from g, looking forward to

some g̃ ∈ G3/4
fm, this farsighted firm will add a link to some (farsighted or myopic)

firm in the smallest component obtaining a network g′ with a unique component

that connects the n firms of the industry. From g′, we can then proceed as in (a).
In the second type, no farsighted firm belongs to the largest component h1. Then,

from g, we initiate a process that consists in isolating first a myopic firm from the

largest component that next adds a link to some (farsighted or myopic) firm in the

smallest component, until we reach some network g̃ ∈ G1/2
m . In the third type, there

is at least a farsighted firm in the largest component h1, #N(h1) = int((3n+ 1)/4)

and some myopic firm j in h1 is nor a loose-end node nor a median node. Then,

from g, this myopic firm j has incentives to cut one of its links splitting h1 in two

components moving to a network g′ with three components and such that the size

of the largest component is smaller than int((3n+ 1)/4) but larger than n/2. From

g′, we proceed as in (c) described below.

(c) Third, we consider any minimally connected network with three or more compo-
nents. If the size of the largest component is smaller than n/2, two myopic firms

belonging to two different components will successively form a link between them

until we reach a network g where the size of the largest component h1 is greater or

equal to n/2. Three types of networks with three or more components have to be

considered. In the first type, #N(h1) ≥ n/2 and h1 contains at least some farsighted

firm. Then, from g, two (myopic or farsighted) firms belonging to the two smallest

components form successively a link (with the farsighted firms looking forward to

some g̃ ∈ G3/4
fm) until we reach a network g

′ with two components h1 (that has not

changed along the process) and h2 that has been formed at the end of the process.

From g′, we proceed as in (b) where h1 does contain some farsighted firm. In the

second type, #N(h1) > n/2 and there is no farsighted firm in h1. From g, two (my-

opic or farsighted) firms belonging to the two smallest components form successively

a link (with the farsighted firms looking forward to some g̃ ∈ G1/2
m ) until we reach a

network g′ with two components h1 (that has not changed along the process) and h2

that has been formed at the end of the process. From g′, we proceed as in (b) where
h1 does not contain farsighted firms. In the third type, #N(h1) = n/2 and there is

no farsighted firm in h1. From g, two (myopic or farsighted) firms belonging to the

two smallest components form successively a link (with the farsighted firms looking

forward to some g̃ ∈ G3/4
fm) until we reach a network g

′ with two components of size

n/2. From g′, two myopic firms belonging to different components have incentives

to add a link between them to form a network g′′ with a unique component. From

g′′, we proceed as in (a).

When all firms are myopic (i.e. N = Nm, Nf = ∅), there is a unique myopic-farsighted
stable set consisting of all pairwise stable networks. In fact, the set G1/2

m is equal to G1/2
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and the set G3/4
fm becomes empty (there is always a myopic firm that is nor a loose-end

node nor a median node in the largest component).23

Proposition 2. Suppose that all firms are myopic, N = Nm. The set of pairwise stable

networks G1/2 is the unique myopic-farsighted stable set.

The idea behind Proposition 2 is the following. Mauleon, Sempere-Monerris and Van-

netelbosch (2014) show that a network g is pairwise stable if and only if g ∈ G1/2. It

follows that from any network g ∈ G1/2 there is no myopic-farsighted improving path

leaving g. Hence, G1/2 satisfies internal stability. For external stability, we only need to

check that there is a myopic-farsighted improving path from any minimally connected

network g /∈ G1/2 to some g̃ ∈ G1/2. We proceed in four steps. First, from any mini-

mally connected network g connecting the n firms of the industry, firms have incentives

to isolate one firm. Second, from any minimally connected network with three or more

components, two firms belonging to two different components of cardinality smaller than

n/2 will successively form a link between them until we reach a network g with only

two components. Third, from any minimally connected network with two components

of different size, firms belonging to the largest component have incentives to isolate one

firm until the cardinality of the component is equal to int((n + 3)/2) + 1 if n even or to

(n+3)/2 if n is odd. Fourth, from any minimally connected network with two components

of equal size, two firms belonging to two different components have incentives to add a

link between them forming a network connecting the n firms of the industry. Then, from

steps one to four, it follows that G1/2 satisfies external stability. Finally, the fact that

there is no myopic-farsighted improving path leaving g for any g ∈ G1/2, guarantees that

G1/2 is the unique myopic-farsighted stable set when all firms are myopic.

3.3 More farsighted firms than myopic ones

Suppose now that the majority of firms are farsighted. Next Proposition shows that

in this case the myopic-farsighted stable set consists of only R&D networks having two

minimally connected components of different sizes close to 3n/4 and n/4, respectively. In

both components, there can be myopic and farsighted firms. Myopic firms in the largest

component are still either loose-end nodes or median nodes. Despite there is a large

majority of farsighted firms, firms will not necessarily end up segregated: farsighted and

myopic firms can belong to the largest component, with farsighted firms having more

R&D collaborations on average. Moreover, those myopic firms enjoy greater profits than

the farsighted and myopic firms that end up in the smallest component. In Figure 2 we

depict two networks belonging to G3/4
fm when n = 8, firms 2, 3, 4 and 8 are farsighted,

23Intuitively, a myopic firm that is not a median node nor a loose-end node in some network in G3/4

has an incentive to split its component in two, leading to a network consisting of three components from

which there is path towards some network in G1/2. Hence, once there are only myopic firms, G3/4 ∪G1/2

would violate internal stability.
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and all other firms are myopic. In g′ ∈ G3/4
fm firms 1, 5 and 6 are myopic loose-end nodes,

while in g′′ ∈ G3/4
fm firm 1 is a myopic median node and firms 5 and 6 are myopic loose-end

nodes.

Proposition 3. If n > #Nf ≥ n/2 then the set of networks G3/4
fm is a myopic-farsighted

stable set.
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Figure 2: Stable R&D networks when #Nf ≥ n/2.

We now provide the intuition behind the proof of Proposition 3. The set of networks

G
3/4
fm is a myopic-farsighted stable set if both internal and external stability conditions are

satisfied.

(IS) Internal stability follows because from any network g ∈ G3/4
fm there is no myopic-

farsighted improving path ending at g′ ∈ G
3/4
fm, g

′ 6= g. From any g ∈ G
3/4
fm, no myopic

or farsighted firm in the largest component has an incentive to form or to delete a link

(myopic firms because are they loose-end or median nodes in g while farsighted firms

because they are either equally well off or worse off at any g′ ∈ G3/4
fm compared to g 6= g′).

Only myopic and farsighted firms in the smallest component could form or delete a link

from g. However, firms in the smallest component cannot modify g so that firms in the

largest component would like to modify the resulting network afterwards. Adding a link

between firms of the smallest component does not change the profit of the firms in the

largest component, and deleting a link would by splitting the smallest component increase

the profits of the firms in the largest component.

(ES) Given that profits only depend on the cardinality of the component and infini-
tesimally small costs for maintaining redundant links, we only need to check that there is
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a myopic-farsighted improving path from any minimally connected network g /∈ G3/4
fm to

some g̃ ∈ G3/4
fm. Three cases have to be considered:

(a) First, we consider any minimally connected network g connecting the n firms of
the industry. From g, looking forward to some g̃ ∈ G

3/4
fm, farsighted firms build

links between them until we reach a network g′ in which a subset N ′f ⊆ Nf of

farsighted firms would be connected once all links involving some myopic firm

and some farsighted firm outside N ′f have been deleted from g′. The cardinal-

ity of N ′f is equal to min {#Nf , int((3n+ 1)/4)}. From g′, myopic and farsighted

firms delete links until they reach a minimally connected network g′′ such that

the farsighted firms in N ′f remain connected once all links involving some myopic

firm and some farsighted firm outside N ′f have been deleted from g′′. At g′′, if

min {#Nf , int((3n+ 1)/4)} = Nf , we proceed as in (a) for Proposition 1. Other-
wise, ifmin {#Nf , int((3n+ 1)/4)} = int((3n+1)/4), we have that, at g′′, there is no

myopic firm or farsighted firm outside N ′f in any path between two farsighted firms

belonging to N ′f . From g′′, a farsighted firm belonging to N ′f and looking forward to

some g̃ ∈ G3/4
fm, deletes its link to a myopic firm or to a farsighted firm outside N ′f

obtaining a network g′′′ with two components. From g′′′, a farsighted firm belonging

to N ′f deletes its link to another myopic firm or to a farsighted firm outside N ′f
obtaining a network g′′′′ with three components and such that all farsighted firms

in N ′f belong to the largest component. From g′′′′, two firms in the two smallest

components form a link to bridge the two smallest components obtaining a network

with two components and such that all farsighted firms in N ′f belong to the largest

component. We repeat this three-step process until we reach some g̃ ∈ G3/4
fm where

all farsighted firms in N ′f belong to the largest component of size int((3n+ 1)/4).

(b) Second, we consider any minimally connected network g /∈ G3/4
fm with two compo-

nents, h1, h2, with#N(h1) > #N(h2). Two types of networks have to be considered.

In the first type, #N(h1) 6= int((3n+ 1)/4). Then, from g, looking forward to some

g̃ ∈ G
3/4
fm, some farsighted firm in the largest component will add a link to some

(farsighted or myopic) firm in the smallest component obtaining a network g′ with

a unique component that connects the n firms of the industry. From g′, we can then

proceed as in (a). In the second type, #N(h1) = int((3n+ 1)/4) and some myopic

firm j in h1 is nor a loose-end node nor a median node. Then, from g, this myopic

firm j has incentives to cut one of its links splitting h1 in two components moving to

a network g′ with three components and such that the size of the largest component

is smaller than int((3n + 1)/4) but larger than n/2. From g′, we proceed as in (c)
described below.

(c) Third, we consider any minimally connected network with three or more compo-
nents. Three types of networks with three or more components have to be consid-

ered. In the first type, #N(h1) ≥ n/2. Then, from g, two (myopic or farsighted)
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firms belonging to the two smallest components form successively a link (with the

farsighted firms looking forward to some g̃ ∈ G3/4
fm) until we reach a network g

′ with

two components h1 (that has not changed along the process) and h2 that has been

formed at the end of the process. From g′, we proceed as in (b). In the second
type, #N(h1) < n/2 and there is no farsighted firm in h1. From g, two (myopic

or farsighted) firms belonging to the two largest components form successively a

link (with the farsighted firms looking forward to some g̃ ∈ G
3/4
fm) until we reach

a network g′ where the size of the largest component is greater or equal to n/2.

Since the size of the largest two components is smaller than n/2, the two (myopic

or farsighted) firms have incentives to link to each other. From g′, two (myopic

or farsighted) firms belonging to the two smallest components form successively a

link (with the farsighted firms looking forward to some g̃ ∈ G
3/4
fm) until we reach

a network g′′ with two components. From g′′, we proceed as in (b). In the third
type, #N(h1) < n/2 and there is some farsighted firm in h1. From g, one myopic

firm of the largest component h1 forms a link with some farsighted firm belonging

to the largest component hk that contains a farsighted firm (with the farsighted

firms looking forward to some g̃ ∈ G3/4
fm). If #N(h1) + #N(hk) < n/2, from g′, two

(myopic or farsighted) firms belonging to the two largest components form succes-

sively a link (with the farsighted firms looking forward to some g̃ ∈ G3/4
fm) until we

reach a network g′′ such that the size of the largest component is greater or equal

to n/2. From g′′, two (myopic or farsighted) firms belonging to the two smallest

components form successively a link (with the farsighted firms looking forward to

some g̃ ∈ G
3/4
fm) until we reach a network g

′′′ with two components. From g′′′, we

proceed as in (b).

Let G3/4 be the set of all networks g consisting of two minimally connected components

h1 and h2 such that #N(h1) = int((3n + 1)/4) and N(h1) ∪ N(h2) = N . Formally,

G3/4 = {g | C(g) = (h1, h2), h1 and h2 are minimally connected, N(h1) ∪ N(h2) = N

and #N(h1) = int((3n + 1)/4)} and G3/4
fm ⊆ G3/4. When all firms are farsighted (i.e.

N = Nf , Nm = ∅), G3/4
fm is equal to G

3/4 and G3/4 is a myopic-farsighted stable set. Hence,

we obtain a collaboration architecture similar to the equilibrium structure of Bloch’s

(1995) sequential game for forming research associations of firms where firms form two

asymmetric alliances, with the largest one comprising roughly three-quarters of industry

members.

Corollary 1. Suppose that all firms are farsighted, N = Nf . The set of networks G3/4 is

a myopic-farsighted stable set.

Remember that the set of all pairwise stable networks G1/2 is the unique myopic-

farsighted stable set when all firms are myopic. However, G1/2 is no more a myopic-

farsighted stable set when the majority of firms become farsighted. Since g /∈ φ(g′) for

all g ∈ G1/2 and g′ ∈ G3/4
fm, the set G

1/2 violates the external stability condition when the
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majority of firms are farsighted.24

Once there is no majority of myopic firms, there is at least one farsighted firm in the

largest component of any network belonging to G1/2. This farsighted firm can form a link

with a (myopic or farsighted) firm from the other component and by doing so, induce a

myopic-farsighted improving path towards some network in G3/4
fm where it belongs to the

largest component.

3.4 Social welfare

We now examine social welfare under the different networks that can emerge in the long

run. The social welfare function SW (g) is defined as the sum of consumer surplus plus

aggregate profits. To compute social welfare under a network g we substitute equilibrium

quantities and profits in the social welfare expression. Let G1 = {g | #C(g) = 1 and

N(g) = N} be the R&D networks that consist of a single component connecting all firms.

Proposition 4.

(i) Take any g ∈ G1, g′ /∈ G1. We have that SW (g) > SW (g′).

(ii) Take any g ∈ G3/4, g′ ∈ G1/2. We have that SW (g) > SW (g′).

Proposition 4 tells us that a network g maximizes social welfare if and only if g ∈ G1.

In addition, R&D networks with two components of different sizes (close to 3n/4 and

n/4) dominate R&D networks with two components of nearly equal size (close n/2 + 1

and n/2 − 1). Hence, farsightedness helps in improving social welfare but fails to reach

the societal optimum.

4 Stable R&D Networks with Yes-Firms

Suppose now that some firms are yes-firms. Yes-firms always accept the formation of

any link and never delete a link subject to the constraint of non-negative profits. If

they are myopic, yes-firms agree to add a new collaboration conditionally on making

positive profits in the resulting network. What would happen if they were farsighted

instead? Farsighted firms look at the ending network rather than at the resulting one.

Nothing would change since at equilibrium all firms always make non-negative profits

in any network configuration. Thus, yes-firms can be interpreted either as myopic or

farsighted yes-firms.

Let Ny be the set of yes-firms, N = Nm ∪ Nf ∪ Ny. We adapt the definition of a
myopic-farsighted improving path to allow for yes-firms. If a link is added between some

myopic (farsighted) firm i and some yes-firm j, then only the myopic (farsighted) firm i

must prefer the resulting (end) network to the current network.

24Since φ(g) 6= ∅ for g ∈ G3/4fm when the majority of firms are farsighted, the myopic-farsighted stable

set may be not unique.
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Definition 3. A y-myopic-farsighted improving path from a network g to a network

g′ 6= g is a finite sequence of graphs g1, . . . , gK with g1 = g and gK = g′ such that for any

k ∈ {1, . . . , K − 1} either

(i) gk+1 = gk− ij for some ij such that Ui(gk+1) > Ui(gk) and i ∈ Nm or Uj(gK) > Uj(gk)

and j ∈ Nf ; or

(ii) gk+1 = gk + ij for some ij such that i, j ∈ Ny, or Ui(gk+1) ≥ Ui(gk) if i ∈ Nm, j ∈ Ny,
or Ui(gK) ≥ Ui(gk) if i ∈ Nf , j ∈ Ny, or Ui(gk+1) > Ui(gk) and Uj(gk+1) ≥ Uj(gk) if

i, j ∈ Nm, or Ui(gK) > Ui(gk) and Uj(gK) ≥ Uj(gk) if i, j ∈ Nf , or Ui(gk+1) ≥ Ui(gk)

and Uj(gK) ≥ Uj(gk) (with one inequality holding strictly) if i ∈ Nm, j ∈ Nf .

If there exists a y-myopic-farsighted improving path from a network g to a network g′,

then we write g → g′. The set of all networks that can be reached from a network g ∈ G
by a y-myopic-farsighted improving path is denoted by φy(g), φy(g) = {g′ ∈ G | g → g′}.

Definition 4. A set of networks G ⊆ G is a myopic-farsighted stable set with yes-firms
if: (IS) for every g, g′ ∈ G, it holds that g′ /∈ φy(g); and (ES) for every g ∈ G \ G, it
holds that φy(g) ∩G 6= ∅.

A component h of g is y-minimally connected if N(h) ∩ Ny 6= ∅, gN(h)∩Ny ⊆ h and h

has #N(h) − #(N(h) ∩ Ny) + #(N(h) ∩ Ny)(#(N(h) ∩ Ny) − 1)/2 links. That is, in a

y-minimally connected component h, if we delete a link ij ∈ h involving a myopic or a
farsighted firm, then#N(h−ij) < #N(h). But, if we delete any link ij ∈ h involving only
yes-firms, then #N(h − ij) = #N(h). Indeed, all yes-firms in a y-minimally connected

component are all linked to each other. In other words, in a y-minimally connected

component, if we delete any link involving a myopic or a farsighted firm, the component

would be split in two components. However, if we cut any link involving only yes-firms,

the component would not be partitioned.

Suppose now that there is a majority of myopic firms. We show that the addition

of yes-firms can stabilize a third type of R&D network that is socially optimal and that

is never stable in the absence of yes-firms. Thus, yes-firms may play a crucial role by

bridging myopic and farsighted firms in a socially optimal R&D network that connects

the n firms of the industry in a unique component. In Figure 3 we depict the three types

of stable R&D networks.

Let G3/4,y
fm = {g | C(g) = (h1, h2), h1 is minimally connected, h2 is y-minimally

connected, #N(h1) = int((3n + 1)/4), Nf ∩ N(h1) 6= ∅, Ny ∩ N(h1) = ∅, and for any
i ∈ N(h1) ∩Nm we have either # {j | ij ∈ g} = 1 or i is a median node}. That is, R&D
networks belonging to G3/4,y

fm are such that they consist of two components of different

size close to 3n/4 and n/4, respectively. There can be myopic and farsighted firms in

both components, but all yes-firms belong to the smallest one. The largest component is

minimally connected, while the smallest one is y-minimally connected. Myopic firms in

the largest component are either loose-end nodes or median nodes.
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g′ ∈ G3/4,y
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Farsighted firm:
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Firm 1

Firm 1

Myopic firms:
2, 3, 4, 5 & 6
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Figure 3: Stable R&D networks with yes-firms when the majority of firms is myopic.
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Let G1/2,y
m = {g | C(g) = (h1, h2), h1 is minimally connected, h2 is y-minimally

connected, N(h1) ∪ N(h2) = N , N(h1) ⊆ Nm, #N(h1) = int((n + 3)/2) if n even and

#N(h1) = (n+ 1)/2 if n odd}. That is, R&D networks belonging to G1/2,y
m are such that

they consist of two components of nearly equal size n/2 + 1 and n/2 − 1, respectively.

In the largest component, there are only myopic firms. All yes-firms and farsighted firms

belong to the smallest component. The largest component is minimally connected, while

the smallest one is y-minimally connected.

Let Gyfm = {g | #C(g) = 1, N(g) = N , g is y-minimally connected, #{i ∈ Nm | ij ∈ g
and j ∈ Nf} < n/2 − #Nf , and for any i ∈ Nm we have #{j | ij ∈ g} = 1}. That
is, R&D networks belonging to Gyfm are such that they consist of a single y-minimally

connected component that connects all firms. All myopic firms are loose-end nodes, while

farsighted firms cannot have too many myopic firms as neighbors. Such R&D networks

are socially optimal: they maximize the social welfare as well as the consumer surplus.

Proposition 5. If n−1 > #Nm > n/2, n− int((3n+1)/4) > #Nf > 0 and n− int((3n+

1)/4) > #Ny > 0 then the set of networks G3/4,y
fm ∪ G1/2,y

m ∪ Gyfm is a myopic-farsighted

stable set with yes-firms.

We now provide the intuition behind the proof of Proposition 5. The set of networks

G
3/4,y
fm ∪G1/2,y

m ∪Gyfm is a myopic-farsighted stable set with yes-firms if both internal and
external stability conditions are satisfied. (IS) Internal stability follows because φy(g) = ∅
for all g ∈ G1/2,y

m . From any network g ∈ G3/4,y
fm , there is no myopic-farsighted improving

path ending at g′ ∈ G3/4,y
fm ∪G

1/2,y
m ∪Gyfm. The argument is similar to the one in Proposition

1. From any network g ∈ Gyfm, only farsighted firms could want to add or to delete a link
looking forward to some g′ ∈ G3/4,y

fm where they would belong to the largest component.

However, the number of loose-end myopic firms linked to farsighted firms is not enough

for forming a component of size greater or equal than n/2, which is a necessary step for

building a y-myopic-farsighted improving path towards some g′ ∈ G3/4,y
fm .

(ES) Given that profits only depend on the cardinality of the component and in-
finitesimally small costs for maintaining redundant links, we only need to check that

there is a y-myopic-farsighted improving path from any network g consisting either of one

y-minimally connected component h with Ny ⊂ N(h) or of other minimally connected

components to some g̃ ∈ G3/4,y
fm ∪G

1/2,y
m ∪Gyfm. First, we consider any minimally connected

network g connecting the n firms of the industry, g /∈ Gyfm. From g, looking forward to

some g̃ ∈ G3/4,y
fm , farsighted firms build links between them until we reach a network g′ in

which all the farsighted firms would be connected once all links involving some myopic

firm or some yes-firm have been deleted from g′. From g′, myopic and farsighted firms

delete links until they reach a minimally connected network g′′ connecting the n firms

of the industry and such that all the farsighted firms remain connected once all links

involving some myopic firm or some yes-firm have been deleted from g′′. Next, consider

the two-step process (*). From g′′, some myopic firm linked to a loose-end myopic firm

deletes its link to the loose-end node reaching a network with two components of size n−1
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and 1, respectively. Next some farsighted firm builds a link to the isolated myopic firm

forming again a y-minimally connected network with a single component. We repeat this

two-step process (*) until we reach a y-minimally connected network ĝ /∈ Gyfm connecting
the n firms of the industry in which all farsighted firms remain connected once all links

involving some myopic firm or some yes-firm have been deleted from ĝ. In ĝ, if the number

of myopic firms that are loose-end nodes and linked to a farsighted firm is large enough,

then farsighted firms can induce the move towards some g̃ ∈ G3/4,y
fm . Otherwise, we show

that there is a y-myopic-farsighted improving path from g leading to some g̃ ∈ Gyfm.

Second, we consider any minimally connected network g /∈ G3/4
fm ∪G

1/2
m with two or more

components and where all yes-firms belong to the same component. Using similar argu-

ments as in the previous propositions, we can show the existence of a y-myopic-farsighted

improving path from g to some g̃ ∈ G3/4,y
fm ∪G1/2,y

m ∪Gyfm.
To measure the importance of a firm within the network, i.e. how central a firm is,

some centrality measures have been proposed. The degree centrality of a firm is simply

its number of collaborations (links) divided by n − 1, so that it ranges from 0 to 1. It

indicates how well a firm is connected in terms of direct connections. Another measure

is betweenness centrality. It is based on how well located a firm is in terms of the paths

that it lies on. It reflects how important a firm is in terms of connecting other firms.

With yes-firms and a majority of myopic firms, three types R&D networks can emerge

in the long run. In networks belonging to G3/4,y
fm , myopic firms have in average a lower

degree than farsighted firms. Myopic firms have either one link (loose-end node) or two

links (median node). In addition, myopic firms that are loose-end nodes have the lowest

betweenness centrality. However, myopic firms that are median nodes have a high (if not

the highest) betweenness centrality. Thus, even if myopic firms are less active in terms of

R&D collaborations they may play a crucial role for spreading the innovation within the

component. In networks belonging to G1/2,y
m , myopic and farsighted firms have in average

a similar degree or betweenness centrality. Finally, in networks belonging to Gyfm that

consist of a single component (socially optimal) with yes-firms bridging other firms and

myopic firms as loose-end nodes, myopic firms have in average a much lower degree and

betweenness centrality than farsighted firms. Yes-firms have a high betweenness centrality,

they play a crucial role for spreading the innovation throughout all the industry and they

are the driving force for stabilizing the socially optimal structure.

Thus, our model predicts that R&D collaborations between yes-, myopic and farsighted

firms often coexist in the long run. Thus, segregation (diversity) is unlikely (likely) to

emerge in the long run in consistency with the data.25

Once there is a majority of farsighted firms, only networks belonging to G3/4,y
fm would

25Tomasello, Napoletano, Garas and Schweitzer (2017) find empirical evidence (using pooled data from

1984 to 2009 about R&D alliances among manufacturing firms) that new entrant firms are more likely to

become part of the R&D network by attaching to the most central incumbents. Similarly, Roesler and

Broekel (2017) find that entrants into the biotechnology industry tend to establish their first collaboration

with organizations holding central positions in the subsidized R&D network.
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emerge in the long run. The set G3/4,y
fm ∪G

1/2,y
m ∪Gyfm is no more a myopic-farsighted stable

set with yes-firms since internal stability would be violated. In any network consisting of

two components of nearly equal size, there is now at least one farsighted firm in the largest

component and this firm can induce a path towards some network in G3/4,y
fm . In addition,

there are now enough farsighted firms to give rise to a myopic-farsighted improving path

from any network consisting of a single component leading to some network in G3/4,y
fm .

However, one can show that G3/4,y
fm is a myopic-farsighted stable set with yes-firms. Hence,

if there is a majority of farsighted firms, the addition of yes-firms only slightly alters the

structure of the stable R&D networks. The myopic-farsighted stable set still consists

of R&D networks having two components of different sizes close to 3n/4 and n/4 with

farsighted firms and (loose-end or median) myopic firms in the largest component but

now with all yes-firms in the smallest component (see Figure 4).

Proposition 6. If n > #Nf ≥ n/2 and n − int((3n + 1)/4) ≥ #Ny ≥ 1 then the set of

networks G3/4,y
fm is a myopic-farsighted stable set with yes-firms.
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Figure 4: Stable R&D networks with yes-firms when the majority of firms is farsighted.

5 Evolution and Dynamics of R&D Networks

To study how networks evolve, we start with a group of firms who are initially unconnected

to each other. Over time, pairs of firms decide whether or not to form or sever links with

each other. A link can be severed unilaterally but agreement by both firms is needed to

form a link. All firms are initially myopic, and thus decide to form or sever links if doing
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so increases their current profits. The length of a period is suffi ciently long so that the

process can converge to some stable R&D network. At the beginning of each period after

the initial period, some myopic firms become farsighted. It can be interpreted as if some

myopic firms have gained enough experience to acquire a better understanding of R&D

collaboration agreements. Depending on their positions in the network, the process either

stays at the same R&D network or evolves to another stable R&D network.

Time is divided into periods and is modeled as a countable and infinite set, T =

{1, 2, ..., t, ...}. We denote by g(t) the network that exists at the end of period t ∈ T

and by g(0) the initial network. The process of forming links starts from the empty

network. Hence, g(0) = g∅. We denote by Nm(t) (Nf (t)) the set of myopic (farsighted)

firms at the beginning of period t ∈ T . The population dynamics of firms is described

by the following sequence {Nm(t), Nf (t)}∞t=1 where Nm(t) = N \ Nf (t), Nm(1) = N ,

Nm(t) ⊂ Nm(t − 1) for 2 ≤ t < t and Nm(t) = ∅ for t ≥ t. A myopic-farsighted

improving path in period t ∈ T from a network g(t − 1) to a network g(t) 6= g(t − 1)

is a finite sequence of graphs g1, . . . , gK with g1 = g(t − 1) and gK = g(t) such that for

any k ∈ {1, . . . , K − 1} either (i) gk+1 = gk − ij for some ij such that Ui(gk+1) > Ui(gk)

and i ∈ Nm(t) or Uj(gK) > Uj(gk) and j ∈ Nf (t); or (ii) gk+1 = gk + ij for some ij

such that Ui(gk+1) > Ui(gk) and Uj(gk+1) ≥ Uj(gk) if i, j ∈ Nm(t), or Ui(gK) > Ui(gk)

and Uj(gK) ≥ Uj(gk) if i, j ∈ Nf (t), or Ui(gk+1) ≥ Ui(gk) and Uj(gK) ≥ Uj(gk) (with

one inequality holding strictly) if i ∈ Nm(t), j ∈ Nf (t). We denote by φt(g) the set of all

networks that can be reached from g by a myopic-farsighted improving path in period t.

We denote by GMF the set of networks that belong to some myopic-farsighted stable set,

GMF = {g ∈ G | G ⊆ G is a myopic-farsighted stable set}.
Starting in period 1 from g(0) with Nm(1) = N and Nf (1) = ∅, the dynamic

process will evolve to some g(1) such that (i) there is a myopic-farsighted improving

path from g(0) to g(1) and (ii) g(1) belongs to some myopic-farsighted stable set, i.e.

g(1) ∈ GMF (Nm(1), Nf (1)). At the very beginning of period 2 some myopic firms be-

come farsighted, Nm(2) ⊂ N and Nf (2) 6= ∅. If g(1) is no more stable (i.e. g(1) /∈
GMF (Nm(2), Nf (2))) then the dynamic process will evolve to some g(2) 6= g(1) such

that (i) g(2) ∈ φ2(g(1)) and (ii) g(2) ∈ GMF (Nm(2), Nf (2)). Otherwise, it remains

where it was, i.e. g(2) = g(1). Given the population dynamics {Nm(t), Nf (t)}∞t=1,

we say that {g(t)}∞t=1 is an evolution of stable R&D networks if and only if (i) g(t) ∈
GMF (Nm(t), Nf (t)) and (ii) if g(t) 6= g(t− 1) then g(t) ∈ φt(g(t− 1)).

Proposition 7 shows that, starting from the empty network, the dynamic process first

converges to a network consisting of two components of nearly equal sizes. Next, it suffi ces

that one firm belonging to the largest component becomes farsighted for dismantling the

network and converging to a network consisting of two components of different sizes

close to 3n/4 and n/4 with farsighted firms and loose-end or median myopic firms in the

largest component. Along the transition, the dynamic process will visit single component

networks that maximize social welfare.
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Proposition 7. Given the population dynamics {Nm(t), Nf (t)}∞t=1, the sequence {g(t)}∞t=1

is an evolution of stable networks if

g(t) =

{
g(1) ∈ G1/2 for t < t̂0(g(1))

g(t̂0(g(1))) ∈ G3/4
fm(Nm(t̂0(g(1)), Nf (t̂0(g(1))) for t ≥ t̂0(g(1))

where t̂0(g(1)) = min{t ∈ T | Nf (t)∩{i ∈ S | S ∈ Π(g(1)), #S > n/2, g(1) ∈ G1/2} 6= ∅}.

Suppose now that there is a fixed number of yes-firms within the population of firms

such that n− int((3n+ 1)/4) ≥ #Ny ≥ 1. The population dynamics of firms is then de-

scribed by the following sequence {Nm(t), Nf (t), Ny}∞t=1 where Nm(t) = N \{Ny ∪Nf (t)},
Nm(1) = N \Ny, Nm(t) ⊂ Nm(t−1) for 2 ≤ t < t and Nm(t) = ∅ for t ≥ t. Before looking

at the population dynamics and the evolution of stable networks, we first characterize the

myopic-farsighted stable set when the population consists only of myopic and yes-firms.

Let Gym = {g | #C(g) = 1, N(g) = N , g is y-minimally connected, and for any

i ∈ Nm we have # {j | ij ∈ g} = 1}. That is, networks belonging Gym consists of a single
y-minimally connected component that connects all firms and where all myopic firms are

loose-end nodes. Remember that such R&D networks are socially optimal.

Lemma 1 shows that in the absence of farsighted firms, when the majority of firms are

myopic and there are some yes-firms, the myopic-farsighted stable set consists of R&D

networks having either two components of nearly equal size with only myopic firms in the

largest component or a unique component connecting the n firms of the industry with

myopic firms as loose-end nodes.

Lemma 1. If n − 1 > #Nm > n/2, #Nf = 0 and #Ny > 0 then the set of networks

G
1/2,y
m ∪Gym is the unique myopic-farsighted stable set with yes-firms.

We now provide the intuition behind the proof of Lemma 1. (IS) Internal stability
follows because φy(g) = ∅ for all g ∈ G

1/2,y
m . From any g ∈ Gym, no myopic firm has

an incentive to form or to delete a link (they are loose-end nodes). Thus, φy(g) = ∅
for all g ∈ Gym, and G

1/2,y
m ∪ Gym satisfies internal stability. (ES) Given that profits only

depend on the cardinality of the component and infinitesimally small costs for maintaining

redundant links, we only need to check that there is a y-myopic-farsighted improving path

from any minimally connected network g /∈ G1/2,y
m ∪Gym to some g̃ ∈ G

1/2,y
m ∪Gym. Three

cases have to be considered:

(a) First, we consider any minimally connected network g connecting the n firms of the
industry. From g, some myopic firm linked to another myopic firm being loose-end

deletes its link to the loose-end reaching a network with two components of sizes

n−1 and 1, respectively. Next, some yes-firm forms a link to the isolated myopic firm

reaching again a minimally connected network with a single component. We repeat

this two-step process until we reach a y-minimally connected network g̃ connecting

the n firms and such that g̃ ∈ Gym.
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(b) Second, we consider any minimally connected network g /∈ G
1/2,y
m with two com-

ponents, h1, h2, and such that h2 is y-minimally connected. If #N(h1) > n/2, we

initiate from g a process that consists in isolating first a myopic firm from the largest

component that next adds a link to some firm in the smallest component, until we

reach some network g̃ ∈ G1/2
m . If #N(h1) ≤ n/2, starting from g, some myopic firm

in the largest component adds a link to some yes-firm in the smallest component

obtaining a network g′ with a unique component that connects the n firms of the

industry. From g′, we can then proceed as in (a).

(c) Third, we consider any minimally connected network with three or more components
and such that all yes-firms belong to the same component. If the size of the largest

component #N(h1) ≥ n/2, starting from g, two (myopic or yes-) firms belonging

to the two smallest components form a link until we reach a network g′ containing

two components. From g′, we proceed as in (b). If #N(h1) < n/2, starting from

g, two (myopic or yes-) firms belonging to the two largest components form a link

until we reach a network g′ such that the size of the largest component is greater or

equal than n/2. From g′, two (myopic or yes-) firms belonging to the two smallest

components form a link until we reach a network g′′ containing two components.

From g′′, we proceed as in (b).

Finally, since there is no y-myopic-farsighted improving path leaving g for any g ∈ G1/2,y
m ∪

Gym, it guarantees that G
1/2,y
m ∪Gym is the unique myopic-farsighted stable set.

From the empty network g∅, there are y-myopic-farsighted improving paths going to

some g ∈ Gym. For instance, we first build a y-myopic-farsighted improving path leading
to a network composed of two components with some yes-firms on both sides. Next,

yes-firms will bridge both components.

Proposition 8. Given the population dynamics {Nm(t), Nf (t), Ny}∞t=1, the sequence of

networks {g(t)}∞t=1 is an evolution of stable networks if

g(t) =

{
g(1) ∈ G1/2,y

m for t < t̂1(g(1))

g(t̂1(g(1))) ∈ G3/4,y
fm (Nm(t̂1(g(1)), Nf (t̂1(g(1))) for t ≥ t̂1(g(1))

where t̂1(g(1)) = min{t ∈ T | Nf (t) ∩ {i ∈ S | S ∈ Π(g(1)), #S > n/2, g(1) ∈ G1/2,y
m } 6=

∅}, or

g(t) =

{
g(1) ∈ Gym for t < t̂2(g(1))

g(t̂2(g(1))) ∈ G3/4,y
fm (Nm(t̂2(g(1)), Nf (t̂2(g(1))) for t ≥ t̂2(g(1))

where t̂2(g(1)) = min{t ∈ T | #Nf (t) ≥ n/2}.

When there are yes-firms together with a majority of myopic firms, Proposition 8

shows that, starting from the empty network, the process converges to either a network

consisting of two components of nearly equal sizes or a single component network with
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the yes-firms bridging all other firms. If the process reaches first a network consisting

of two components, it suffi ces that one firm belonging to the largest component becomes

farsighted for dismantling the network and converging to a network consisting of two

components of different sizes close to 3n/4 and n/4 with all yes-firms in the smallest

component. However, if the process reaches first a single component network, half of the

firms need to become farsighted to move away from it. Hence, this single component

network that maximize social welfare and consumer surplus will persist many periods

before moving to a network that consists of two components with the largest component

comprising three-quarters of firms. Figure 5 summarizes the persistence of stable R&D

networks with yes-firms.

YY

Y

M∗
M∗

M

M
M * as loose ends or medians

F
F

F

F

Can persist many periods

socially optimal

Gyfm

Very robust - will persist forever

G
3/4,y
fm

Less robust - will rapidly dismantle

G
1/2,y
m

Figure 5: Evolution of stable R&D networks with yes-firms and a majority of myopic

firms.

Firms generally come with relevant attributes that are related to the interaction pat-

tern. For instance, a myopic firm (e.g. a start-up firm) will learn and evolve faster to

become farsighted when interacting and collaborating in an environment composed mainly

of farsighted firms (e.g. when it belongs to a component with a majority of farsighted or

experienced private firms/public institutions). In the dynamic process, at the beginning

of each period, some myopic firms become farsighted. It is interpreted as if some myopic

firms have gained enough experience to acquire a better understanding of R&D collabo-

rations. Hence, if the likelihood for a myopic firm of becoming farsighted now depends to

which firms it is linked to, the R&D network consisting of two components of nearly equal

sizes will tend to persist more periods before being dismantled. On the other hand, the

socially optimal R&D network consisting of a single component will persist less periods

than before. The idea is that a myopic firm belonging to a component with a majority

of farsighted (myopic) will interact mostly with farsighted (myopic) firms, and so will

acquire faster (slower) a better knowledge of the R&D process.

Hanaki, Nakajima and Ogura (2010) provide an empirical analysis of evolving networks

of successful R&D collaborations in the IT industry in the U.S. between 1985 and 1995.

In 1995 the largest component (i.e. the giant component) had a size of 52% of the firms.
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It has some similarities with the pairwise stable structure, and in addition the largest

component is still growing as predicted by our dynamic model. In 1995, the average

degree was just above 2 links and the average geodesic distance between two connected

firms was around 4.5. It became rather stable between 4.5 and 5.0 after that. Because

many pairs of firms are connected by a few collaboration links, the spread of information

or knowledge is fast in the R&D network. They also find that there are small numbers of

"center or hub" firms and, at the same time, large numbers of peripheral firms with fewer

links. In fact, the R&D network has evolved unevenly, and in the largest component, a

core-periphery structure has emerged. This is in line with our model where experienced

firms and/or public institutions have in average much more links than start-ups which

are often loose-end nodes.

6 Conclusion

We studied the formation of R&D networks when each firm benefits from the research

done by other firms it is connected to. We proposed the notion of myopic-farsighted

stable set to determine the R&D networks that emerge when some firms are myopic while

others are farsighted. When the majority of firms is myopic, stability leads to R&D

networks consisting of either two asymmetric components with the largest component

comprises three-quarters of firms or two symmetric components of nearly equal size with

the largest component having only myopic firms. But, once the majority of firms becomes

farsighted, only R&D networks with two asymmetric components remain stable. Firms

in the largest component obtain greater profits, with farsighted firms having in average

more collaborations than myopic firms that are either loose-ends or central for spreading

the innovation within the component. Besides myopic and farsighted firms, we next

introduced yes-firms that always accept the formation of any link and never delete a link

subject to the constraint of non-negative profits. We showed that yes-firms may play

a crucial role by bridging myopic and farsighted firms and stabilizing R&D networks

consisting of a single component that maximize the social welfare. Finally, we looked at

the evolution and dynamics of R&D networks and we found that R&D networks with two

symmetric components will be rapidly dismantle, single component R&D networks that

maximize social welfare will persist many periods, while R&D networks consisting of two

asymmetric components will persist forever.

We focused on the case where each firm fully benefits from the research done by the

firms it is connected to (δ is equal to one). If δ is close to one our results would not changed.

What would happen if δ is close to zero as in Goyal and Joshi (2003)? As δ goes to zero,

research spillovers disappear and each firm only benefits from the research done by the

firms it is directly linked to. In other words, the reduction in marginal costs only depends

on the number of direct links, as if each firm was able to isolate the knowledge coming

from each firm to which it is linked. Then, it turns that, if there are only myopic firms
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or a large majority of myopic firms, the set
{
gN
}
is a myopic-farsighted stable set where

gN is the complete network. The complete network is the only pairwise stable network

(Goyal and Joshi, 2003). Thus, contrary to δ close to one, one single farsighted firm

cannot destabilize the pairwise stable network. One would need a majority of farsighted

firms so that
{
gN
}
is no more a myopic-farsighted stable set. Indeed, from any network

with two "complete" components where only farsighted firms belong to the largest one,

there is no myopic-farsighted improving path to the complete network. Hence, external

stability would be violated.

We assumed quantity competition on the goods market. With price competition and

homogenous goods, all networks give zero profits for all firms. Once there is an infinites-

imally small cost for forming links, stability only supports the empty network, which is

also the unique pairwise stable network.

In terms of policy recommendations, our analysis suggests investments for turning

myopic firms into farsighted and more precisely, focusing on the myopic firms who are

linked to many other myopic ones. In addition, providing R&D subsidies to universities

(or public institutions) for linking to private firms is likely to lead to the formation of

R&D networks that are welfare improving. This theoretical recommendation is in line with

recent empirical findings about the subsidized R&D network in the German biotechnology

industry. Roesler and Broekel (2017) find that, by bridging local firms to geographically

distant knowledge sources, universities play a central role for developing and stimulating

local and inter-regional knowledge diffusion.
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Appendix

Proof of Proposition 1. We show that G3/4
fm ∪G

1/2
m satisfies both internal stability and

external stability.

Internal stability: We have that φ(g) = ∅ for all g ∈ G
1/2
m . The largest component
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of g consists of only myopic firms and those myopic firms do not want to add a link to

g or to delete a link in g since g is pairwise stable. In addition, myopic firms in the

smallest component do not want to delete a link. Only farsighted firms in the smallest

component could start adding a link to g or deleting a link in g. But, adding a link

between two farsighted firms in the smallest component would not change the profit of

the myopic firms belonging to the largest component. In addition, deleting a link would

split the smallest component in two and increase the profits of the firms belonging to the

largest component. Hence, farsighted firms in the smallest component cannot modify the

network g so that myopic firms in the largest component would have incentives to modify

the network afterwards.

Take now any g ∈ G3/4
fm. Myopic firms in the largest component do not want to add

nor to delete a link since they are loose-end or median nodes in g. Farsighted firms in

the largest component do not want to add a link nor to delete a link looking forward to

any g′ 6= g, g′ ∈ G
3/4
fm ∪ G

1/2
m , since they would obtain at most the same profit. As a

result, myopic and farsighted firms in the smallest component can only add links among

themselves. Of course, myopic firms will not do it because it’s costly. Farsighted firms

neither will add a link since it would not change the profit of the firms belonging to the

largest component. Deleting a link would split the smallest component in two, decrease

the profits of the firms that were in the smallest component, and increase the profits of

the firms belonging to the largest component. Hence, myopic firms will not delete any

link and farsighted firms in the smallest component cannot modify the network g so that

farsighted firms in the largest component would have incentives to modify the network

afterwards looking forward to some g′ ∈ G3/4
fm ∪ G

1/2
m . Thus, g /∈ φ(g′) for all g, g′ ∈ G3/4

fm

and g′ /∈ φ(g) for all g ∈ G3/4
fm, g

′ ∈ G1/2
m . Hence, G3/4

fm ∪G
1/2
m satisfies internal stability.

External stability: Notice that we only need to show that there is a myopic-farsighted
improving path from any network g consisting of minimally connected components to

some g̃ ∈ G
3/4
fm. Indeed, if g̃ ∈ φ(g) then g̃ ∈ φ(g′) for any g′ ! g with Π(g′) = Π(g)

because profits only depend on the cardinality of the components and forming links is

costly. We consider three cases.

(a) Take any network g with Π(g) = {N}. From g, looking forward to some g̃ ∈
G

3/4
fm, farsighted firms build links to other farsighted firms so that we reach a network

g′ such that Π(g′ − {ij | i ∨ j ∈ Nm}) = {Nf}. From g′, myopic and farsighted firms

delete links to reach a minimally connected network g′′ such that Π(g′′) = {N} and
Π(g′′ − {ij | i ∨ j ∈ Nm}) = {Nf}. Hence, at g′′, there is no myopic firm in any path

between two farsighted firms. Define process (*) as follows. Take in g′′ any myopic firm

i such that i is a loose-end node and linked to another myopic firm j in g′′. Then, firm j

deletes its link with firm i to form a network with two components of sizes n − 1 and 1,

respectively. Next some farsighted firm k builds a link to the isolated firm i to form again

a minimally connected network with a single component. We now proceed repeatedly

applying process (*) until we reach a network ĝ such that ĝ is minimally connected,

Π(ĝ) = {N}, Π(ĝ − {ij | i ∨ j ∈ Nm}) = {Nf}, and the number of myopic firms that are
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loose-end nodes and linked to a farsighted firm in ĝ is equal to int((3n+ 1)/4)−#Nf , i.e.

# {i ∈ Nm | # {j | ij ∈ ĝ} = 1 and {j | ij ∈ ĝ} ⊆ Nf} = int((3n+ 1)/4)−#Nf . Next, a

farsighted firm, looking forward to some g̃ ∈ G3/4
fm, deletes its link in ĝ to a myopic firm that

is not a loose-end node. We obtain a network ĝ′ with two components, i.e. #C(ĝ′) = 2.

All farsighted firms belong to the largest component of ĝ′. Next, a farsighted firm deletes

its link in ĝ′ to another myopic firm that is not a loose-end node. We obtain a network

ĝ′′ with three components, i.e. #C(ĝ′′) = 3. All farsighted firms belong to the largest

component of ĝ′′. Next, two myopic firms, belonging to the two smallest components,

form a link to bridge the two smallest components. We obtain a network ĝ′′′ with two

components, i.e. #C(ĝ′′′) = 2. All farsighted firms belong to the largest component of ĝ′′′.

We repeat this process until we reach some g̃ ∈ G3/4
fm where all farsighted firms belong to

the largest component of size int((3n+ 1)/4) and myopic firms in the largest component

are loose-end nodes.

(b) Take any network g /∈ G3/4
fm∪G

1/2
m with two components such that C(g) = (h1, h2),

h1 and h2 are minimally connected, N(h1) ∪ N(h2) = N . (b1) If there is a farsighted
firm i in the largest component h1 and #N(h1) 6= int((3n + 1)/4), then i adds a link to

some (farsighted or myopic) firm j in h2 with the farsighted firms looking forward to some

g̃ ∈ G3/4
fm. From g+ ij we proceed as in (a) above since Π(g+ ij) = {N}. (b2) If there is

no farsighted firm in the largest component h1, then some myopic firm i ∈ N(h1) deletes

its link with another myopic firm j ∈ N(h1) to form g − ij where j is isolated (i.e. j has
no link). Next, firm j adds a link to some (farsighted or myopic) firm k in h2, with the

farsighted firms looking forward to some g̃ ∈ G1/2
m , to form a network g− ij+kj with two

components (h1 − ij, h2 + kj). We repeat the process of isolating a myopic firm in the

largest component that next adds a link to some firm in the smallest component until we

reach some g̃ ∈ G1/2
m where the size of the largest component is equal to int((n+ 3)/2) if

n even or (n+ 1)/2 if n odd. (b3) If there is a farsighted firm i in the largest component

h1, #N(h1) = int((3n+ 1)/4) and some myopic firm j in h1 is nor a loose-end node nor a

median node, then this myopic firm j has incentives to cut one of its links to split h1 in two

components. From this network with three components, we proceed as in (c1) or (c2)
below. Since the size of the largest of the three components is smaller than int((3n+1)/4)

but larger than n/2, the process will transit from (c1) or (c2) to either (b1) or (b2).
(c) Take any network g with three or more minimally connected components. Let h1

be the largest component of g, h2 be the second largest component of g, and so forth.

First, if #N(h1) < n/2 then one myopic firm i belonging to some hk forms a link with

some myopic firm j belonging to some hl. If #N(hk) + #N(hl) < n/2, from g′ = g + ij,

at each step, two myopic firms belonging to some components form a link until we reach a

network g′′ such that the size of the largest component of g′′ is greater or equal than n/2.

(c1) Suppose #N(h1) ≥ n/2 and N(h1) ∩ Nf 6= ∅. From g, at each step, two (myopic

or farsighted) firms belonging to the two smallest components, with the farsighted firms

looking forward to some g̃ ∈ G3/4
fm, form a link until we reach a network g′ consisting of

only two components. From g′ we proceed as in (b). (c2) Suppose #N(h1) > n/2 and
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N(h1) ∩Nf = ∅. From g, at each step, two (myopic or farsighted) firms belonging to the

two smallest components, with the farsighted firms looking forward to some g̃ ∈ G
1/2
m ,

form a link until we reach a network g′ consisting of only two components with the largest

component h1 that did not change along the sequence. Hence, the largest component

of g′ still contains only myopic firms. From g′ we proceed as in (b). (c3) Suppose
#N(h1) = n/2 and N(h1) ∩ Nf = ∅. From g, at each step, two (myopic or farsighted)

firms belonging to the two smallest components, with the farsighted firms looking forward

to some g̃ ∈ G3/4
fm, form a link until we reach a network g

′ consisting of only two components

of size n/2. From g′ two myopic firms belonging to the two components have incentives

to add a link between them to form a network g′′ with a single component. From g′′ we

proceed as in (a).

�

Proof of Proposition 2. We first show that G1/2 satisfies both internal stability and

external stability.

Internal stability: From Mauleon, Sempere-Monerris and Vannetelbosch (2014) Propo-
sition 1 we have that g is pairwise stable if and only if C(g) = (h1, h2), h1 and h2 are

minimally connected, N(h1) ∪N(h2) = N , and

#N(h1) =

{
int((n+ 3)/2) if n even

(n+ 1)/2 if n odd.

It follows that φ(g) = ∅ for all g ∈ G1/2. Hence, G1/2 satisfies internal stability.

External stability: We proceed in steps. (i) First, in any network g where all com-
ponents are not minimally connected, some firms have incentives to delete one of their

links without increasing the number of components. Second, in any minimally connected

network g, no pair of firms belonging to the same component have incentives to add a link

between them. In addition, in a minimally connected network g with N(g) = N , firms

have incentives to isolate one of the firms. (ii) Take any g with Π(g) = {S1, S2, ..., Sm}
where all components are minimally connected and m ≥ 3. Two minimally connected

components of cardinality smaller than n/2 have incentives to add a link between them

to form one component. Hence, from any g such that #Π(g) ≥ 3 there is some g′ such

that #Π(g) = 2 and g′ ∈ φ(g). (iii) Take any g with Π(g) = {S1, S2} and #S1 ≥ #S2.

Firms belonging to the largest component have incentives to delete one link isolating one

firm until the cardinality of the component is equal to int((n + 3)/2) + 1 if n even or to

(n+ 3)/2 if n odd. (iv) Take g with Π(g) = {S1, S2} and #S1 = #S2. Then, firm i ∈ S1

and firm j ∈ S2 have incentives to add the link ij to form g′ = g + ij with Π(g′) = N .

From (i)-(iv), we have that the set G1/2 of pairwise stable networks satisfies external

stability: for any g′ that is not pairwise stable (i.e. g′ /∈ G1/2), there is some pairwise

stable network g such that g ∈ φ(g′).

In addition, since φ(g) = ∅ for all g ∈ G1/2, the setG1/2 is the unique myopic-farsighted

stable set when all firms are myopic.
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�

Proof of Proposition 3. We show that G3/4
fm satisfies both internal stability and external

stability.

Internal stability: Take now any g ∈ G
3/4
fm. Myopic firms in the largest component

do not want to add nor to delete a link since they are loose-end or median nodes in

g. Farsighted firms in the largest component do not want to add a link nor to delete

a link looking forward to any g′ 6= g, g′ ∈ G
3/4
fm, since they would obtain at most the

same profit. As a result, myopic and farsighted firms in the smallest component can only

add links among themselves. Of course, myopic firms will not do it. Farsighted firms

neither will add a link since it would not change the profit of the firms belonging to the

largest component. Deleting a link would split the smallest component in two, decrease

the profits of the firms that were in the smallest component, and increase the profits of

the firms belonging to the largest component. Hence, myopic firms will not delete any

link and farsighted firms in the smallest component cannot modify the network g so that

farsighted firms in the largest component would have incentives to modify the network

afterwards looking forward to some g′ ∈ G3/4
fm. Thus, G

3/4
fm satisfies internal stability since

g /∈ φ(g′) for all g, g′ ∈ G3/4
fm.

External stability: We only need to show that there is a myopic-farsighted improving
path from any network g consisting of minimally connected components to some g̃ ∈ G3/4

fm.

Indeed, if g̃ ∈ φ(g) then g̃ ∈ φ(g′) for any g′ ! g with Π(g′) = Π(g) because profits only

depend on the cardinality of the components and forming links is costly. We consider

three cases.

(a) Take any network g with Π(g) = {N}. From g, looking forward to some g̃ ∈ G3/4
fm,

a setN ′f ⊆ Nf of farsighted firms such that#N ′f = min {#Nf , int((3n+ 1)/4)} build links
to other farsighted firms in N ′f so that we reach a network g

′ such that Π(g′−{ij | i∨ j ∈
Nm ∪ (Nf \ N ′f )}) = {N ′f}. From g′, firms delete links to reach a minimally connected

network g′′ such that Π(g′′) = {N} and Π(g′′ − {ij | i ∨ j ∈ Nm ∪ (Nf \ N ′f )}) = {N ′f}.
(a1) If min {#Nf , int((3n+ 1)/4)} = int((3n + 1)/4), a farsighted firm belonging to

N ′f , looking forward to some g̃ ∈ G
3/4
fm, deletes its link in g

′′ to some firm belonging to

Nm ∪ (Nf \ N ′f ). We obtain a network g′′′ with two components. Next, a farsighted
firm belonging to N ′f deletes its link in g

′′′ to another firm belonging to Nm ∪ (Nf \N ′f ).
We obtain a network g′′′′ with three components. Next, two firms, belonging to the two

smallest components, form a link to bridge the two smallest components. We obtain a

network with two components and we repeat this process until we reach some g̃ ∈ G3/4
fm

where #N ′f farsighted firms belong to the largest component of size int((3n+ 1)/4). (a2)
If min {#Nf , int((3n+ 1)/4)} = #Nf , define the process (*) as follows. Take in g′′ any

myopic firm i such that i is a loose-end node and linked to another myopic firm j in g′′.

Then, firm j deletes its link with firm i to form a network with two components of sizes

n− 1 and 1, respectively. Next some farsighted firm k builds a link to the isolated firm i

to form again a minimally connected network with a single component. Next we proceed
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repeatedly applying process (*) until we reach a network ĝ such that ĝ is minimally

connected, Π(ĝ) = {N}, Π(ĝ − {ij | i ∨ j ∈ Nm ∪ (Nf \ N ′f )}) = {N ′f}, and the number
of myopic firms that are loose-end nodes and linked to a farsighted firm in ĝ is equal

to int((3n + 1)/4) − #Nf , i.e. # {i ∈ Nm | # {j | ij ∈ ĝ} = 1 and {j | ij ∈ ĝ} ⊆ Nf} =

int((3n+ 1)/4)−#Nf . Next, a farsighted firm, looking forward to some g̃ ∈ G3/4
fm, deletes

its link in ĝ to a myopic firm that is not a loose-end node. We obtain a network ĝ′ with

two components, i.e. #C(ĝ′) = 2. All farsighted firms belong to the largest component

of ĝ′. Next, a farsighted firm deletes its link in ĝ′ to another myopic firm that is not a

loose-end node. We obtain a network ĝ′′ with three components, i.e. #C(ĝ′′) = 3. All

farsighted firms belong to the largest component of ĝ′′. Next, two myopic firms, belonging

to the two smallest components, form a link to bridge the two smallest components. We

obtain a network ĝ′′′ with two components, i.e. #C(ĝ′) = 2. All farsighted firms belong to

the largest component of ĝ′′′. We repeat this process until we reach some g̃ ∈ G3/4
fm where

all farsighted firms belong to the largest component of size int((3n + 1)/4) and myopic

firms in the largest component are loose-end nodes.

(b) Take any network g /∈ G3/4
fm with two components such that C(g) = (h1, h2), h1

and h2 are minimally connected, N(h1)∪N(h2) = N . (b1) If #N(h1) 6= int((3n+ 1)/4),

then some farsighted firm i in h1 adds a link to some (farsighted or myopic) firm j in h2

with the farsighted firms looking forward to some g̃ ∈ G3/4
fm. From g+ ij we proceed as in

(a) since Π(g+ ij) = {N}. (b2) If #N(h1) = int((3n+ 1)/4) and some myopic firm j in

h1 is nor a loose-end node nor a median node, then this myopic firm j has incentives to cut

one of its link to split h1 in two components. From this network with three components,

we proceed as in (c1) or (c2) below. Since the size of the largest of the three components
is smaller than int((3n+ 1)/4) but larger than n/2, the process will transit from (c1) or
(c2) to either (b1) or (b2).
(c) Take any network g with three or more minimally connected components. Let h1

be the largest component of g, h2 be the second largest component of g, and so forth.

(c1) Suppose #N(h1) ≥ n/2. From g, at each step, two (myopic or farsighted) firms

belonging to the two smallest components, with the farsighted firms looking forward to

some g̃ ∈ G3/4
fm, form a link until we reach a network g

′ consisting of only two components.

From g′ we proceed as in (b). (c2) Suppose #N(h1) < n/2 and N(h1)∩Nf 6= ∅. From g,

at each step, two (myopic or farsighted) firms belonging to the two largest components,

with the farsighted firms looking forward to some g̃ ∈ G
3/4
fm, form a link until we reach

a network g′ such that the size of the largest component of g′ is greater or equal than

n/2. Since the size of the largest two components is smaller than n/2, the two (myopic or

farsighted) firms have incentives to link to each other. From g′, at each step, two (myopic

or farsighted) firms belonging to the two smallest components, with the farsighted firms

looking forward to some g̃ ∈ G3/4
fm, form a link until we reach a network g′′ consisting of

only two components. From g′′ we proceed as in (b). (c3) Suppose #N(h1) < n/2 and

N(h1) ∩Nf = ∅. From g, first, one myopic i firm belonging to h1 forms a link with some

farsighted firm j belonging to the largest component hk that contains a farsighted firm,
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with j looking forward to some g̃ ∈ G3/4
fm. If #N(h1) + #N(hk) < n/2, from g′ = g + ij,

at each step, two (myopic or farsighted) firms belonging to the two largest components,

with the farsighted firms looking forward to some g̃ ∈ G3/4
fm, form a link until we reach a

network g′′ such that the size of the largest component of g′′ is greater or equal than n/2.

From g′′, at each step, two (myopic or farsighted) firms belonging to the two smallest

components, with the farsighted firms looking forward to some g̃ ∈ G3/4
fm, form a link until

we reach a network g′′′ consisting of only two components. From g′′′ we proceed as in (b).

�

Proof of Proposition 4. The social welfare function SW (g) is defined as the sum

of consumer surplus plus aggregate profits. The consumer surplus is obtained as the

difference between the utility enjoyed by consumers minus total payments. Since the

product is homogeneous and the demand function is given by p = a−Q with Q =
∑

i∈N qi,

the utility of consumers is equal to aQ − Q2/2. Take any network g consisting of two

components h1 and h2 with N(h1) ∪N(h2) = N . Let n1 = #N(h1) and n2 = #N(h2) =

n − n1 with n1 > n2. Given that all firms belonging to the same component obtain the

same payoff, there are two types of firms. Those in the large component with marginal

costs equal to c1 = c0 − 1 − (n1 − 1) = c0 − n1, and those in the smaller component

with marginal costs equal to c2 = c0 − 1 − (n2 − 1) = c0 − n2. Denote by q1 and q2 the

corresponding equilibrium levels of output for each firm, and denote by Q1 = n1q1 and

Q2 = n2q2 the aggregate output per component, with Q = Q1 + Q2. Then, SW (g) is

given by

SW (g) = a(Q1 +Q2)− (Q1 +Q2)2

2
− p(Q1 +Q2) + (p− c1)Q1 + (p− c2)Q2,

which simplifies to

SW (g) = (a− c0 + n1)Q1 + (a− c0 + n2)Q2 −
(Q1 +Q2)2

2
.

Noting that Q1 = (n1(a− c0 + n1 + n2(n1− n2))/(n+ 1), Q2 = (n2(a− c0 + n2− n1(n1−
n2)))/(n + 1), Q = (n(a − c0) + n2

1 + n2
2)/(n + 1) and n2 = n − n1, the expression for

SW (g) reduces to

SW (g) =
(a− c0)2n(n+ 2) + 2(a− c0)(n+ 2) (n2 − 2nn1 + 2n2

1)

2(n+ 1)2

+
((n+ 2)n2 + 2(2n+ 3)n2

1 − 2(2n+ 3)nn1) (2nn1 + n− 2n2
1)

2(n+ 1)2
.

Next we look for the extreme points of the above expression. Given that

∂SW

∂n1

=
(n− 2n1) (2(n+ 2)(a− c0) + n(3− n2) + 4(2n+ 3)(n− n1)n1)

(n+ 1)2
,
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there are three extreme points, a local minimum nmin1 = n/2 and two local maxima,

nmax1
1 =

n

2
−
√

(2n+ 3)(2(n+ 2)(a− c0) + n3 + 3n2 + 3n)

4n+ 6

nmax2
1 =

n

2
+

√
(2n+ 3)(2(n+ 2)(a− c0) + n3 + 3n2 + 3n)

4n+ 6
.

Since nmax1
1 < nmin1 = n/2 < n/2 + 1 < 3n/4 < nmax2

1 , we have that SW (g) > SW (g′) for

any g ∈ G3/4, g′ ∈ G1/2.

From Proposition 8 in Bloch (1995) we have that networks consisting of a single

component that connects all firms maximize the social welfare: SW (g) > SW (g′) for any

g ∈ G1, g′ /∈ G1.

�

Proof of Proposition 5. We show that G3/4,y
fm ∪ G1/2,y

m ∪ Gyfm satisfies both internal

stability and external stability. Suppose n − 1 > #Nm > n/2, n − int((3n + 1)/4) >

#Nf > 0 and n− int((3n+ 1)/4) > #Ny > 0.

Internal stability: We have that φy(g) = ∅ for all g ∈ G1/2,y
m . The largest component of

g consists of only myopic firms and those myopic firms do not want to add a link to g or

to delete a link in g since g is pairwise stable. In addition, myopic and yes- firms in the

smallest component do not want to delete a link. Only farsighted firms in the smallest

component could start adding a link to g or deleting a link in g. But, adding a link

would not change the profit of the myopic firms belonging to the largest component. In

addition, deleting a link would split the smallest component in two and increase the profits

of the firms belonging to the largest component. Hence, farsighted firms in the smallest

component cannot modify the network g so that myopic firms in the largest component

would have incentives to modify the network afterwards.

Take now any g ∈ G3/4,y
fm . Myopic firms in the largest component do not want to add

nor to delete a link since they are loose-end or median nodes in g. Farsighted firms in

the largest component do not want to add a link nor to delete a link looking forward

to any g′ 6= g, g′ ∈ G
3/4,y
fm ∪ G1/2,y

m ∪ Gyfm, since they would obtain at most the same
profit. As a result, myopic, farsighted and yes- firms in the smallest component can only

add links among themselves. Of course, myopic firms will not do it. Farsighted firms

neither will add a link since it would not change the profit of the firms belonging to the

largest component. Deleting a link would split the smallest component in two, decrease

the profits of the firms that were in the smallest component, and increase the profits of

the firms belonging to the largest component. Hence, myopic firms will not delete any

link and farsighted firms in the smallest component cannot modify the network g so that

farsighted firms in the largest component would have incentives to modify the network

afterwards looking forward to some g′ ∈ G3/4,y
fm ∪G1/2,y

m ∪Gyfm.
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Take now any g ∈ Gyfm. Myopic firms do not want to add nor to delete a link

since they are loose-end nodes in g. Farsighted firms do not want to add a link nor to

delete a link looking forward to any g′ 6= g, g′ ∈ G1/2,y
m ∪ Gyfm, since they would obtain

at most the same profit. Thus, farsighted firms could only want to add a link or to

delete a link looking forward to some g′ 6= g, g′ ∈ G
3/4,y
fm , where they would obtain a

greater profit if they belong to the largest component of g′. However, the number of

myopic firms that are both loose-end nodes and linked to farsighted firms is too small,

# {i ∈ Nm | ij ∈ g and j ∈ Nf} < n/2−#Nf , for setting up a component of size greater

or equal than n/2, which is a necessary step for building a y-myopic-farsighted improving

path towards some g′ ∈ G3/4,y
fm .

Hence, G3/4,y
fm ∪G1/2,y

m ∪Gyfm satisfies internal stability.
External stability: We will show that there always exists a y-myopic-farsighted im-

proving path from any network g consisting of one y-minimally connected component h

with Ny ⊆ N(h) (hence, gNy ⊆ h) and possibly other minimally connected components

to some g̃ ∈ G3/4,y
fm ∪G1/2,y

m ∪Gyfm. We consider three cases.
(a) Take any network g /∈ Gyfm with Π(g) = {N}. Remember that gNy ⊆ g. From g,

looking forward to some g̃ ∈ G3/4,y
fm , farsighted firms build links to other farsighted firms

so that we reach a network g′ such that Π(g′ − {ij | i ∨ j ∈ Nm ∪Ny}) = {Nf}. From g′,

firms delete links to reach a y-minimally connected network g′′ such that Π(g′′) = {N}
and Π(g′′−{ij | i∨ j ∈ Nm∪Ny}) = {Nf}. Notice that, under this process, myopic firms
that are loose-end nodes and linked to a farsighted firm in g are still loose-end nodes and

linked to the same farsighted firm in g′′ (i.e. g′′ /∈ Gyfm). Define process (*) as follows.
Take in g′′ any myopic firm i such that i is a loose-end node and linked to another myopic

firm j. Then, firm j deletes its link with firm i to form a network with one component of

size n− 1 and one isolated firm. Next, some farsighted firm k builds a link to the isolated

firm i. We proceed repeatedly applying process (*) until we reach a network ĝ such that

ĝ is y-minimally connected, Π(ĝ) = {N}, Π(ĝ − {ij | i ∨ j ∈ Nm ∪ Ny}) = {Nf}, and
all myopic firms that are loose-end nodes in ĝ are linked to either a farsighted firm or

a yes-firm. Myopic firms that are not loose end nodes (if any) are on the path between

some farsighted firm and some yes-firm. Obviously, ĝ /∈ Gyfm.
(a1) Suppose first that the number of myopic firms that are loose-end nodes and

linked to a farsighted firm in ĝ is greater or equal than int((3n + 1)/4) − #Nf , i.e.

# {i ∈ Nm | # {j | ij ∈ ĝ} = 1 and {j | ij ∈ ĝ} ⊆ Nf} ≥ int((3n + 1)/4) − #Nf . Next,

the only farsighted firm linked to a myopic firm that is not a loose end node or linked to

a yes-firm (if there is no myopic firm that is not a loose end), looking forward to some

g̃ ∈ G3/4,y
fm , deletes its link in ĝ to this myopic firm or yes-firm. We obtain a network ĝ′

with two components, #C(ĝ′) = 2. All farsighted firms belong to the largest component

of ĝ′. If the size of the largest component is equal to int((3n+1)/4), then we have reached

g̃ ∈ G3/4,y
fm . Otherwise, a farsighted firm, looking forward to g̃ ∈ G3/4,y

fm , deletes its link to

some myopic firm that is a loose-end node. Next, this isolated myopic firm adds a link

to some firm belonging to the smallest component. We repeat this process until we reach
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g̃ ∈ G3/4,y
fm where the largest component of size int((3n+ 1)/4) consists of #Nf farsighted

firms and int((3n+ 1)/4)−#Nf myopic firms that are loose-end nodes.

(a2) Suppose now that the number of myopic firms that are loose-end nodes and linked
to a farsighted firm in ĝ is smaller than int((3n+ 1)/4)−#Nf but greater or equal than

n/2 −#Nf , i.e. n/2 −#Nf ≤ # {i ∈ Nm | # {j | ij ∈ ĝ} = 1 and {j | ij ∈ ĝ} ⊆ Nf} <
int((3n+1)/4)−#Nf . Next, a farsighted firm, looking forward to some g̃ ∈ G3/4,y

fm , deletes

its link in ĝ to a myopic firm that is not a loose-end node or to a yes-firm (if there is no

farsighted firm linked to a myopic firm that is not a loose-end node). We obtain a network

ĝ′ with two components, #C(ĝ′) = 2. All farsighted firms belong to the same component.

From ĝ′, a farsighted firm i adds a link to a myopic firm j that belongs to the other

component and is a loose-end node. We obtain a network ĝ′′ with a single component

connecting all firms, #C(ĝ′′) = 1 and Π(ĝ′′) = {N}. Next, this myopic firm j deletes

its link it has with the non-farsighted firm and becomes a loose-end node in the largest

component of the newly formed network ĝ′′′, #C(ĝ′′′) = 2. All farsighted firms belong to

the largest component of ĝ′′′. We repeat this process until we reach some g̃ ∈ G3/4,y
fm where

all farsighted firms belong to the largest component of size int((3n + 1)/4) and myopic

firms in the largest component are loose-end nodes.

(a3) Suppose now that# {i ∈ Nm | # {j | ij ∈ ĝ} = 1 and {j | ij ∈ ĝ} ⊆ Nf} < n/2−
#Nf , i.e. the number of myopic firms that are loose-end nodes and linked to a farsighted

firm in ĝ is smaller than n/2 − #Nf . Then, we cannot build a myopic-farsighted im-

proving path from ĝ to some g̃ ∈ G3/4,y
fm . However, we can now build a myopic-farsighted

improving path from g to some g̃ ∈ Gyfm. Remember that g /∈ Gyfm with Π(g) = {N}.
Define process (**) as follows. From g take any (myopic or farsighted) firm i such that i

is a loose-end node and linked to some myopic firm j. Then, firm j deletes its link with

firm i to form a network with one component of size n − 1 and one isolated firm. Next,

some yes-firm builds a link to the isolated firm i. We proceed repeatedly applying process

(**) until we reach a network g′ such that g′ is y-minimally connected and myopic firms

that are loose-end nodes in g′ are linked to either a farsighted firm or a yes-firm. Each

myopic firm that is not a loose-end node in g′ is such that if it deletes one of its links then

the network g′ is split into two components of unequal sizes. If there is no such myopic

firm then we are already at g̃ ∈ Gyfm and the process stops. Otherwise, apply process

(***): from g′ some myopic firm i that is not a loose-end node has incentives to delete

one of its link leading to g′ − ij where C(g′ − ij) = (h1, h2) with N(h1) ∪ N(h2) = N ,

#N(h1) 6= #N(h2), #N(h1) > n/2, #N(h2) ≥ 2, and Ny ∪{i} ⊆ N(h1). If there is some

myopic firm k ∈ N(h2) then firm k has incentives to bridge both components by adding

a link to some yes-firm l. Otherwise, some farsighted firm k ∈ N(h2) adds a link to some

yes-firm l. From g′ − ij + kl we proceed repeatedly as in process (**) until we reach a

network g′′ such that g′′ is y-minimally connected and myopic firms that are loose-end

nodes in g′′ are linked to either a farsighted firm or a yes-firm. Each myopic firm that is

not a loose-end in g′′ is such that if it deletes one of its links then the network g′′ is split

into two components of unequal sizes. If there is no such myopic firm then we are already
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at g̃ ∈ Gyfm and the process stops. Otherwise, we repeat the process (***) until we reach
some g̃ ∈ Gyfm (it is reached after a finite number of steps since the number of firms is
finite).

(b) Take any network g /∈ G3/4,y
fm ∪G1/2,y

m with two components such that C(g) = (h1, h2),

h1 is minimally connected, h2 is y-minimally connected (hence, gNy ⊆ h2), and N(h1) ∪
N(h2) = N .

(b1) If N(h1)∩Nf = ∅ and #N(h1) > n/2, then some myopic firm i ∈ N(h1) deletes

its link with another myopic firm j ∈ N(h1) to form g − ij where j is isolated. Next,

firm j adds a link to some (farsighted or myopic) firm k in h2, with the farsighted firms

looking forward to some g̃ ∈ G1/2,y
m , to form a network g − ij + kj with two components

(h1−ij, h2+kj). We repeat the process of isolating a myopic firm in the largest component

that next adds a link to some firm in the smallest component until we reach some g̃ ∈ G1/2,y
m

where the size of the largest component is equal to int((n + 3)/2) if n even or (n + 1)/2

if n odd.

(b2) If N(h1)∩Nf = ∅ and #N(h1) = n/2, then a myopic firm i ∈ N(h1) adds a link

to some myopic firm j ∈ N(h2) to form g + ij, and from g + ij we can proceed as in (a).
(b3) If N(h1) ∩ Nm 6= ∅ and #N(h1) < n/2, then a myopic firm i ∈ N(h1) adds a

link to some yes-firm j ∈ N(h2) to form g + ij. From g + ij we proceed as in (a) since
Π(g + ij) = {N}.
(b4) If N(h1) ∩ N = Nf (hence #N(h1) < n/2), then a farsighted firm i ∈ N(h1)

adds a link to some yes-firm j ∈ N(h2) to form g + ij looking forward to some g̃ ∈ Gyfm,
and from g + ij we can reach such g̃ ∈ Gyfm (see a3).
(b5) If N(h1) ∩Nf 6= ∅, #N(h1) ≥ n/2 and #N(h1) 6= int((3n+ 1)/4), then looking

forward to some g̃ ∈ G3/4,y
fm , farsighted firms in h1 build links to other farsighted firms in

h1 so that we reach a network g′ such that gNf∩N(h1) ⊆ g′. From g′ with C(g′) = (h′1, h2)

and Π(g′) = {N(h1), N(h2)}, firms in h′1 delete links to reach a minimally connected

network g′′ such that C(g′′) = (h′′1, h2), Π(g′′) = {N(h1), N(h2)} and Π(h′′1 − {ij | i ∨ j ∈
{Nm ∪Ny} ∩ N(h′′1)}) = {Nf ∩ N(h1)}. Next, apply process (*): take in h′′1 any myopic
firm i such that i is a loose-end node and linked to another myopic firm j. Then, firm

j deletes its link with firm i to split h′′1 into one component of size #N(h1) − 1 and one

isolated firm. Next, some farsighted firm k belonging to the component of size #N(h1)−1

builds a link to the isolated firm i. We proceed repeatedly as in process (*) until we reach

a network ĝ such that ĝ is minimally connected, C(ĝ) = (ĥ1, h2), Π(ĝ) = {N(h1), N(h2)}
and Π(ĥ1 − {ij | i ∨ j ∈ {Nm ∪Ny} ∩ N(ĥ1)}) = {Nf ∩ N(h1)}. All myopic firms in ĥ1

are loose-end nodes linked to some farsighted firm. From ĝ, some farsighted firm i in ĥ1

adds a link to some (farsighted or myopic) firm j in h2 with the farsighted firms looking

forward to some g̃ ∈ G3/4
fm. From ĝ + ij we proceed as in (a).

(b6) If N(h1)∩Nf 6= ∅, #N(h1) = int((3n+1)/4) and some myopic firm j in h1 is nor

a loose-end node nor a median node, then this myopic firm j has incentives to cut one of

its link to split h1 in two components (with one component having a size strictly greater

than n/2). From this network with three components, we proceed as in (c1) below. Since
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the size of the largest of the three components is smaller than int((3n+ 1)/4) but larger

than n/2, the process will transit from (c1) to (b5).
(c) Take any network g with three or more minimally connected components and such
that gNy ⊆ h for some h ∈ C(g). Let h1 be the largest component of g, h2 be the second

largest component of g, and so forth.

(c1) Suppose #N(h1) ≥ n/2, N(h1) ∩Ny = ∅ and N(h1) ∩Nf 6= ∅. From g, at each

step, two (myopic or farsighted or yes-) firms belonging to the two smallest components,

with the farsighted firms looking forward to some g̃ ∈ G3/4,y
fm , form a link until we reach a

network g′ consisting of only two components. From g′ we proceed as in (b5) or (b6).
(c1′) Suppose #N(h1) ≥ n/2, N(h1) ∩Ny 6= ∅ and N(h1) ∩Nf 6= ∅. From g, at each

step, two (myopic or farsighted) firms belonging to the two smallest components, with

the farsighted firms looking forward either to some g̃ ∈ G3/4,y
fm or to some g̃ ∈ Gyfm, form a

link until we reach a network g′ consisting of only two components. From g′ we proceed

as in (b2), (b3) or (b4).
(c2) Suppose #N(h1) > n/2, N(h1) ∩Ny = ∅ and N(h1) ∩Nf = ∅. From g, at each

step, two (myopic or farsighted or yes-) firms belonging to the two smallest components,

with the farsighted firms looking forward to some g̃ ∈ G1/2,y
m , form a link until we reach a

network g′ consisting of only two components with the largest component h1 that did not

change along the sequence. Hence, the largest component of g′ still contains only myopic

firms. From g′ we proceed as in (b1).
(c2′) Suppose #N(h1) > n/2, N(h1) ∩Ny 6= ∅ and N(h1) ∩Nf = ∅. From g, at each

step, two (myopic or farsighted) firms belonging to the two smallest components, with

the farsighted firms looking forward either to some g̃ ∈ G3/4,y
fm or to some g̃ ∈ Gyfm, form

a link until we reach a network g′ consisting of only two components with the largest

component h1 that did not change along the sequence. Hence, the largest component of

g′ still contains only myopic and yes-firms. From g′ we proceed as in (b3) or (b4).
(c3) Suppose #N(h1) = n/2, N(h1) ∩Ny = ∅ and N(h1) ∩Nf = ∅. From g, at each

step, two (myopic or farsighted) firms belonging to the two smallest components, with

the farsighted firms looking forward either to some g̃ ∈ G3/4,y
fm or to some g̃ ∈ Gyfm, form

a link until we reach a network g′ consisting of only two components of size n/2. From g′

two myopic firms belonging to the two components have incentives to add a link between

them to form a network g′′ with a single component. From g′′ we proceed as in (a).
(c3′) Suppose #N(h1) = n/2, N(h1) ∩Ny 6= ∅ and N(h1) ∩Nf = ∅. From g, at each

step, two (myopic or farsighted) firms belonging to the two smallest components, with the

farsighted firms looking forward to some g̃ ∈ G3/4,y
fm , form a link until we reach a network

g′ consisting of only two components of size n/2. From g′ we proceed as in (b5).
(c4) Suppose #N(h1) < n/2, N(h1) ∩Ny = ∅ and N(h1) ∩Nf 6= ∅. From g, at each

step, two (myopic or farsighted) firms belonging to the two largest components that do

not include yes-firms, with the farsighted firms looking forward to some g̃ ∈ G3/4
fm, form

a link until we reach a network g′ such that the size of the largest component of g′ is

greater or equal than n/2. From g′, at each step, two (myopic or farsighted or yes-) firms
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belonging to the two smallest components, with the farsighted firms looking forward to

some g̃ ∈ G3/4
fm, form a link until we reach a network g

′′ consisting of only two components.

From g′′ we proceed as in (b5) or (b6).
(c4′) Suppose #N(h1) < n/2, N(h1) ∩Ny 6= ∅ and N(h1) ∩Nf 6= ∅. From g, at each

step, two (myopic or farsighted) firms belonging to the two largest components that do

not include yes-firms, with the farsighted firms looking forward either to some g̃ ∈ G3/4,y
fm

or to some g̃ ∈ G1/2,y
m , form a link until we reach a network g′ such that the size of the

largest component of g′ is greater or equal than n/2. From g′, at each step, two (myopic

or farsighted or yes-) firms belonging to the two smallest components, with the farsighted

firms looking forward either to some g̃ ∈ G3/4,y
fm or to some g̃ ∈ G1/2,y

m , form a link until we

reach a network g′′ consisting of only two components. From g′′ we proceed as in (b1),
(b5) or (b6).
(c5) Suppose #N(h1) < n/2, N(h1) ∩ Ny = ∅ and N(h1) ∩ Nf = ∅. From g, first,

one myopic firm i belonging to h1 forms a link with some farsighted firm j belonging to

the largest component hk that contains a farsighted firm but no yes-firm, with j looking

forward to some g̃ ∈ G3/4
fm. If #N(h1)+#N(hk) < n/2, from g′ = g+ ij, at each step, two

(myopic or farsighted) firms belonging to the two largest components that do not include

yes-firms, with the farsighted firms looking forward to some g̃ ∈ G3/4
fm, form a link until

we reach a network g′′ such that the size of the largest component of g′′ is greater or equal

than n/2. From g′′, at each step, two (myopic or farsighted or yes-) firms belonging to

the two smallest components, with the farsighted firms looking forward to some g̃ ∈ G3/4
fm,

form a link until we reach a network g′′′ consisting of only two components. From g′′′ we

proceed as in (b1), (b5) or (b6).
(c5′) Suppose #N(h1) < n/2, N(h1)∩Ny 6= ∅ and N(h1)∩Nf = ∅. From g, first, one

firm i belonging to h2 forms a link with some farsighted firm j belonging to the largest

component hk that contains a farsighted firm, with j looking forward to some g̃ ∈ G3/4
fm.

If #N(h2) + #N(hk) < n/2, from g′ = g + ij, at each step, two (myopic or farsighted)

firms belonging to the two largest components that do not include yes-firms, with the

farsighted firms looking forward to some g̃ ∈ G3/4
fm, form a link until we reach a network

g′′ such that the size of the largest component of g′′ is greater or equal than n/2. From

g′′, at each step, two (myopic or farsighted or yes-) firms belonging to the two smallest

components, with the farsighted firms looking forward to some g̃ ∈ G3/4
fm, form a link until

we reach a network g′′′ consisting of only two components. From g′′′ we proceed as in

(b1), (b5) or (b6).

�

Proof of Proposition 6. We show that G3/4,y
fm satisfies both internal stability and

external stability. Suppose n > #Nf ≥ n/2 and n− int((3n+ 1)/4) ≥ #Ny ≥ 1.

Internal stability: Take now any g ∈ G
3/4,y
fm . Myopic firms in the largest component

do not want to add nor to delete a link since they are loose-end or median nodes in g.
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Farsighted firms in the largest component do not want to add a link nor to delete a link

looking forward to any g′ 6= g, g′ ∈ G3/4,y
fm , since they would obtain at most the same profit.

As a result, myopic, farsighted and yes-firms in the smallest component can only add links

among themselves. Of course, myopic firms will not do it. Farsighted firms neither will add

a link since it would not change the profit of the firms belonging to the largest component.

Deleting a link would split the smallest component in two, decrease the profits of the firms

that were in the smallest component, and increase the profits of the firms belonging to the

largest component. Yes-firms are already linked to any other yes-firms. Hence, myopic

firms will not delete any link and farsighted firms in the smallest component cannot modify

the network g so that farsighted firms in the largest component would have incentives to

modify the network afterwards looking forward to some g′ ∈ G3/4,y
fm . Thus, G3/4,y

fm satisfies

internal stability since g /∈ φy(g′) for all g, g′ ∈ G3/4,y
fm .

External stability: We will show that there always exists a y-myopic-farsighted im-

proving path from any network g consisting of one y-minimally connected component h

with Ny ⊆ N(h) (hence, gNy ⊆ h) and possibly other minimally connected components

to some g̃ ∈ G3/4,y
fm . We consider three cases.

(a) Take any network g with Π(g) = {N}. Remember that gNy ⊆ g. From g, look-

ing forward to some g̃ ∈ G
3/4,y
fm , a set N ′f ⊆ Nf of farsighted firms such that #N ′f =

min {#Nf , int((3n+ 1)/4)} build links to other farsighted firms in N ′f so that we reach
a network g′ such that Π(g′ − {ij | i ∨ j ∈ Nm ∪ Ny ∪ (Nf \ N ′f )}) = {N ′f}. From g′,

firms delete links to reach a y-minimally connected network g′′ such that Π(g′′) = {N}
and Π(g′′ − {ij | i ∨ j ∈ Nm ∪Ny ∪ (Nf \N ′f )}) = {N ′f}.
(a1) If min {#Nf , int((3n+ 1)/4)} = int((3n + 1)/4), a farsighted firm belonging to

N ′f , looking forward to some g̃ ∈ G
3/4,y
fm , deletes its link in g′′ to some firm belonging

to Nm ∪ Ny ∪ (Nf \ N ′f ). We obtain a network g′′′ with two components, #C(g′′′) = 2.

Next, a farsighted firm belonging to N ′f deletes its link in g
′′′ to another firm belonging

to Nm ∪Ny ∪ (Nf \N ′f ). We obtain a network g′′′′ with three components, #C(g′′′′) = 3.

Next, two firms, belonging to the two smallest components, form a link to bridge the

two smallest components. We obtain a network with two components and we repeat this

process until we reach some g̃ ∈ G3/4,y
fm where #N ′f farsighted firms belong to the largest

component of size int((3n+ 1)/4).

(a2) If min {#Nf , int((3n+ 1)/4)} = #Nf , define process (*) as follows. Take in g′′

any myopic firm i such that i is a loose-end node and linked to another myopic firm j.

Then, firm j deletes its link with firm i to form a network with one component of size

n − 1 and one isolated firm. Next, some farsighted firm k builds a link to the isolated

firm i to form again a y-minimally connected network with a single component of size n.

Next, we proceed repeatedly as in process (*) until we reach a network ĝ such that ĝ is

y-minimally connected, Π(ĝ) = {N}, Π(ĝ − {ij | i ∨ j ∈ Nm ∪Ny ∪ (Nf \N ′f )}) = {N ′f},
and all myopic firms that are loose-end nodes in ĝ are linked to either a farsighted firm or

a yes-firm. (a2i) Suppose first that the number of myopic firms that are loose-end nodes
and linked to a farsighted firm in ĝ is greater or equal than int((3n + 1)/4) − #Nf , i.e.
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# {i ∈ Nm | # {j | ij ∈ ĝ} = 1 and {j | ij ∈ ĝ} ⊆ Nf} ≥ int((3n + 1)/4) − #Nf . Next,

a farsighted firm, looking forward to some g̃ ∈ G
3/4,y
fm , deletes its link in ĝ to either a

myopic firm that is not a loose-end node or a yes-firm. We obtain a network ĝ′ with

two components, #C(ĝ′) = 2. All farsighted firms belong to the largest component of

ĝ′. Next, a farsighted firm deletes its link in ĝ′ to either another myopic firm that is

not a loose-end node or a yes-firm. We obtain a network ĝ′′ with three components,

#C(ĝ′′) = 3. All farsighted firms belong to the largest component of ĝ′′. Next, two

myopic firms (or one myopic and one yes-firm), belonging to the two smallest components,

form a link to bridge the two smallest components. We obtain a network ĝ′′′ with two

components, #C(ĝ′) = 2. All farsighted firms belong to the largest component of ĝ′′′. We

repeat this process until we reach some network with two components where all farsighted

firms belong to the largest component of size greater or equal than int((3n + 1)/4) and

myopic firms in the largest component are loose-end nodes, and all yes-firms belong to the

smallest component. If the size of the largest component is equal to int((3n+ 1)/4), then

we have reached g̃ ∈ G3/4,y
fm . Otherwise, a farsighted firm, looking forward to g̃ ∈ G3/4,y

fm ,

deletes its link to some myopic firm that is a loose-end node. Next, this isolated myopic

firm adds a link to some firm belonging to the smallest component. We repeat this

process until we reach g̃ ∈ G
3/4,y
fm where the largest component of size int((3n + 1)/4)

consists of #Nf farsighted firms and int((3n+ 1)/4)−#Nf myopic firms that are loose-

end nodes. (a2ii) Suppose now that the number of myopic firms that are loose-end

nodes and linked to a farsighted firm in ĝ is smaller than int((3n + 1)/4) − #Nf , i.e.

# {i ∈ Nm | # {j | ij ∈ ĝ} = 1 and {j | ij ∈ ĝ} ⊆ Nf} < int((3n+ 1)/4)−#Nf . Next, a

farsighted firm, looking forward to some g̃ ∈ G3/4,y
fm , deletes its link in ĝ to a myopic firm

that is not a loose-end node or to a yes-firm (if there is no farsighted firm linked to a

myopic firm that is not a loose-end node). We obtain a network ĝ′ with two components,

#C(ĝ′) = 2. All farsighted firms belong to the same component. Next, a farsighted firm

deletes its link in ĝ′ to a myopic firm that is not a loose-end node or to a yes-firm (if there

is no farsighted firm linked to a myopic firm that is not a loose-end node). We obtain a

network ĝ′′ with three components, #C(ĝ′′) = 3. All farsighted firms belong to the largest

component. Next, two myopic firms (or one myopic and one yes-firm), belonging to the

smallest components, form a link to bridge the two smallest components. We obtain a

network ĝ′′′ with two components, #C(ĝ′′′) = 2. We repeat this process until we reach

some network g with two components, #C(g) = 2, such that all farsighted firms belong

to the largest component and myopic firms in the largest component are loose-end nodes.

From g, a farsighted firm i adds a link to a myopic firm j that belongs to the other

component and is a loose-end node. We obtain a network g′ with a single component

connecting all firms, #C(g′) = 1 and Π(g′) = {N}. Next, this myopic firm j deletes

its link it has with the non-farsighted firm and becomes a loose-end node in the largest

component of the newly formed network g′′, #C(g′′) = 2. All farsighted firms belong to

the largest component of g′′. We repeat this process until we reach some g̃ ∈ G3/4,y
fm where

all farsighted firms belong to the largest component of size int((3n + 1)/4) and myopic
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firms in the largest component are loose-end nodes.

(b) Take any network g /∈ G3/4,y
fm with two components such that C(g) = (h1, h2), h1 is

minimally connected and h2 is y-minimally connected, N(h1)∪N(h2) = N andNy ⊆ N(h)

(hence, gNy ⊆ h).

(b1) If #N(h1) 6= int((3n+ 1)/4) and #N(h1) ≥ n/2, then some farsighted firm i in

h1 adds a link to some (farsighted or myopic or yes-) firm j in h2 with the farsighted firms

looking forward to some g̃ ∈ G3/4,f
fm . From g+ij we proceed as in (a) sinceΠ(g+ij) = {N}.

(b2) If #N(h1) = int((3n + 1)/4) and some myopic firm j in h1 is nor a loose-end

node nor a median node, then this myopic firm j has incentives to cut one of its links

to split h1 in two components. From this network with three components, we proceed

as in (c1) below. Since the size of the largest of the three components is smaller than
int((3n+ 1)/4) but larger than n/2, the process will transit from (c1) to (b1).
(b3) If #N(h1) < n/2, then some (farsighted or myopic) firm i in h1 adds a link to

some yes-firm j in h2 with the farsighted firm looking forward to some g̃ ∈ G3/4,f
fm . From

g + ij we proceed as in (a) since Π(g + ij) = {N}.
(c) Take any network g with three or more minimally connected components and such
that gNy ⊆ h for some h ∈ C(g). Let h1 be the largest component of g, h2 be the second

largest component of g, and so forth.

(c1) Suppose #N(h1) ≥ n/2. From g, at each step, two (myopic or farsighted or

yes-) firms belonging to the two smallest components, with the farsighted firms looking

forward to some g̃ ∈ G
3/4,y
fm , form a link until we reach a network g′ consisting of only

two components, one minimally connected component and one y-minimally connected

component. From g′ we proceed as in (b).
(c2) Suppose #N(h1) < n/2 and N(h1)∩Nf 6= ∅. From g, at each step, two (myopic

or farsighted or yes-) firms belonging to the two largest components, with the farsighted

firms looking forward to some g̃ ∈ G3/4,y
fm , form a link until we reach a network g′ such that

the size of the largest component of g′ is greater or equal than n/2. Since the size of the

largest two components is smaller than n/2, the two (myopic or farsighted or yes-) firms

have incentives to link to each other. From g′, at each step, two (myopic or farsighted or

yes-) firms belonging to the two smallest components, with the farsighted firms looking

forward to some g̃ ∈ G
3/4,y
fm , form a link until we reach a network g′′ consisting of only

two components, one minimally connected component and one y-minimally connected

component. From g′′ we proceed as in (b).
(c3) Suppose #N(h1) < n/2 and N(h1) ∩ Nf = ∅. From g, first, one myopic (or

yes-) i firm belonging to h1 forms a link with some farsighted firm j belonging to the

largest component hk that contains a farsighted firm, with j looking forward to some

g̃ ∈ G
3/4,y
fm . If #N(h1) + #N(hk) < n/2, from g′ = g + ij, at each step, two (myopic

or farsighted or yes-) firms belonging to the two largest components, with the farsighted

firms looking forward to some g̃ ∈ G3/4,y
fm , form a link until we reach a network g′′ such

that the size of the largest component of g′′ is greater or equal than n/2. From g′′, at each

step, two (myopic or farsighted or yes-) firms belonging to the two smallest components,
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with the farsighted firms looking forward to some g̃ ∈ G3/4,y
fm , form a link until we reach a

network g′′′ consisting of only two components, one minimally connected component and

one y-minimally connected component. From g′′′ we proceed as in (b).

�

Proof of Lemma 1.
We show that G1/2,y

m ∪Gym satisfies both internal stability and external stability.
Internal stability: We have that φy(g) = ∅ for all g ∈ G1/2,y

m . The largest component of

g consists of only myopic firms and those myopic firms do not want to add a link to g or

to delete a link in g since g is pairwise stable. In addition, myopic firms in the smallest

component do not want to delete a link. Only yes-firms in the smallest component could

start adding a link to g. But, adding a link to a myopic firm in the smallest component

would decrease the profit of this myopic firm and would not change the profit of the

myopic firms belonging to the largest component. Take now any g ∈ Gym. Myopic firms
in the largest component do not want to add (it would not increase their profits) nor to

delete a link since they are loose-end nodes in g. Hence, φy(g) = ∅ for all g ∈ Gym, and
G

1/2,y
m ∪Gym satisfies internal stability.

External stability: We will show that there always exists a y-myopic-farsighted im-

proving path from any network g consisting of one y-minimally connected component h

with Ny ⊆ N(h) (hence, gNy ⊆ h) and possibly other minimally connected components

to some g̃ ∈ G1/2,y
m ∪Gym. We consider three cases.

(a) Take any network g /∈ Gym with Π(g) = {N}. Remember that gNy ⊆ g. Define

process (*) as follows. Take in g any myopic firm i such that i is a loose-end node and

linked to another myopic firm j. Then, firm j deletes its link with firm i to form a network

with one component of size n − 1 and one isolated firm. Next, some yes-firm k builds a

link to the isolated firm i. We proceed repeatedly applying process (*) until we reach a

network g′ such that #C(g′) = 1, N(g′) = N , g′ is y-minimally connected, and for any

i ∈ Nm we have # {j | ij ∈ g′} = 1. Hence, g′ ∈ Gym and g′ ∈ φy(g).

(b) Take any network g /∈ G1/2,y
m with two components such that C(g) = (h1, h2), h1 is

minimally connected, h2 is y-minimally connected (hence, gNy ⊆ h2), andN(h1)∪N(h2) =

N . (b1) If #N(h1) > n/2, then some myopic firm i ∈ N(h1) deletes its link with another

myopic firm j ∈ N(h1) to form g− ij where j is isolated (i.e. j has no link). Next, firm j

adds a link to some (myopic or yes-) firm k in h2 to form a network g − ij + kj with two

components (h1 − ij, h2 + kj). We repeat the process of isolating a myopic firm in the

largest component that next adds a link to some firm in the smallest component until we

reach some g̃ ∈ G1/2,y
m where the size of the largest component is equal to int((n+ 3)/2) if

n even or (n+ 1)/2 if n odd. (b2) If #N(h1) ≤ n/2, then a myopic firm i ∈ N(h1) adds

a link to some yes- firm j ∈ N(h2) to form g + ij, and from g + ij we can proceed as in

(a).
(c) Take any network g with three or more minimally connected components and such

that gNy ⊆ h for some h ∈ C(g). Let h1 be the largest component of g, h2 be the second
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largest component of g, and so forth. (c1) Suppose #N(h1) ≥ n/2. From g, at each

step, two (myopic or yes-) firms belonging to the two smallest components form a link

until we reach a network g′ consisting of only two components. From g′ we proceed as

in (b). (c2) Suppose #N(h1) < n/2. From g, at each step, two (myopic or yes-) firms

belonging to the two largest components form a link until we reach a network g′ such that

the size of the largest component of g′ is greater or equal than n/2. From g′, at each step,

two (myopic or yes-) firms belonging to the two smallest components form a link until we

reach a network g′′ consisting of only two components. From g′′ we proceed as in (b).
Since φy(g) = ∅ for all g ∈ G1/2,y

m ∪ Gym, the union G
1/2,y
m ∪ Gym is the unique myopic-

farsighted stable set.

�
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