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Purpose: The aim of the present work is to analyze the potential of the cross-correlation component

of the multiscale structural similarity metric (R*) to predict human performance in detail detection

tasks closely related with diagnostic x-ray images. To check the effectiveness of R*, the authors

have initially applied this metric to a contrast detail detection task.

Methods: Threshold contrast visibility using the R* metric was determined for two sets of images

of a contrast-detail phantom (CDMAM). Results from R* and human observers were compared as

far as the contrast threshold was concerned. A comparison between the R* metric and two algo-

rithms currently used to evaluate CDMAM images was also performed.

Results: Similar trends for the CDMAM detection task of human observers and R* were found in

this study. Threshold contrast visibility values using R* are statistically indistinguishable from

those obtained by human observers (F-test statistics: p> 0.05).

Conclusions: These results using R* show that it could be used to mimic human observers for cer-

tain tasks, such as the determination of contrast detail curves in the presence of uniform random

noise backgrounds. The R* metric could also outperform other metrics and algorithms currently

used to evaluate CDMAM images and can automate this evaluation task. VC 2011 American Association
of Physicists in Medicine. [DOI: 10.1118/1.3605634]
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I. INTRODUCTION
Image quality analysis plays a central role in the design of

imaging systems for medical diagnosis. A great effort to de-

velop meaningful metrics (lab and clinical), well correlated

with imaging phantom studies and with clinical performance

of the medical imaging systems has been made in the last

few years. The final objective of these image quality metrics

(IQM) is usually to design an algorithm able to score the per-

ceived quality of a medical image. For phantom studies, the

use of automatic tools that mimic the radiologist’s point of

view analyzing an x-ray image could avoid interobserver

and intraobserver variability and minimize the great number

of images, of observers and the great deal of time usually

required to optimize the image acquisition parameters or to

evaluate equipment or new technologies, for instance, by

means of the receiver operating characteristic (ROC). So far

only partial success has been achieved. The search for IQM

that fully correlates with the quality perceived by the human

visual system (HVS) and particularly with the radiologist’s

point of view is still an open question.

Certain widely used metrics such as the peak signal-noise

ratio or the mean-squared error are very simple to calculate,

but do not show a good correlation with the image quality

perceived by human observers1 and indeed they are not use-

ful to deduce the capability of diagnostic equipment.2 Other

metrics closer to the actual performance of systems, such as

the modulation transfer function, the noise power spectrum,

the noise equivalent quanta, and the detection quantum effi-

ciency describe much better the image formation process of

the system and can be used not only to improve image quality

but also to predict the observer response under the ideal ob-

server model approach.3 This model, based on the statistical

theory of decision can only apply to simple tasks such as a

“signal-known-exactly/background-known-exactly” (“SKE/

BKE”) detection task.4 Moreover, the sensitivity of the ideal

observer model is much higher than that of the human

observer.

There are other models that have a better correlation with

the human observer, which can also be applied to more com-

plex tasks than SKE/BKE. These include mainly the chan-

nelized Hotelling observers, the nonprewhitening matched

filter (NPW) and the NPW with an eye-filter.5 However, for

mammographic images, these models are not good predic-

tors of human performance.5

There are other metrics such as the structural similarity

(SSIM)6 that have shown very good results mimicking the

human performance in analyzing natural images in videos

and still-images. These metrics are based on the perceptual

visual theory proposed by Wang and Bovik7 that considers

the HVS highly adapted for extracting structural information

from the scenes. A family of objective image quality assess-

ment algorithms has been developed based on this pre-

mise.6,8,9 They evaluate visual image quality by measuring

the structural similarities between two images, one of them
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being the reference one. This family includes the cross-

correlation component of the multiscale structural similarity

metric (R*),9 that has been explicitly designed for recogni-

tion threshold tasks. Note that the radiologist’s tasks usually

use reduced reference or no reference metrics that require

only a partial reference signal or none at all. However, in

some specific situations, as the case presented in this paper,

it is possible to model the “perfect image” and to use refer-

ence metrics to perform automatic tasks highly correlated

with observer predictions.

Despite some criticisms of the SSIM family,10 the R*

metric shows some promising features that suggest the possi-

bility of being successfully applied to medical image analy-

sis tasks. As mentioned above, this family is designed and

fully tested to analyze natural scenes, whose complexity is

of the order or even greater than that of medical imaging. It

has been successfully used for ensuring the quality and fidel-

ity of the image in a large number of commercial and

research applications. In particular, it surpasses most of the

metrics currently used in the analysis of video and still

image.9 Moreover, some experiments prove that R* sensitiv-

ity for detecting image structures close to the perception

threshold is analogous to that of human observers.9

To check the effectiveness of R*, we have initially

applied this metric to a contrast detail detection task. For

this, we developed an automatic evaluation tool based on the

R* metric that was applied to score images of the CDMAM

phantom.11 Similarly to other authors,12 we have made a

comparison of our method with human-observer contrast-

detail detection tasks as well as with other automatic evalua-

tion algorithms based on the CDCOM software.13,14

II. THEORY

The R* metric belongs to the set of quality assessment

(QA) algorithms that seek an objective evaluation of image

quality consistent with subjective visual quality. These algo-

rithms evaluate a test image X with respect to a reference

image Y to quantify their similarity. In this sense, all of

them (including R*) are signal known exactly (SKE) tasks.

R* evaluates perceptual quality of the X image, referred to

the test image Y, by computing a local spatial index, r(x, y),

that is defined9 as follows:

X and Y being images to be compared (computed as

matrixes of pixels) and x¼fxi j i¼ 1, 2,…, Ng and y¼fyi j
i¼ 1, 2,…, Ng pairs of local square windows (computed as

sub-matrixes of pixels) of X and Y, respectively, x and y are

located at the same spatial position in both images. The

index r(x, y) is defined in terms of the pixel value standard

deviations rx and ry at sub-matrixes x and y and the covari-

ance rxy of x and y:

r x; yð Þ ¼ ðrxyÞ=ðrxryÞ (1)

As can be seen, if sub-matrixes x and y cover the same

object in the same location, r shows a maximum.

r(x, y) takes values between �1 and 1. The closer the

value of r(x, y) to 1, the closer the similarity between sub-

matrixes x and y.

When the signal or the signalþ background are uniform,

rx or ry tend to be zero and the value of r(x, y) is unstable.

This is the case of sub-matrixes measured inside uniform ref-

erence signals, where all pixels take the same value and the

variance is null. For these limits, the index calculation is

made by supposing that rx > 0, and the sub-matrix y is uni-

form. Then, the variance of y is zero. Under these conditions,

x does not correlate with y, so the r(x, y) value must be set to

zero. When both sub-matrixes have equal variance, the r(x, y)

value must be set to 1. Thus, the alternative definition of the

index is given as

r� x;yð Þ ¼
0 for rx > 0 and ry ¼ 0; or ry > 0 and rx ¼ 0

1 for rx ¼ ry ¼ 0

r x;yð Þ other

8<
: (2)

As the model compares two images, the test (X) and the ref-

erence (Y), the sub-matrixes (x, y) are moved over X and Y

and r*(x, y) values are calculated for each position. If X and

Y contain the same object in the same location, r*(x, y)

shows a maximum.

Detail perception depends, among other factors, on the

resolution of the image and on the observer-to-image dis-

tance.8 To incorporate M observer viewing distances, the

algorithm simulates different spatial resolutions by iterative

down-sampling in two steps: first, a low-pass filter is applied

to reduce the bandwidth of the signal to avoid aliasing

effects before the signal is down sampled, and second, the

size of both images (reference and test) is reduced by a fac-

tor of 2, sub-sampling without any average (averaging is not

needed after the low-pass filter is applied).

These two steps are iteratively applied M�1 times. (The

original size of the image is taken as the first viewing

distance. There is no need for downsampling for M¼ 1) The

overall cross-correlation multiscale structural similarity

metric R* value is obtained by combining measurement at

different scales according to the following expression:

R� ¼
Yj¼1

M

r�j ðx; yÞ (3)

III. MATERIALS AND METHODS

The CDMAM phantom (version 3.4, Artinis, St. Walburg

4, 6671 AS Zetten, The Netherlands) consists of an alumi-

num base with a matrix of gold disks of varying thicknesses

and diameters, which is attached to a PMMA cover. The

discs are arranged in a matrix of 16 rows by 16 columns.

Within a row, the disk diameter is constant, with logarithmi-

cally increasing thickness. Within a column, the disk thick-

ness is constant, with logarithmically increasing diameter.

Each cell in the matrix contains two gold disks each with the

same diameter and thickness. The reference signal is the disk

at the center of the cell and the test signal is the disk ran-

domly located in one of the four quadrants. The imaging

task can be identified as a four-alternative-forced choice

(4AFC) task, since the observer has to detect the quadrant of

each cell in which a disk appears to be present. This phantom
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is widely used and fully tested for image quality assessment

in mammography.

A set of eight raw CDMAM images (set #1) were down-

loaded from the European Reference Organization for Qual-

ity Assured Breast Screening and Diagnostic Services

(EUREF) web site.14 The images were obtained with a GE

Senographe 2000D at 27 kVp, 125 mAs and with a resolu-

tion of 1 pixel per 100 lm. The CDMAM images were

scored by four experienced human observers. Each observer

scored two different images once. The observer readouts are

available at the same website.

A second set of 20 images (set #2) was obtained with

another CDMAM unit. In this case the images were acquired

with a Sectra MicroDose LD30 at 32 kVp and 50 lm pixel

size. Scoring was performed by a panel of seven experts. Six

observers scored three different CDMAM images once. The

seventh observer scored two different CDMAM images

once. The experience of the observers interpreting mammo-

grams was at least 3 yrs.

Both data sets were evaluated according to the methodol-

ogy, and rules for CDMAM scoring published and described

in the phantom manual.11 According to this methodology,

the purpose of each observation is to determine, for each

disk diameter, the threshold gold thickness (the “just visible”

gold thickness). So in every column (same diameter) the last

correctly indicated eccentric disk has been determined.

Finally, the nearest neighbors correction (NNC) rules11 are

applied to the image readouts for smoothing the edges

among cells that were correctly and noncorrectly evaluated.

According to these rules, for every score there are three

possibilities:

• True: the eccentric disk was indicated at the true position

(TP).
• False: the eccentric disk was indicated at a false position

(FP).
• Not: the eccentric disk was not indicated at all.

and two main rules:

• A“True” needs two or more correctly indicated nearest

neighbors to remain a “True”.
• A “False” or “Not” disk will be considered as “True” when

it has three or four correctly indicated nearest neighbors.

These two main rules have minor and specific exceptions

for those disks that have only two nearest neighbors (at the

edges of the phantom).

The software tools here presented are written as a JAVA

computer algorithm and integrated program (plug-in) for the

display and image processing IMAGEJ software.15 All images

are captured or defined in a gray scale of 16-bits, with pixel

values from 0 up to 65535.

III.A. R* metric application to CDMAM scoring

The first task to manage the disk information from the

phantom images is the accurate detection of the grid line

images, which form the matrix in which gold disks are dis-

tributed. Although several methods have been applied to find

the grid position,13,16 we used here an algorithm17 developed

by ourselves, which has been successfully proven even when

slight distortions of the images are present.18

Once the grid lines are detected, the second step to be fol-

lowed is the accurate detection of the disks in each matrix

cell. The algorithm looks for the gold disks around the four

quadrants near the grid crossing points by analyzing the

structural similarity among the cells in the phantom image

(image X in the “Theory” section) and in a reference mask

image of the disks (image Y in the “Theory” section). The

reference or mask image is a perfect white disk, with a pixel

value of 65 535, inserted into a black background (margin),

with a pixel value of 0, whose size matched the disk diame-

ter to be evaluated [Fig. 1(a)].

The technical specifications of the phantom give the nom-

inal disk distances from the grid crossing points. However,

FIG. 1. Searching methodology. (a) Reference or mask image (b) Steps followed to search for the quadrant with the maximum R* i.e., most probably position

of the eccentric disk.
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due to the manufacturing process, these distances can vary

from unit to unit. Therefore, the R* value is calculated at 25

different positions (5� 5) around the expected location of

the disks at each cell quadrant [see Fig. 1(b)]. The maximum

value of R* was adopted as the R* value for this cell quad-

rant. Then, the maximum value of the R* derived from the

four quadrants determines the most probable position of the

eccentric disk at each cell.

In the present work, the value of R* is calculated accord-

ing to Eq. (3) where the value of M has been set to be a max-

imum of 5 for set #1 and of 6 for set #2, since after 5 and 6

(respectively) downsizing steps by a factor of 2, even the

details of the largest disks disappear. (The larger disks of the

CDMAM have a diameter of 2 mm. That means 20 pixels

for set #1 and 40 for set #2, with resolutions of 100 and 50

lm per pixel, respectively. After 5 and 6, (respectively)

downsizing by two, the diameter of these disks is less than 1

pixel and disappears in the image.)

Figure 2(a) shows the predicted disk location at each cell

in a test image. Black squares are located at the quadrant

with the maximum value of the R*j metric (j¼ 1,..,4). In

Fig. 2(b) the white squares show the quadrants containing

disks correctly identified (TP) by the algorithm (hits).

Finally, the NNC rules were applied to the image readouts.

To compare the perception threshold of the R* algorithm

and the human observer, Pearson correlation coefficients

were calculated by comparing the thickness threshold for ev-

ery image and for every diameter from the human observer

and from R*, that is, this analysis was performed over the

scatter plot of both variables (thickness and disk diameter)

for the whole set of images.

The relationship between thickness and disk diameter was

investigated by means of regression analyses in the two

experiments. Comparisons of the models were carried out

through the R2 statistic. To overcome heterogeneity of var-

iance, thickness data were log transformed.

III.B. Comparison with other methods

For comparison purposes, the sets of CDMAM images

were also automatically evaluated by using two algorithms.

The first one is CDCOM program,13 which is a freely avail-

able14 algorithm currently used for automatic evaluation of

the CDMAM phantom. The second evaluation program, here

named PRCDCOM, performs a smoothing and fitting of the

readout matrixes produced by the CDCOM program follow-

ing the procedures described by Young et al.19 The threshold

values derived with the two automatic methods were com-

pared with those resulting from our algorithm.

The comparison of threshold values derived from the

CDCOM and PRCDCOM methods with the values resulting

from our algorithm and from the human observer was carried

out through regression analyses. The obtained models were lin-

earized and the comparison of the regression lines was studied

by analyzing appropriate ANOVA tables. Statistical analyses

were performed using SPSS
VR

and STATGRAPHICS
VR

statisti-

cal packages.

IV. RESULTS AND DISCUSSION

IV.A. R* metric application to CDMAM scoring.
Threshold thickness calculations

Figure 3 shows, in a log–log graphic, the average thresh-

old thickness for disk diameters ranging from 0.10 to 2.00

mm obtained by the experienced human observers (HO) and

by applying the R* algorithm to the same sets of data.

IV.A.1. Correlation analysis

A strong linear relationship was observed between the

thickness thresholds obtained from R* and human observers

fPearson coefficients r¼ 0.9249 in set #1 [Fig. 3(a)] and

r¼ 0.8922 in set #2 [Fig. 3(b)]g.

FIG. 2. (a) Graphical layout showing the predicted

eccentric disk positions (black squares). (b) Graphical

layout showing the correctly found eccentric disks. If

the algorithm has found the eccentric disk, a white cen-

tral square appears.
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IV.A.2. Regression analyses

The logarithm of thickness decreased with the disk diame-

ter. The scatter plot suggests fitting a log–log model, that is,

the approach is to consider a linear relationship among log-

transformed variables; Figs. 3(a) and 3(b) show the results of

these fits. The values of the R2 statistic were 0.8624 and

0.8360 for HO and R*, respectively, in set #1 and 0.9020 and

0.8978 for HO and R*, respectively, in set #2. The statistical

comparison of both regression lines shows no significant dif-

ferences between them in set #1, according to the F-test sta-

tistics for the hypotheses of equality of intercepts and

parallelism (p¼ 0.1439 and p¼ 0.7117, respectively) . The

same comparison in set #2 shows results slightly nearer to

statistical significance (p¼ 0.085 and p¼ 0.065), but always

greater than statistical significance values (p > 0.05). These

results suggest that R* could be used as a surrogate of the

human observer with no evidence of statistical difference.

IV.B. Comparison with other methods

We have to point out at this juncture the range of validity

for the CDCOM and the PRCDCOM programs. According to

their developers,13,19 these algorithms can only be applied to

disk diameters equal to or smaller than 1.00 mm, so the

graphics in Figs. 4(a) and 4(b) have been reduced from a

maximum of 2.00 mm to a maximum of 1.00 mm to compare

the four methods in the same range of experimental data.

The regression model which provides the best fit to the

data derived from the four analyzed methods is the multiplica-

tive or log–log model. Results are different for sets #1 and #2.

For set #1 [Fig. 4(a)], the four models fit quite well to the

data (all R2 statistics are greater than 0.93). The four regres-

sion lines are parallel with significant differences only

between PRCDCOM and CDCOM threshold values (F-test

statistic: p¼ 0.0256). Regarding the comparisons of inter-

cepts, there are significant differences between the CDCOM

method and the remaining ones (F-test statistics: all p <
0.003 for the equality of intercepts hypothesis). According to

these results, PRCDCOM and R* could be adequate surro-

gates of the HO, but not CDCOM.

Similar results were found for set #2 [Fig. 4(b)] for the

log–log model, (all R2 statistics are greater than 0.96). In

this case, the test for parallelism shows statistically signifi-

cant differences between the CDCOM method and HO and

R* methods (p¼ 0.0002 and p¼ 0.0058, respectively) and

also between the PRCDCOM method and HO method

(F-test statistic: p¼ 0.011). Regarding the comparisons of

intercepts, there are significant differences between the

CDCOM method and the remaining ones (all p < 0.0002).

Regarding Figs. 3(a) and 3(b), R* is valid for a larger

range of diameters (up to 2.00 mm) than CDCOM and

PRCDCOM with no statistically significant difference from

the HO readouts.

According to these results, R* could be an adequate sur-

rogate of the HO, but not PRCDCOM or CDCOM.

V. CONCLUSIONS

These results show that the R* metric can be used to

mimic human observers for certain tasks, such as the

FIG. 3. Average threshold thickness as a function of the diameter from human observer (HO) and R* for set #1 (a) and set #2 (b).

FIG. 4. Average threshold thickness as a function of the diameter from PRCDCOM, CDCOM, R*, and human observer (HO) for set #1 (a) and set #2 (b).
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determination of contrast detail curves in the presence of

uniform random noise backgrounds . The reliability of the

results has been ensured by the similar threshold thickness

obtained for each diameter by both observers, R* metric and

HO, showing that both present a similar response independ-

ently of the signal, with no statistically significant difference.

Despite the fact that more samples and experiments

should be carried out, the algorithm here designed based on

R* metric could outperform other currently used metrics and

algorithms used to evaluate CDMAM images, such as

CDCOM and PRCDCOM and could be applied to the same

range of disk diameters as the HO.

These results demonstrate the possibility of applying the

R* metric to the medical imaging area of research applying

adequate experimental conditions and methodology.
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