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Abstract. The structural similarity index (SSIM) family is a set of metrics that has demonstrated good agreement
with human observers in tasks using reference images. These metrics analyze the viewing distance, edge infor-
mation between the reference and the test images, changed and preserved edges, textures, and structural
similarity of the images. Eight metrics based on that family are proposed. This new set of metrics, together
with another eight well-known SSIM family metrics, was tested to predict human performance in some specific
tasks closely related to the evaluation of radiological medical images. We used a database of radiological
images, comprising different acquisition techniques (MRI and plain films). This database was distorted with
different types of distortions (Gaussian blur, noise, etc.) and different levels of degradation. These images were
analyzed by a board of radiologists with a double-stimulus methodology, and their results were compared with
those obtained from the 16 metrics analyzed and proposed in this research. Our experimental results showed
that the readings of human observers were sensitive to the changes and preservation of the edge information
between the reference and test images, changes and preservation in the texture, structural component of the
images, and simulation of multiple viewing distances. These results showed that several metrics that apply this
multifactorial approach (4-G-SSIM, 4-MS-G-SSIM, 4-G-r �, and 4-MS-G-r �) can be used as good surrogates of a
radiologist to analyze the medical quality of an image in an environment with a reference image. © 2017 Society of

Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.4.3.035501]
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1 Introduction
Image quality analysis plays a central role in the design of im-
aging systems for medical diagnosis. The final objective of this
image quality analysis is usually to design a metric that is able to
score the perceived quality of a medical image: an image quality
metric (IQM). Thus far, only partial success has been achieved.

Certain widely used metrics such as the peak signal–noise
ratio or mean square error are very simple to calculate but do
not show a good correlation with the image quality perceived
by human observers,1 and they are not useful to deduce the
diagnosis capability of diagnostic equipment.2

Other metrics that are closer to the actual performance of
systems, such as the modulation transfer function, the noise
power spectrum, the noise equivalent quanta, and the detection
quantum efficiency, better describe the image formation process
of the system and can be used to predict the observer response
under the ideal observer model approach.3 However, this model
can be applied only to tasks such as a “signal-known-exactly/
statistically/background-known-exactly/statistically” (SKE/BKE
or SKS/BKS) detection task.4

Other models have achieved a good correlation with
the human observer and can also be applied to SKE/BKE
or SKS/BKS tasks or even more complex tasks. These mainly

include the Fisher–Hotelling channelized models,5 the nonpre-
whitening matched filter,6 and the NPW with an eye filter.7

These models attempt to reproduce human performance in dif-
ferent tasks, considering functions to mimic the contrast sensi-
tivity function of the human eye (eye filter) or neuronal visual
perception paths (channels). These models are quite useful in
image quality assessment for certain acquisition techniques
and types of noise.8 However, in this study, we are looking
for a general index of image quality, independent of the acquis-
ition technique, or the type of noise present in the image, despite
the fact that this index could be less accurate for a certain type of
noise or for a certain acquisition technique than these models.

Wang et al.9 proposed the human visual system (HVS),
which is considered to be highly adapted for extracting struc-
tural information from a scene; therefore, a measure of structural
similarity (SSIM) should be a good approximation of perceived
image quality. A family of objective IQM has been developed
based on this premise.10–15 They evaluate visual image quality
by measuring the structural similarities between two images,
one of which is a reference. A multiscale version of SSIM
(MS-SSIM) has also been proposed.10

Results in large studies have shown that SSIM and MS-SSIM
mimic quite well the perceived quality of an image by a human
observer. However, they show some limitations:
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1. Some researchers have found11 that SSIM and MS-
SSIM do not perform so well for recognition threshold
tasks (tasks near the perception limit), which invalidate
their application to the analysis of images with regions
of interest at the limit of visibility.

2. Some studies show limits in the performance of these
indexes when analyzing medical images.16,17

3. Other studies show that the correlation between SSIM
and MS-SSIM and human observers decreases when
they are used to measure the quality of blurred and
noisy images.13,15

These drawbacks are limiting factors in the medical imaging
area, specifically in radiology. Radiological images of medical
interest feature subtle differences between an image with no
pathological findings and an image that reveals these findings.
Blur and noise are some of the most common distortion factors
in a day-to-day radiological practice.

Some authors have proposed some modifications of SSIM
and MS-SSIM to avoid these limitations. Rouse and Hemami11

proposed a new IQM, r�, based on the structural component of
MS-SSIM that could avoid the lack of effectiveness near the
recognition threshold. Chen et al.13 proposed a gradient-based
SSIM (G-SSIM) that improves the SSIM results in blurry
and noisy images. Li and Bovik15 applied a four-component
model based on the texture and edge regions of the image. They
applied this model to SSIM and MS-SSIM, obtaining eight new
IQMs. These three approaches have shown promising features
to overcome the limitations of SSIM and MS-SSIM.

The aim of this work is to analyze the potential of these mod-
ifications in the SSIM family, testing in a medical environment a
complete set of proven and new IQMs proposed here, the latter
of which is created by a combination of all related approaches.

To check the effectiveness of these IQMs, we have applied
these metrics to a double-stimulus task with a database of radio-
logical images. We have compared these results with those
obtained from a board of expert radiologists.

2 Theory

2.1 SSIM

The SSIM index9 evaluates a test image X with respect to a
reference image Y to quantify their visual similarity. In this
sense, it is an SKE task. SSIM evaluates the quality of X, with
respect to Y, by computing a local spatial index that is defined
as follows.

X and Y are the images to be compared (computed as
matrices of pixels), and x ¼ fxiji ¼ 1; 2; : : : ; Ng and y ¼
fyiji ¼ 1; 2; : : : ; Ng are pairs of local square windows (com-
puted as submatrices of pixels) of X and Y, respectively;
x and y are located at the same spatial position in both images.
SSIM is defined in terms of the average pixel values, μx and μy,
with pixel value standard deviations (SD) σx and σy at patches
x and y and covariance (cross-correlation) σxy of x and y
through the following indexes:

EQ-TARGET;temp:intralink-;e001;63;131lðx; yÞ ¼ ð2μxμy þ C1Þ∕ðμ2x þ μ2y þ C1Þ; (1)

EQ-TARGET;temp:intralink-;e002;63;95cðx; yÞ ¼ ð2σxσy þ C2Þ∕ðσ2x þ σ2y þ C2Þ; (2)

EQ-TARGET;temp:intralink-;e003;326;741rðx; yÞ ¼ ðσxy þ C3Þ∕ðσxσy þ C3Þ; (3)

where C1, C2, and C3 are constants introduced to avoid
instabilities when (μ2x þ μ2y), (σ2x þ σ2y), or σxσy is close to zero.

The lðx; yÞ index is related with luminance differences,
cðx; yÞ with contrast differences, and rðx; yÞ with structure
variations between x and y.

The general form of the SSIM index is defined as

EQ-TARGET;temp:intralink-;e004;326;661SSIMðx; yÞ ¼ ½lðx; yÞ�α:½cðx; yÞ�β:½rðx; yÞ�γ; (4)

where α, β, and γ are parameters that define the relative impor-
tance of each component. SSIMðx; yÞ ranges from 0 (completely
different) to 1 (identical patches). Finally, a mean SSIM index is
computed to evaluate the global image similarity.

Despite its simple mathematical form, SSIM objectively pre-
dicts subjective ratings as well as more sophisticated IQMs9

even for medical images.18–20 However, SSIM does not very
well match the observer’s prediction in noisy and blurred
images, images near the recognition thresholds, or some medical
images. Some modifications have been proposed to avoid these
limitations.

2.2 Multiscale Index: MS-SSIM

Detail perception depends, among other factors, on the resolu-
tion of the image and on the observer-to-image distance. To
incorporate M observer viewing distances, Wang et al. devel-
oped an MS-SSIM index.10 MS-SSIM simulates different spatial
resolutions by iterative downsampling and weighting the differ-
ent values of each component of SSIM (luminance, contrast, and
structure) at different scales. This index has been proved to be
more accurate than SSIM for certain conditions.10,11

2.3 Recognition Threshold: r �

Rouse and Hemami11 proposed a cross-correlation multiscale
(MS) SSIM metric (r�) based on the structural component of
MS-SSIM [rðx; yÞ in Eq. (3)]. They determined that the struc-
tural component was more closely related to human perception
(for images near the recognition threshold) than the complete
MS-SSIM metric. They proposed the use of the structural com-
ponent rðx; yÞ with light modifications, avoiding the use of C3
in Eq. (3) and giving alternate definitions of rðx; yÞ to avoid
division by zero.

Several studies in the medical imaging field have shown
good results of this metric in certain tasks near the limit of
visibility.21–23

2.4 Improving Badly Blurred Images: G-SSIM

Chen et al.13 developed a metric named G-SSIM based on SSIM.
They proposed that the HVS should be very sensitive to the edge
and contour information and that these parts should be the most
important structural information of an image. They substituted
the images to be compared with their gradient maps that were
obtained by applying Sobel operators across the original images.
The luminance component was calculated based on the original
images, but the contrast and structural components were calcu-
lated with the gradient maps of those images. They then applied
the usual SSIM rules to calculate the G-SSIM value. Their
results showed an improvement of SSIM and MS-SSIM.
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2.5 Four Components: 4-SSIM, 4-MS-SSIM,
4-G-SSIM, 4-MS-G-SSIM

Li and Bovik15 faced the lack of effectiveness of SSIM and MS-
SSIM considering a four-component model that classified local
image regions according to edge and smoothness properties.
In their studies, SSIM values are weighted by region type.
According to this approach, they developed modified versions
of SSIM, MS-SSIM, GSSIM, and MS-G-SSIM—4-SSIM,

4-MS-SSIM, 4-G-SSIM, and 4-MS-G-SSIM—and compared
the performance of the whole set.

By applying these metrics in the LIVE Image Quality
Assessment Database,24 their experiments showed that 4-SSIM,
4-MS-SSIM, 4-G-SSIM, and 4-MS-G-SSIM were more consis-
tent with human observers than any other metrics.

Based on these proposals, we have applied a complete set of
IQM (Table 1) to test the combination of these four approaches:
four-component approach (4), gradient approach (G), MS
approach, and basic SSIM index (S), or structural approach
(r�). Note that the first eight IQMs in Table 1 were tested by
Li and Bovik15 with the LIVE database. This database includes
pictures of faces, people, animals, nature scenes, manmade
objects, etc., but no medical images. Every single parameter
in these IQMs was kept at its original value, as was proposed
by the authors. The main reason for this decision was to have a
solid reference for the authors’ experiments, one that could be
compromised if we had changed those parameters. Additionally,
we developed the last seven IQMs to test the performance of
the structural component r�.

3 Materials and Methods

3.1 Observers

Four medical doctors were selected, all of whom specialized in
radiology. They were 57, 35, 32, and 53 years old and they had
radiology diagnostic experience in hospitals of 31, 9, 6, and 27
years, respectively. We denote them as observers A, B, C, and D,
respectively.

3.2 Database

The images were collected while looking for usual and repre-
sentative examples from the day-to-day medical practice of a
radiologist. The specimens of the database were collected by
observer D and checked for suitability to the referred day-to-
day medical practice. Three subsets of eight images (each one)
were selected:

1. Bone plain films (BPF). Usual bone radiographies:
back, knee, foot, hand, wrist, etc.

2. Magnetic resonance (MR). Head, back, neck, etc.
A representative slice for each selected case.

3. Chest plain films (CPF).

The color depth was 8-bit (256 gray levels) for each image.
The size of each type of image was different, depending on
the acquisition technique. The usual size for each type of
image was (in pixels) 1400 × 1700 for BPF, 512 × 512 for MR,
and 2500 × 2000 for CPF. All patient identifiers were removed
from the images. Figure 1 shows one specimen of each subset.

3.3 Image Distortion Types

The images were distorted with certain types of distortions that
are common in a radiological environment25 or are of interest for
some medical applications: Gaussian blur (GB), white noise,
JPEG compression, and JPEG2000 compression.16,18,26,27

a. GB. A circular symmetric Gaussian kernel with SD
ranging from 1 to 5 pixels, using the ImageJ (v. 1.44)
function “Gaussian blur.”

Table 1 Set of IQMs to be tested.

Metrics based on the three components of
SSIM: luminance, contrast, and structure

SSIM The original SSIM

G-SSIM Calculates SSIM over the gradient version of
the image

MS-SSIM Multiscale version of SSIM

MS-G-SSIM Multiscale version of G-SSIM

4-Component versions (weighting region
type) of the four previous metrics

4-SSIM Weights the values of the SSIM map
according to the change (or preservation) of
the original image’s texture

4-G-SSIM Equal to 4-SSIM, but the original images are
replaced by their gradient versions

4-MS-SSIM Multiscale version of 4-SSIM. 4-SSIM is
calculated for every scale and then pooled
according to the MS-SSIM rules

4-MS-G-SSIM Multiscale version of 4-G-SSIM

Metrics based on the structural
component of SSIM: r�

r � The structural component of SSIM index, as
proposed by Rouse and Hemami

G-r � Calculates r � over the gradient version of the
image

MS-r � Multiscale version of r �. Is equivalent to the
R� index proposed by Rouse and Hemami

MS-G-r � Multiscale version of G-r �

4-component versions (weighting region
type) of the four previous metrics

4-r � Weights the values of the r� map according
to the change (or preservation) of the original
image’s texture

4-G-r � Equal to 4-r �, but the original images are
replaced by their gradient versions

4-MS-r � Multiscale version of 4-r �. The four-structural
component is calculated for every scale and
then pooled according to the MS-r � rules

4-MS-G-r � Multiscale version of 4-G-r �
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b. White noise. Gaussian noise (GN) with an SD
between 20 and 100, using the ImageJ (v. 1.44)
function “add GN.”

c. JPEG compression (JPG). Compressed at bitrates
ranging from 0.12 to 0.15 bpp using the Matlab
(v. 8.0) function imwrite.

d. JPEG2000 compression (J2000). Compressed at
bitrates ranging from 0.01 to 0.04 bpp using the
Matlab (v. 8.0) function imwrite.

The extent of distortion is intended to reflect a broad range of
visual appearances, from light differences to strong distortions.
This broad range of distortions was designed to manage the
observer and IQM responses from the near to the suprathreshold

problem. The number of steps for each distortion type was fixed
at five. The total number of distorted images was 24 original
images × 4 types of distortions × 5 levels of distortion =
480 images.

Figure 2 shows an example of the different distortion levels
(referred to GN) applied to an MR specimen. The first image
(top-left) shows the image without any distortion.

3.4 Test Methodology

Twenty-four sets of images were arranged, one for each original
image. Each set comprised all distorted images obtained from
each original image and the original itself. The names of the
images were randomized.

BPF MR CPF

Fig. 1 Examples of the different subsets.

No distortion sd=20 sd=40

sd=60 sd=80 sd=100

Fig. 2 GN applied to an image belonging to the MR subset (BPF, MR, and CPF).
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Each set of images was independently evaluated by observers
A, B, and C. Observer D was excluded from this evaluation to
avoid bias because he was the observer that selected the images.
The images were displayed in the usual medical environment of
these radiologists to mimic their day-to-day medical experience.

We used a double-stimulus methodology. Each radiologist
had a double-window space on his or her display. The left
one showed the reference image, without any type of distortion.
The right window showed the distorted images in a random
sequence. The experts reported their answer based on the
following instruction:

“Rate the quality, for your medical practice, of the distorted
image on the following scale: bad (1), poor (2), intermediate (3),
good (4) or excellent (5), always considering that the optimal
level (5) is the level of the reference image or that of any
image medically indistinguishable from it.”

It is important to note that the intention of the experiment was
not to discover subtle differences between images by the observ-
ers or visual similarities or dissimilarities between images (vis-
ual losses). The main intention was to determine the helpfulness
of the image for a medical practice in the case of a diagnosis: we
were measuring the diagnostic losses,28,29 and this was the aim
reflected in the instructions given to the experts. This intention
was made clear to the observers involved in our experiment.

No time limit was fixed. The usual reviewing time for each
image was in a range between 3 and 8 s. Usually, the poorer the
image quality, the less time consumed to answer. Each evalu-
ation session was not longer than 30 min, and the lapse between
sessions was at least 15 min to avoid any type of visual fatigue.

There were two reviews of the images, the second of which
was conducted 6 months later than the first, to test the intraob-
server variability.

3.5 Measures

The complete set of images was analyzed with algorithms devel-
oped by us as a plugin in ImageJ, v. 1.44,30 to obtain the values
of the 16 proposed metrics for each image. These values were
distributed in an interval between 0 and 1. These values were
compared with those obtained by the human observers on aver-
age, mean opinion scores (MOS), also scaled between 0 and 1.

3.6 Statistical Analysis

3.6.1 Selection of observers

Once the second review of the images was complete, an analysis
of the intraobserver consistency was performed using the
weighted kappa coefficient31 using Cicchetti–Allison weights.32

To apply it for each observer, the scores “1,” “2,” “3,” “4,” and
“5” from the whole sample of images were pooled and classified
to produce a 5 × 5 table, with entries of the table being the num-
bers of concordant or discordant pairs according to the first and
second readings. Consequently, the total number of pairs in each
observer’s table was 480. This analysis enabled us to select the
consistent or trustworthy observers. The interpretation of the
obtained coefficients considered the statistical significance,
the number of scores (5), and their prevalence.33 The analysis
included the study of intraobserver consistency for each of
the three types of images separately and the homogeneity of
kappa statistics31 through different types of images for each
observer separately.

The readings of the second review were used to evaluate the
interobserver agreement or variation. The generalized kappa
statistic31 and the Friedman two-way analysis of variance were
applied. A Friedman test was used because we were employing
a randomized complete block design in which each image
behaved as a block.34 A total of 480 images were used for
these analyses, which included the kappa coefficient of every
score separately with its corresponding jackknife confidence
interval.35

3.6.2 Performance measures

For the analysis of the relation between the image scores pro-
vided by the metrics and the corresponding MOS provided by
the observers, Pearson, r, and Spearman, rs, correlation coeffi-
cients were used. Spearman’s analysis remained complementary
because the definitions of both scores and the high sample size
guaranteed the adequacy of the Pearson statistics. A third sta-
tistic was the root-mean-squared-error (RMSE) between metric
scores and MOS. To deepen the assessment of the performance
of the IQMs, the relationship between both scores was analyzed
by means of linear regression analyses, considering IQM scores
as the independent or predictor variable and the MOS as the
dependent variable. The slope b and the intercept a of the
line gave additional measures of the association degree between
IQM and MOS. A slope close to 1 and an intercept close to 0,
together with large values of r and rs and a small value of
RMSE, will show a fairly good metric-observers agreement.
In this context, RMSE measures the variability of the data with
respect to the bisector of the first quadrant. The mean and SD of
the MOS and IQM scores for each group of images are included
as descriptive measures to show over- or underrating of the
metrics versus observers.

This statistical analysis was achieved by means of the SPSS
22 and Epidat 4.1 statistical software packages.

4 Results

4.1 Selection of Observers

The results from the analysis of the intraobserver agreement
for all images are shown in Table 2. As expected, the kappa
coefficients are strongly significant, p < 0.0001. The confidence
intervals and especially their lower limits, greater than 0.54, lead
to the conclusion that all observers agree; therefore, they have
been kept for further analysis.

By type of image, the highest values of the kappa coefficient
were reached for MR and BPF, but there were no statistically
significant differences between the kappa coefficients corre-
sponding to the three types of images, for each observer sepa-
rately (all p > 0.10).

Table 2 Weighted kappa coefficient (Cicchetti weights), standard
error (SE), 95% confidence interval, z-statistic, and p-value from
the double reading by every single observer.

W. kappa SE 95% CI z-Statistic p-Value

Obs. A 0.658 0.027 (0.605; 0.711) 18.40 <0.0001

Obs. B 0.662 0.027 (0.609; 0.715) 18.11 <0.0001

Obs. C 0.603 0.028 (0.548; 0.658) 16.43 <0.0001
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Application of the Friedman test did not find significant
differences between observers (test statistic ¼ 1.90, p ¼ 0.39).
Therefore, one could conclude that there was agreement among
the three observers. The scores from the three radiologists
selected, A, B, and C, were used to evaluate the quality of
the images; the average of these scores made up the MOS.

The results from the application of the generalized kappa
statistic to these observers are shown in Table 3. The most
frequent categories for all observers were scores 2 and 3. These
differences in marginal totals produce a few substantial changes
in the prevalence of the extreme categories against the central
ones by which the global kappa is reduced.36 Based on this,
we could conclude a moderate–good concordance among the
observers, kappa = 0.595, 95% CI: (0.555; 0.635).

4.2 IQM Performance

Table 4 lists the measures of performance, as well as the mean
and SD statistics, for the 16 metrics. The statistic with which to
assess the relationship among the image scores that was most
objective and independent of the mean value was r and comple-
mentarily rs. A comparison between the IQM mean values and
MOS (0.41) showed that almost all metrics overrate compared to
the observers. Three metrics, namely 4-G-SSIM (0.45), r�
(0.37), and 4-G-r� (0.37), provide close mean values. Metric
G-r� underrates clearly (0.21). The RMSE and the intercept sta-
tistic a are largely dependent on these mean values. The RMSE
tends to increase when the metric overrates (a < 0) or underrates
(a > 0) compared to the observers. Finally, the slope statistic b is
more representative of the scores relationship when r is greater.

In the first step, considering the whole set of images, we
selected the most accurate metrics based on the values of the
r and rs statistics. Noting the column r of Table 4, we could
conclude that most of the metrics showed a moderate37 correla-
tion (0.4 ≤ r < 0.6). However, the heterogeneity of the images
(type of image, type of distortion, and size in pixels) allows us to
venture a stronger correlation. Therefore, the statistics combina-
tion (r, rs > 0.65) was chosen as a demanding criterion to
select a more accurate IQM. Considering these thresholds, only
4-G-SSIM, 4-MS-G-SSIM, 4-G-r�, and 4-MS-G-r� met these
requirements.

The metrics 4-MS-G-SSIM and 4-MS-G-r�, which apply the
MS component to the other two selected metrics, show the best
results (r ¼ 0.75 and 0.71, respectively, and rs ¼ 0.81 and 0.76,
respectively). In contrast, as might be expected, the metrics 4-G-
SSIM and 4-G-r� show better results in terms of RMSE and the

a statistic (RMSE ¼ 0.22 and 0.21, respectively, and a ¼ 0.06

and 0.11, respectively). Finally, noting the slope statistic b, we
obtained the most “agreed” results for the metrics 4-MS-G-
SSIM and 4-MS-G-r� (b ¼ 1.10 and 0.94, respectively).

One way to improve these two last metrics would be to cor-
rect their values through a change of origin. In particular, we
used the mean difference IQM − MOS as the value for this
change by subtracting that value from all scores of each metric.
This operation decreases the RMSE and raises the intercept,
equaling the mean values without changing the rest of the per-
formance statistics (which are invariant to changes of origin; see
Table 5). 4-G-SSIM and 4-G-r� metrics do not require a similar
correction owing to the proximity of the means of both to the
observer (0.45 and 0.37 versus 0.41), these differences being in

Table 3 Generalized kappa statistic, 95% jackknife confidence inter-
val, z-statistic, and p-value.

Category Kappa 95% CI z-Statistic p-Value

Score 1 0.727 (0.662; 0.792) 27.59 <0.0001

Score 2 0.566 (0.505; 0.627) 21.49 <0.0001

Score 3 0.532 (0.469; 0.595) 20.18 <0.0001

Score 4 0.575 (0.505; 0.645) 21.82 <0.0001

Score 5 0.625 (0.514; 0.736) 23.71 <0.0001

Global kappa 0.595 (0.555; 0.635) 41.87 <0.0001

Table 4 r , r s , mean, SD, b, a, and RMSE. 480 images. IQM versus
MOS.

r r s Mean SD b a RMSE

SSIM 0.35 0.44 0.73 0.31 0.31 0.18 0.46

G-SSIM 0.42 0.43 0.51 0.27 0.44 0.19 0.31

MS-SSIM 0.46 0.60 0.88 0.17 0.74 −0.23 0.53

MS-G-SSIM 0.59 0.67 0.74 0.20 0.82 −0.19 0.39

4-SSIM 0.54 0.60 0.68 0.26 0.58 0.02 0.37

4-G-SSIM 0.67 0.66 0.45 0.24 0.78 0.06 0.22

4-MS-SSIM 0.55 0.74 0.88 0.15 1.02 −0.48 0.52

4-MS-G-SSIM 0.75 0.81 0.72 0.19 1.10 −0.38 0.36

r � 0.58 0.56 0.37 0.22 0.75 0.13 0.24

G-r � 0.60 0.57 0.21 0.20 0.82 0.24 0.30

MS-r � 0.59 0.58 0.65 0.20 0.82 −0.12 0.33

MS-G-r � 0.64 0.63 0.51 0.23 0.79 0.01 0.24

4-r � 0.64 0.66 0.59 0.21 0.83 −0.07 0.28

4-G-r� 0.69 0.66 0.37 0.23 0.82 0.11 0.21

4-MS-r � 0.60 0.70 0.80 0.16 1.03 −0.41 0.44

4-MS-G-r� 0.71 0.76 0.66 0.21 0.94 −0.20 0.31

Note: Observers: mean 0.41, SD ¼ 0.28.
Note: The bold values represents the most accurate metrics based on
the values of the r and r s statistics.

Table 5 r , r s, mean, SD, b, a, and RMSE for four IQMs. 480 images.

r r s Mean SD b a RMSE

4-G-SSIM 0.67 0.66 0.45 0.24 0.78 0.06 0.22

4-MS-G-SSIM-0.31 0.75 0.81 0.41 0.19 1.10 −0.04 0.18

4-G-r � 0.69 0.66 0.37 0.23 0.82 0.11 0.21

4-MS-G-r �-0.25 0.71 0.76 0.41 0.21 0.94 0.03 0.20

Note: Observers: mean ¼ 0.41, SD ¼ 0.28.
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terms of Cohen’s d effect sizes38 of 0.16 and 0.19, respectively,
indicating a “small” effect size (d < 0.2). We used this index to
be independent of sample size.

The most effective IQM is 4-MS-G-S (after correction),
which outperforms the other metrics in terms of r, rs, and
RMSE. It shows an excellent value of slope b and intercept
a. The second most effective is 4-MS-G-r�. 4-G-S and 4-G-r�
show a similar result, and their performance is slightly lower
than the performance of the other two metrics. We analyzed
in depth this subset of metrics.

4.3 Analysis by Type of Image

Table 6 shows the results, by type of image, of the four selected
metrics. The scores of 4-MS-G-SSIM and 4-MS-G-r� have been
modified by subtracting from their scores the mean difference of
IQM-MOS for each type of image. The values of these subtra-
hends are listed within the table. Note that this correction can
always be applied to the metrics in a day-to-day radiological
practice because the type of image is well known before the
acquisition of the image. In that sense, it is a numeric constant
included in the algorithm itself. As shown earlier in this paper,
4-G-SSIM and 4-G-r� metrics do not require a similar correction
owing to the proximity of the means of both to the MOS.

As expected, 4-MS-G-SSIM and 4-MS-G-r� provide, for all
types of images, much better results (attending to RMSE) than
those of their nonmodified versions.

MR images provide the best results for all metrics in terms of
combination r, rs, RMSE. Although CPF and BPF images

provide the worst agreement (owing to the worst performance
of 4-G-SSIM and 4-G-r�), 4-MS-G-SSIM and 4-MS-G-r�

show good agreement for every type of image.
The MS component dramatically improves the Pearson coef-

ficient for CPF and BPF and keeps the results for MR. Figure 3
highlights the evolution of the Pearson coefficient by type of
image and compares the single and MS versions of the selected
metrics.

Li and Bovik15 found that 4-G-SSIM performed better than
4-MS-G-SSIM, suggesting that MS was not of great importance
for the performance of an IQM. That result, remarkably, is con-
sistent with ours. Li and Bovik tested their metrics against the
LIVE Image Quality Assessment Database,24 which consists of
a set of images with sizes in pixels from 480 to 768 in width and
from 480 to 512 in height. The dimension in pixels of our set of
images is 1400 × 1700 for BPF, 512 × 512 for MR, and 2500 ×
2000 for CPF.

As seen in Fig. 3, the larger the image (CPF and BPF), the
better the improvement achieved with MS (MS option).
According to the theory shown by Wang et al.,10 the MS factor
improves the results for larger images (BPF and CPF) owing to
the fact that the MS component adds the different viewing dis-
tances as a factor of the human reading. This approach divides
iteratively the image by a factor of two up to five times. For
small images, such as those belonging to the LIVE Database
or those included in our experiment acquired by MR, the size
of the image after five downsizings by a factor of two is on the
order of 16 pixels. Downsizing images by ∼2.400 pixels (those
belonging to the CPF set) gives a final size of ∼75 pixels.

Table 6 r , r s, mean, SD, b, a, and RMSE, for four metrics. Results by type of image.

Metric mean-MOS Type r r s Mean SD b a RMSE

4-G-S

BPF 0.63 0.60 0.44 0.25 0.71 0.09 0.23

MR 0.83 0.84 0.51 0.25 1.01 −0.08 0.18

CPF 0.51 0.49 0.40 0.21 0.63 0.15 0.23

4-MS-G-S

0.31 BPF 0.75 0.82 0.40 0.20 1.03 −0.01 0.19

0.36 MR 0.86 0.90 0.43 0.15 1.66 −0.29 0.18

0.26 CPF 0.73 0.78 0.40 0.18 1.02 −0.01 0.17

4-G-r �

BPF 0.64 0.59 0.36 0.22 0.79 0.12 0.22

MR 0.86 0.88 0.45 0.24 1.06 −0.04 0.15

CPF 0.56 0.52 0.30 0.21 0.69 0.19 0.24

4-MS-G-r �

0.24 BPF 0.69 0.74 0.40 0.24 0.80 0.09 0.21

0.32 MR 0.85 0.87 0.43 0.15 1.70 −0.31 0.19

0.18 CPF 0.76 0.82 0.40 0.19 1.01 0.00 0.17

Note: MOS: BPF (0.40), MR (0.43), CPF (0.40).
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This size carries much more information for the HVS than
images of 16 pixels.

4.4 Type of Distortion and Type of Image

In our experiment, four types of distortion have been applied to
each type of image. In the analysis of real medical practice
images, this feature cannot be fully controlled before the acquis-
ition of the image. It seems reasonable, however, to analyze the
performance of the selected metrics for each type of distortion
within each image type. In this way, we can check the robustness
of the metrics based on the distortion of the image for each
group of images (BPF, MR, and CPF). To simplify, Table 7
presents these results for r values.

4.4.1 BPF

Figure 3 shows the worst performance of 4-G-SSIM and 4-G-r�
compared against their MS versions, 4-MS-G-SSIM and
4-MS-G-r�. Table 7 shows that this behavior is mainly due
to the low performance of the single-scale IQM when GB dis-
tortion is present. Excluding GB distortion, BPF images show
similar results for the other three types of distortion but nonho-
mogeneity for the four considered metrics: 4-G-SSIM and
4-MS-G-r� provide similar performance (0.80 ≤ r ≤ 0.86),
better than 4-G-r� (0.65 ≤ r ≤ 0.75). 4-MS-G-SSIM shows
the best results (r ≥ 0.87).

4.4.2 MR

The good performance of the four IQM metrics with MR
images, shown in the raw analysis of these images (Table 6),
remains for the four types of distortion (0.83 ≤ r ≤ 0.91). Thus,
we can conclude that the performance of the four metrics does
not depend on the type of distortion for these images and is
optimal and uniform among them.

4.4.3 CPF

Figure 3 shows the worst performance of 4-G-SSIM and 4-G-r�
compared against their MS versions, 4-MS-G-SSIM and
4-MS-G-r�. Table 7 shows that this behavior is mainly due
to the low performance of the single-scale IQM when GB dis-
tortion is present. Excluding this distortion, the four metrics
show optimal performance (0.81 ≤ r ≤ 0.95) with CPF images,
similar to that obtained with MR images. 4-MS-G-SSIM

again provides optimal results in all types of distortion
(0.85 ≤ r ≤ 0.95).

4.5 Influence of GB

Li and Bovik15 showed that the MS approach has no advantage
when a GB distortion is applied to a set of images. In contrast,
we have found in our experiment that the MS approach largely
improves the performance of 4-G-SSIM and 4-G-r� when a GB
distortion is applied. This apparent disparity can be due to the
different resolutions of some images of our set and the different
levels of distortion. First, the MS approach improves the quality
of IQM for the largest images, the CPF and BPF sets, showing a
good agreement with the MS theory.10 Second, the distortion
degree of our images is much slighter than the corresponding
one in Li and Bovik’s study.

4.6 Influence of the Different Components (G, 4,
MS, and r �) Over the Complete Set of Metrics

Some IQM components overestimate their mean value, and
others underestimate it. To make a comparison between them,
this behavior penalizes the RMSE value. To show a uniform set
of data, it is interesting to rebuild Table 4 and linearly correct the
mean value of every IQM by the difference between this mean
value and the MOS for the complete dataset of images. This

Fig. 3 Influence in the Pearson coefficient of the MS component for
the selected metrics.

Table 7 r value for the four selected metrics. Results by type of
image and distortion (Dist.). Number of images by type of image
and distortion = 40.

Type Dist. 4-G-S 4-MS-G-S 4-G-r � 4-MS-G-r �

BPF

GB 0.38 0.75 0.24 0.67

GN 0.81 0.89 0.75 0.81

J2000 0.81 0.88 0.65 0.80

JPG 0.86 0.87 0.75 0.83

MR

GB 0.91 0.91 0.89 0.88

GN 0.90 0.86 0.88 0.83

J2000 0.89 0.91 0.90 0.86

JPG 0.89 0.89 0.91 0.85

CPF

GB 0.25 0.85 0.19 0.55

GN 0.87 0.95 0.88 0.95

J2000 0.89 0.90 0.88 0.90

JPG 0.85 0.88 0.81 0.89

Note: Very good agreement, r ≥ 0.85. Good agreement,
0.75 ≤ r < 0.85. Fairly good agreement, 0.65 ≤ r < 0.75. Poor agree-
ment (bold), r < 0.65.

Journal of Medical Imaging 035501-8 Jul–Sep 2017 • Vol. 4(3)

Renieblas et al.: Structural similarity index family. . .



correction minimizes the RMSE values for all metrics. These
results for the quality statistics r, rs, b, and RMSE are
shown in Table 8.

To compare the different components of the IQM, we have
grouped pairs of metrics that change from one to the other in
only one component. Thus, Fig. 4 compares the effect of the
four components r, rs, b, and RMSE, grouping SSIM and
4-SSIM, MS-SSIM and 4-MS-SSIM, and so on. Figure 5
shows the effect of the MS component, Fig. 6 shows the G com-
ponent effect, and, finally, Fig. 7 shows the variation between
SSIM and r�. The influence of every component is shown in
percentage of variation for r, rs, and RMSE. The percentage
of variation of RMSE has been multiplied by −1 to show
positive values when RMSE decreases with the related compo-
nent and negative values when it increases. The influence on
slope, b, is shown as a percentage of variation with respect
to the value “1.”

4: Regarding Fig. 4 and Table 8, one fact stands out: this
component always improves the values of r, rs, b, and RMSE,
with no exception.

MS: This component always improves the values of r, rs, b,
and RMSE with some minor exceptions: 4-r� has a Pearson
correlation coefficient slightly higher than that of 4-MS-r�

(0.64 versus 0.60). The value of b worsens with the MS com-
ponent for the metric G-r� (0.82 versus 0.79).

G: This component always improves the values of r, rs, b,
and RMSE with some minor exceptions: the value of b worsens
for the metrics 4-MS-r�, MS-r�, and 4-MS-SSIM by 3%, 3%,

and 8%, respectively. The overall improvement of this compo-
nent is significantly lower than that from 4 or MS or r�

components.
r�: This component improves the values of r, rs, b, and

RMSE but is more erratic than the other three components.
4-MS-G-SSIM reduces its overall performance. MS-G-SSIM
does not change, on average, its performance. MS-SSIM and
4-MS-SSIM show an overall improvement, but rs decreases
by 10% and 7%, respectively. The other IQMs clearly improve
their performance.

Table 8 r , r s, and RMSE for the 16 IQM. Mean value correction
applied. IQM versus MOS.

IQM r r s b RMSE

SSIM 0.35 0.44 0.31 0.29

G-SSIM 0.42 0.43 0.44 0.25

MS-SSIM 0.46 0.60 0.74 0.22

MS-G-SSIM 0.59 0.67 0.82 0.20

4-SSIM 0.54 0.60 0.58 0.22

4-G-SSIM 0.67 0.66 0.78 0.18

4-MS-SSIM 0.55 0.74 1.02 0.20

4-MS-G-SSIM 0.75 0.81 1.10 0.18

r � 0.58 0.56 0.75 0.20

G-r � 0.60 0.57 0.82 0.20

MS-r � 0.59 0.58 0.82 0.20

MS-G-r � 0.64 0.63 0.79 0.19

4-r � 0.64 0.66 0.83 0.19

4-G-r � 0.69 0.66 0.82 0.18

4-MS-r � 0.60 0.70 1.03 0.19

4-MS-G-r � 0.71 0.76 0.94 0.20

Fig. 4 Effect of component 4. Relative percentage increase in the
quality statistics of the IQM metrics.
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Fig. 5 Effect of component MS. Relative percentage increase in the
quality statistics of the IQM metrics.
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Fig. 6 Effect of component G. Relative percentage increase in the
quality statistics of the IQM metrics.
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5 Discussion
4-MS-G-SSIM provides optimal results in all images and types
of distortion. The second most effective IQM is 4-MS-G-r�.
4-G-SSIM and 4-G-r� show an identical result, and their perfor-
mance is slightly lower than the performance of the other two
metrics.

For MR images, the four metrics show similar behavior.
For CPF and BPF images (the largest images in the set),
4-MS-G-SSIM shows better performance than the other three
IQMs, especially the metrics that use a single-scale approach
(4-G-SSIM and 4-G-r�). Specifically, the worst results are
those that include GB distortion on BPF and CPF images in
4-G-SSIM and 4-G-r� metrics (r < 0.39 for all of them).

The metrics that apply the 4 and the G components show the
best performance among the complete IQM set. Those results
are consistent with previous papers13,15 and show a strong cor-
relation of the HVS with gradients (G component) and edge and
smoothness properties (4 component) in the images.

Previous studies15 have shown the irrelevance of using
the MS approach in large databases. Conversely, we have
found the superiority of this approach over the single-scale
approach. This fact, previously explained, could be due to
the large size of some images (CPF and BPF) included in our
database.

The use of the structural component of SSIM (r�) instead of
the complete SSIM index shows a slight advantage. This result
shows a good agreement with previous studies near the recog-
nition threshold.11,21,22 Despite this fact, the effect of the com-
ponent r� is less than that of the other three components (4, G,
MS). The best metric (4-MS-G-SSIM) applies the SSIM com-
ponent instead of the r� component, showing lighter, but better,
results than its counter partner 4-MS-G-r�. It should be consid-
ered that the present set of images is far from the suprathreshold
problem that can be found in other databases such as the LIVE
database. However, neither does the present database meet the
criteria of the near threshold problem proposed by Rouse and
Hemami11 and applied in the quoted works,21,22 which revealed
a superior performance of r� versus SSIM. Our database shows
few differences between images with different distortion levels,
but these distortion levels can be easily recognized, unlike the
recognition threshold levels. Further analyses could show the
behavior of the structural component with the distortion levels,
but this is not the aim of the present work, which is focused on
stronger distortions.

6 Conclusions
We can conclude that components 4, G, and MS show strong
agreement with the HVS, and 4-MS-G-SSIM can be used as
a good surrogate of a human observer to analyze the medical
quality of a general radiological image in an environment with
a reference image and simple types of noise. 4-MS-G-r�, 4-G-
SSIM, and 4-G-r� also show results that are consistent with
human subjectivity in a wide set of medical images.

We are aware that some model observers could be more accu-
rate in reproducing human perception for certain tasks, for cer-
tain types of noise, or for certain acquisition techniques, all of
them more specific for some set of radiological images. Our aim
in this study has been to find a general index that can be a good
surrogate of a human observer in a wide range of medical im-
aging situations.

We are also aware that this research tries to find a general
approach to image analysis of the quality required in medical
imaging, showing some new IQMs not previously tested in this
context. This approach shows a lack of specificity and these
IQMs are not tuned for specific acquisition techniques or spe-
cific image sizes. Therefore, some parameters could be tuned to
improve the performance of these IQMs, namely the SSIM win-
dow size according to the image size, the values of alpha, beta,
and gamma in Eq. (4), etc. Moreover, specific types of noise,
such as Poisson in x-rays or Rician in MRI, could be analyzed.
These types of analysis and tuning will be considered in future
research by our team.

Additionally, we want to share our efforts with our scientific
colleagues. The whole set of programs and algorithms we have
applied in this study will be freely available on our website
(Ref. 39) for the scientific community.
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