From Official Statistics to Official Data Science

Mark van der Loo, Statistics Netherlands

CBS, Department of Methodology

Complutense University of Madrid, Spring 2019

Agenda

- 1. Why are computing skills important?
 - Some personal observations.
 - Experiences as a research methodologist
- 2. Official Statistics as a (Data) Science

Observations

Example one

Methodologist specifies

$$\operatorname{mean}(x) = \frac{x_1}{\pi_1} + \frac{x_2}{\pi_2} + \dots + \frac{x_n}{\pi_n}$$

Software developer implements

sum(x)/3.14

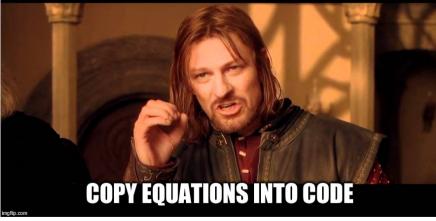
Methodologist specifies

geometric_mean(x) =
$$\sqrt[n]{x_1 \times x_2 \times \cdots \times x_n}$$

Software developer implements

geom_mean = function(x) prod(x)^(1/length(x))

Example two (continued)


```
Software developer tests implementation
geom_mean(c(4,4)) == sqrt(16)
## [1] TRUE
User puts some actual data in: 1,2,...,200
geom_mean(1:200)
```

[1] Inf

ONE DOES NOT SIMPLY

Implementing methods is not trivial

It is called *scientific computing* or *numerical mathematics*, and it is a scientific field.

For (project) management in particular

You need to be able to recognize these situations to put the right person on the job.

A question to statistics managers

Your 'computer person' retires or leaves. You need to hire someone that will modernize the systems developed by this person.

- a. What do you put in the job advertisement?
- b. How do you interview this person to asses maturity in (statistical) programming?

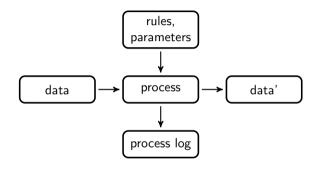
A question for strategic management

Core question

Do you think that statistical computing is a core competence for the statistical office?

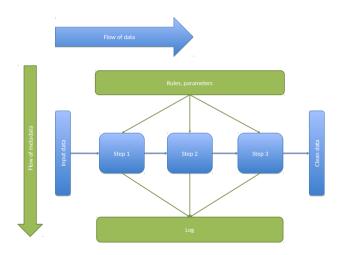
and if so,

How much of it is needed (FTE)? Should there be associated career paths? ...



Experiences as a research methodologist

High-level process view (CSPA, GSIM)



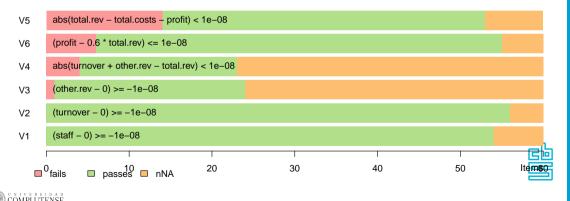
Separation of concerns + Modular approach

Slightly more realistic process view

Data cleaning using R-based packages (1)

```
library(validate)
SBS2000 <- read.csv("SBS2000.csv")
rules <- validator(.file = "rules.R")</pre>
```

	ld ^a	staff 0	turnover	other.rev	total.rev	total.costs	profit 0
1	RET01	75	NA	NA	1130	18915	20045
2	RET02	9	1607	NA	1607	1544	63
3	RET03	NA	6886	-33	6919	6493	426
4	RET04	NA	3861	13	3874	3600	274
5	RET05	NA	NA	37	5602	5530	72
6	RET06	1	25	NA	25	22	3
7	RET07	5	NA	NA	1335	136	1
8	RETOR	ETDR 404 13 417 342 75					
				NA	2596	2486	110
	CD			NA	NA	NA	NA
	SBS2000.csv			N/A	6.45	636	0



Data cleaning using R-based packages (2)

```
out <- confront(SBS2000, rules)
plot(out)</pre>
```

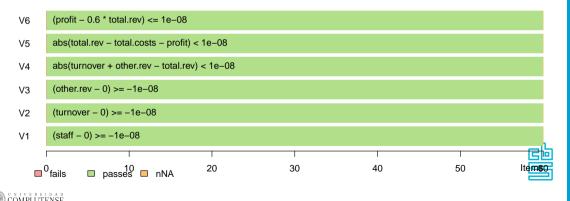
```
confront(dat = SBS2000, x = rules)
```


Data cleaning using R-based packages (3)

```
library(lumberjack); library(rspa);
library(simputation); library(errorlocate)
SBS2000 %L>%
    start log( cellwise$new(key="id") ) %L>%
    replace errors( rules ) %L>%
    tag_missing() %L>%
    impute mf( . - id ~ . - id )  %L>%
    match restrictions( rules, eps=1E-8 ) %L>%
    dump log() -> clean data
```


Data cleaning using R-based packages (3)

```
library(lumberjack); library(rspa);
library(simputation); library(errorlocate)
                                                           rules.
SBS2000 %L>%
                                                          parameters
    start log( cellwise$new(key="id") ) %L>%
    replace errors( rules ) %L>%
                                                           process
    tag_missing() %L>%
    impute mf( . - id ~ . - id )  %L>%
                                                          process log
    match restrictions( rules, eps=1E-8 ) %L>%
    dump log() -> clean data
```



Data cleaning using R-based packages (4)

```
out <- confront(clean_data, rules)
plot(out)</pre>
```

```
confront(dat = clean_data, x = rules)
```


Data cleaning using R-based packages (5)

read.csv("cellwise.csv") %L>% head(3)

##		step			time	expression	key	variable	old
##	1	1	2019-05-10	11:05:31	CEST	<pre>replace_errors(rules)</pre>	RET01	total.rev	1130
##	2	1	2019-05-10	11:05:31	CEST	<pre>replace_errors(rules)</pre>	RET03	other.rev	-33
##	3	1	2019-05-10	11:05:31	CEST	<pre>replace_errors(rules)</pre>	RET07	total.rev	1335
##		new							
##	1	NA							
##	2	NA							
##	3	NA							

Methodology

Calculus, linear algebra, algorithm design, (convex) optimization, linear programming, formal logic, mathematical modeling.

Implementation

Parsing and language theory, functional programming, object orientation, numerical methods, algebraic data types. LOTS of programming experience, compiled languages, APIs and technical standards. Also: version control, documenting and testing, CI tools, UX design.

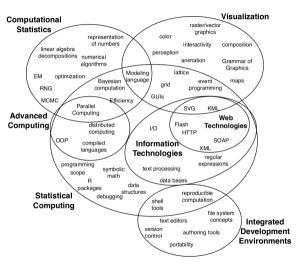
The Dolly Parton Principle

Dolly

It takes a lot of money to look so cheap.

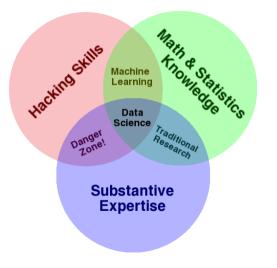
Me, writing software

It takes a lot of thinking to look so simple.



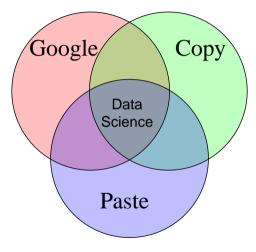
Official Statistics as a (Data) Science

Data science skill set



Nolan and Temple Lang (2010) The American Statistician 64(2) 97-107

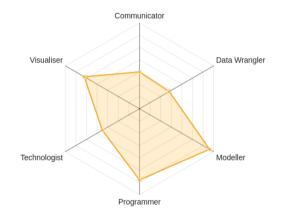
Data science skill set



Drew Conway (2013) blog post

己臣

Data science skill set?



Me, reproduced from memory as seen at The Internets

Types of data scientists

Mango Solutions Data Science Radar

Science of planning for, acquisition, management, analysis of, and inference from data.

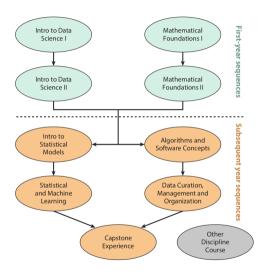
StatNSF (2014); De Veaux et al 2017 Annu. Rev. Stat. 4 15-31

Is data science a science?

[...] there is a solid case for some entity called 'Data Science' to be created, which would be a true science: facing essential questions of a lasting nature and using scientifically rigorous techniques to attack those questions

Donoho (2015) 50 years of data science.

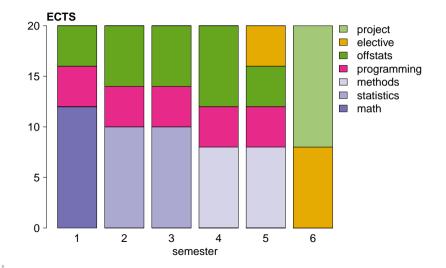
Key competencies of a data science major


- 1. Computational and statistical thinking
- 2. Mathematical foundations
- 3. Model building and assessment
- 4. Algorithms and software foundation
- 5. Data curation
- 6. Knowledge transference—communication and responsibility

De Veaux et al 2017 Annu. Rev. Stat. 4 15-31

Curriculum

De Veaux et al 2017 Annu. Rev. Stat. 4 15-31


Extra subject areas of an official statistics major

- 1. Macroeconomics
- 2. Demography
- 3. Ontologies and metadata
- 4. Policy, governance, international context
- 5. Privacy and data safety

Mark's Official Data Science Bachelors Curriculum

Semester I

- Calculus (6 ECTS)
 - Set theory, calculus on the real line, investigating functions (min, max, asymptotes), multivariate calculus, Lagrange multiplier method
- Linear algebra (6 ECTS)
 - Vectors and vector spaces, linear systems of equations and matrices, matrix inverse, eigenvalues, inner product spaces.
- Introduction to programming (4 ECTS)
 - Imperative programming, algorithm design, recursion, complexity, practical assignments.
- Public policy and administration (4 ECTS)
 - Government structure and institutions, policy-making and implementation, role of official statistics, international context, privacy

Semester II

- Probability and statistics I (6 ECTS)
 - Probability, discrete and continuous distributions, measures of location and variation, Bayes' rule, sampling distributions, estimation of mean and variance, CLT, ANOVA, linear models.
- Linear programming and optimization (4 ECTS)
 - Recognizing and modeling LP problems, simplex method, duality, sensitivity analysis, intro nonlinear optimization. Practical assignments using software tools.
- Programming with data I (4 ECTS)
 - Statistical analysis, data visualisation and reporting, programming skills and reproducibility, version control, testing, project.
- Macroeconomics (6 ECTS)
 - National Accounts, economic growth, labour market, consumption and investments, inflation, macro-economic equilibrium, budget policy and government debt. The main surveys.

Semester III

- Models in computational statistics (6 ECTS)
 - GLM, regularization, Tree models, Random Forest, SVM, unsupervised learning, model selection, lab with practical assignments.
- Probability and statistics II (4 ECTS)
 - Bayesian inference, Gibbs sampling and MCMC, maximum likelihood and Fisher information, latent models
- Programming with data II (4 ECTS)
 - Relational algebra and data bases, data representation, regular expressions, and technical standards, ontologies and metadata, practical assignments.
- Demography (6 ECTS)
 - Fertility, mortality, life table and decrement processes, age-specific rates and probabilities, stable and nonstable population models, cohorts, data and data quality. The main surveys.

Semester IV

- Methods for official statistics I (4 ECTS)
 - Advanced survey methods, weighting and estimation, calibration, SAE, handling non-response
- Methods for official statistics II (4 ECTS)
 - Time series, seasonal adjustment, benchmarking and reconciliation, time series models
- Programming with data III (4 ECTS)
 - Infrastructure for computing with big data, map-reduce, key-value stores, project.
- Communication (4 ECTS)
 - Scientific and technical writing, principles of visualization, dissemination systems.
- Ethics and philosophy of science (2 ECTS)

Semester V

- Methods for official statistics III (4 ECTS)
 - Principles of data editing, Fellegi-Holt error localization, methods for imputation.
- Methods for official statistics IV (4 ECTS)
 - Information Security and Statistical Disclosure Control
- Research methods in social science (4 ECTS)
 - Questionnaire design and field research, measurement models and latent variables
- Elective course (4 ECTS)
 - In the area of social science, economics, econometrics, computer science, or math&statistics
- Large programming project (4 ECTS)
 - E.g. a small production system, a dashboard, data cleaning system

Semester VI

- Elective courses (8 ECTS)
 - Preparing for thesis research
- Bachelor's thesis (12 ECTS)
 - Research in Macroeconomy, Demography, or Methodology. Preferably at an NSI or international organization.

Some interesting research areas

Methodology

- · Complexity theory, econophysics, agent-based modeling
- Network theory
- Streaming data

Content / output

- Beyond GDP
- Globalization, regionalization
- SDG, energy transition

Official statistics is a (data) science, applied to society.

