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ABSTRACT

A software tool is presented for the automatic evaluation of the
CDMAM phantom images that are currently used for the quality
assessment of the image quality in mammography. This software
tool is based on the use of the cross-correlation component of the
index MS-SSIM*, R*, oriented to the recognition threshold of
different image representations. Given an image sequence, whose
images begin as unrecognizable and are gradually refined to
include more information, the recognition threshold corresponds to
first the image in the sequence in which an observer indentifies the
content.

We have validated our software tool by comparing our
readouts with those obtained by a total of 4 expert observers in the
evaluation of 8 CDMAM images. The correlations obtained
between both readout sets are better than 0.99 and the range of
useful correlation comprises diameters from 0.16 mm to 2.0 mm of
the gold disks inside the CDMAM.

Index Terms— Human visual system modeling, digital
mammography, CDMAM phantom, quality control, MS-SSIM*
index.

1. INTRODUCTION

The European Guidelines for the quality control of mammography
[1] include minimum standards for the image quality of digital
mammography systems. These standards are based on contrast-
detail measurements using the CDMAM phantom images (version
3.4, Nijmegen) [2]. The observer task consists of determining the
detail with minimum thickness (recognition threshold) which is
able to detect for a series of gold disks, with different diameters
and thicknesses, inserted into the phantom.

Scoring CDMAM images by observers has two major
disadvantages. It is a consuming time task and the results are
highly dependent from the observer. The most spread solution to
solve these problems is the use of the CDCOM program [3], which
automatically scores the CDMAM images. The results derived
from the use of this software have demonstrated a bad correlation
with those from human observers. Several approaches has been
proposed to overcome this limitation [4] [5]. The resulting readouts
could be fitted to psychometric curves and smoothing methods
(some of them very complex) to adjust the CDCOM readouts to the
human ones (here named processed CDCOM (PRCDCOM)).
However, these methods cannot be applied to disks with diameters
larger than 0.80 mm because of the lack of correlation between
their results and those from the human observer [4].
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To detect the disks in the CDMAM phantom image, CDCOM
uses a perceptual Non Prewhitening Matched Filter model
(NPWMF) [6] [7] which has been used in other programs [8]. In
this perceptual model the human observer cannot prewhiten the
correlated noise of the image.

In the perceptual visual theory proposed by Wang et al. [9] the
Human Visual System (HVS) is considered to be highly adapted
for extracting structural information from the scene, and therefore
a measure of structural similarity should be a good approximation
of perceived image quality. A family of quality assessment
algorithms has been developed based on this premise. They
evaluate visual quality according to the resemblance of a test
image’s structural information to that of the reference image. This
family includes Structural SIMilarity index (SSIM) [10], Multi-
Scale Structural SIMilarity index (MS-SSIM) [11] and a modified
version of MS-SSIM, MS-SSIM* [12]. SSIM and MS-SSIM
measure similarity between two images. Both algorithms are
oriented for the supra-threshold problem which invalidates them to
be applied to the analysis of images with details in the limit of
visibility. The cross-correlation component of MS-SSIM* (R*)
avoids this problem since it is designed according to the
recognition threshold problem.

CDMAM readout can be interpreted as a comparison among
the phantom image and a reference image formed by a synthetic
black background and white disks of different diameters. Our
approach to perform this comparison is to use the R* index as a
human perceptual model.

2. MATERIALS AND METHODS

The CDMAM phantom (Fig. 1) consists of an aluminum base with
gold disks of different diameters and thicknesses. The aluminum
base is attached to a polymethyl-methacrylate cover. The gold
disks are arranged in a matrix of 16 rows by 16 columns, forming
205 cells. Within a row, the disk diameters are constant, with
logarithmic increasing thickness. Within each column, the
thickness of the disks is constant, but there is a logarithmic
increasing of the diameter. Each cell contains two identical disks,
one in the center and one in a randomly selected corner. The
observer’s task is to detect the position of the eccentric disks.

The CDMAM phantom images used in this study have been
downloaded from the European Reference Organisation for Quality
Assured Breast Screening and Diagnostic Services (EUREF) site,
section CDMAM Readout [13]. This set of 8 raw images was
acquired with a Senograph 2000D system (General Electric) at 27
kVp, 125 mAs and with a detector resolution of 1 pixel per 100um.
The images were evaluated by four human expert observers and
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their scores are available at the same website. In a second step we
use the CDCOM and PRCDCOM programs for scoring the images.

Fig. 1. CDMAM image.
2.1. Algorithm design

2.1.1.  Determining the grid position.

In order to manage the disk information from the phantom images,
it is necessary to accurately detect the position of the phantom grid.
Several methods [7][8] have been applied to find this position. The
method used in this work has been described in a previous work
[14].

Using the known disk diameter and the position of the phantom
grid, we can construct disk templates that fit the actual position of
the disks at each of the four locations in a cell and apply the R*
index.

2.1.2.  Evaluation of the most likely position. MS-SSIM*
cross-correlation index: R*.

SSIM specification [10]

Letx=¢{x;]i=1 2., Nandy={y;|i=1, 2,...N} be two
discrete non-negative signals that have been aligned, and let ., 62
and oy, be the mean of x, the variance of x, and the covariance
(cross-correlation) of x and y, respectively. o, measures the
tendency of x and y to vary together. Thus, this parameter is an
indication of structural similarity. The mean, variance and cross-
correlation comparison measures are given as follows:

m(X,Y) = (2 Mx Hy + Cl)/(u2x+ sz + Cl) (Eq l)
V(XY)= (2 0, 0y +Cy)/( 6% + &7yt Cy) (Eq.2)
T(X,Y) = (ny + C3)/(0x 0y+c3) (Eq 3)

where C1, C2 and C3 are constants to avoid instability when (].12x +
12, ) or (6’ + %) are very close to zero. The general form of the
SSIM index between x and y is defined as:
SSIM(x, y) = [m(x, y)I*. [v(x, NI 1(x, )] (Eq. 4)
where o,  and y are parameters to define the relative importance
of the components. Specifically in [10], a=p=1.

MS-SSIM specification [11].

The perception of image details depends on, amongst other things,
the sampling density of the image and the distance from the image
to the observer. A single scale method, as SSIM, may be
appropriate only for specific settings. Wang et al. [11] proposed a
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Multi-Scale SSIM method for image quality. Taking the distorted
and reference image as the input of the system, the algorithm
iteratively applies a low-pass filter and downsamples the filtered
image by a factor of 2 M-times. The overall evaluation of the
Multi-Scale SSIM (MS-SIMM) is obtained by combining the
measurement at different scales using:
MS-SSIM=[my(x,y)] . TI1; [vian]®. [1(x,y)] ¥ (Eq. 5)
for m(x,y), v(x,y) and r(x,y) as defined in Eq. (1, 2, 3) respectively.
The exponents a, B and y are used to adjust the relative importance
of different components at different scales.

The constants C; in Eq. (1, 2, 3) were introduced to avoid
instability when either (u% + uzy ) or (0% + Gzy) are very close to
zero. This behavior occurs at the recognition threshold level (take
into account that the CDMAM scoring problem is critical around
the recognition threshold level). An alternative version of MS-
SSIM, named MS-SSIM¥*, was proposed by Rouse et Hemami
[12], where the positive constants C; have been set to zero. Besides,
they found that the cross-correlation component of MS-SSIM*,
R*, shows a strong correlation with the recognition thresholds.

To calculate R*, suppose that o, > 0, and the patch y is
constant. Then, the variance of y is zero. Under this scenario, y
does not correlate with x, so the structure component must be set to
zero. When both patches have equal variance and C3 = 0, the
structure component must be set to one. The alternative structure
component is given as

0 x> o0,=00r 6,> 0, =0

T*(X’Y) =41
r(x,y) else

Ox =0y, =0

for r(x, y) as defined in Eq. (3) with C3 = 0. x and y are patches
of the complete images X, Y, so the overall evaluation of R* is
obtained by combining the measurement at different scales using:

R*= [T, 77 (XY)

In this work, M = log, (maximum disk diameter in pixels + 1).
The maximum disk diameter is 20 pixels for the CDMAM images
used at this work. Therefore M has a maximum value of 5.

What we are measuring with R* is structure. We decided to
compare structures at their maximum difference. The test image
we use for each gold disk is a white circle with a diameter equal to
the disk diameter (in pixels) that we are evaluating. Around this
circle, we have created a black border with a margin equal to the
resolution in pixels of the CDMAM for 300 um (3 pixels in our
test images). (Figure 2)

Fig. 2. Reference image.

Due to the CDMAM manufacturing process, the cells of the
matrix are not “true” squares but trapezoids. Moreover we have
found that disk images are located out of their expected centres
(along the actual diagonals) up to 4 or 5 pixels. It is necessary to



fix a safe region around the theoretical position of the eccentric
discs to find them. This safe region is +/- 5 pixels for the phantom
images used in this work.

We estimate R* index inside each cell corner for 36 different
positions around the nominal position of the expected disk (Figure
3). The maximum value of R* for each position inside each corner
was chosen as the R* value of this corner. Finally, the corner
selected was that with the maximum value of R* inside each cell.
Following this procedure we get a matrix with the detected disks,
that is compared with the true disk positions.

Finally, we compare R* results with those from human,
CDCOM and PRCDCOM by correlating the threshold thickness
for each disk diameter.

Search area around
the estimated position
and search iteration

Most likely position
of the disks

L

Test pattern

Fig. 3. Search method.

3. RESULTS AND DISCUSSION

Figure 4 shows the threshold thickness/diameter curve for
human observer readouts (HO) and R* readouts, with error bars of
1 sem. R* is not significantly different from human readouts by
taking into account the sem error. The average threshold
thicknesses for the different disk diameters together with the
deviations of R* from human readouts are summarized in Table 1.
These deviations are apparently at random which can be due to the
stochastic behaviour associated with the perception process.

Figure 5 shows the threshold thickness/diameter curve for all
the considered methods. Although all methods exhibit a good
correlation with the HO readouts (Pearson's coefficient of 0.99),
the behavior is completely different. CDCOM systematically is
over-detecting the discs and PRCDCOM systematically is under
detecting the disks. R* threshold thickness oscillate around the HO
curve although it seems to be a slight trend to under detect the
disks with diameters smaller than 0.20 mm. For this range of
diameters the deviations of R* index from human readouts are
larger than the PRCDCOM results.

We need to analyze the cause of the higher deviations of R* for
these small diameters. We have run this test with another two sets
of images with several results. The first set comprises images with
a resolution of 75wpixel. Deviations of R* from human observer
were 9% and the fitting was excellent, even for small diameters.
The second set comprises images with a resolution of 50p /pixel.
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Deviations of R* from human observer were 16%, but the fitting
for small diameters was almost equal to those showed in this study.

There are several parameters, such as disc margin, low-pass
filter values, evaluation window (x, y), etc. that can be adjusted
and likely might improve the R* performance for small diameters.
This adjustment will constitute our next lines of research.
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Table 1. Average values of threshold thickness (recognition threshold) from: human observer (HO), R* index, CDCOM and PRCDCOM
readouts. The deviations (%) of the automated methods from human readouts are also included.

Deviation(%) Deviation(%) Deviation(%)

O mm HO R* Index R*/HO CDCOM CDCOM/HO | PRCDCOM PRCDCOM/HO
0.10 1.17 1.45 24 0.71 39 1.05 10
0.13 0.75 0.92 23 0.50 33 0.68 9
0.16 0.52 0.46 12 0.36 31 0.49 6
0.20 0.32 0.29 9 0.25 22 0.35 9
0.25 0.19 0.22 16 0.16 16 0.26 37
0.31 0.15 0.16 7 0.16 7 0.20 33
0.40 0.12 0.13 8 0.08 33 0.15 25
0.50 0.08 0.09 13 0.06 25 0.12 50
0.63 0.07 0.08 14 0.06 14 0.10 57
0.80 0.05 0.07 40 0.05 0 0.09 80
1.00 0.06 0.06 0 0.03 50 0.09 50
1.25 0.04 0.05 25 NA NA NA
1.60 0.03 0.04 33 NA NA NA
2.00 0.04 0.04 0 NA NA NA
Average 16 25 33

4. CONCLUSIONS reading images of the CDMAM test object to assess digital

The application of R* to the evaluation of radiological images
is a novel approach and can provide a reliable alternative to human
evaluation. This approach has showed to be a valid tool for the
automatic readout of images with uniform backgrounds as the
CDMAM images. Results show a very strong correlation for all
diameters from 0.16 mm to 2.0 mm, without any kind of additional
adjustment. Besides, R* outperforms de facto standard programs
applied to CDMAM evaluation.

5. REFERENCES

[1] R. Van Engen, K. C. Young, H. Bosmans, M. Thijssen. The
European protocol for the quality control of the physical and
technical aspects of mammography screening. Part I and II. In:
European Guidelines for Breast Cancer Screening, 4th edition.
Luxembourg:European Commission, 2006.

[2] K.R. Bijkerk, M.A.O. Thijssen, Th. J. M. Arnoldussen,
“Modification of the CDMAN Contrast-Detail Phantom for Image
Quality Evaluation of Full-Field Digital Mammography Systems”,
Proceedings of IWDM 2000, pp.663-640, Yaffe, M. ed, Medical
Physics Publishing, Madison, Toronto, 2000.

[3] R. Visser and N. Karssemeijer, “CDCOM Manual: software for
automated readout of CDMAM 3.4 images”. Note: CDCOM
software, manual and sample images are posted at www.euref.org
24™ January 2009.

[4] K. C. Young,J. H. Cook, J. M. Oduko, H. Bosmans,
“Comparison of software and human observers in reading images
of the CDMAM test object to assess digital mammography
systems”, Medical Imaging 2006: Physics of Medical Imaging.
Edited by Flynn, Michael J.; Hsieh, Jiang. Proceedings of the
SPIE, Volume 6142, pp. 39-51, 2006.

[5] K. C. Young, A. Alsager, J. M. Oduko, H. Bosmans, B.
Verbrugge, T. Geertse, R. Van Engen, “Evaluation of software for

2492

mammography systems”. Proc. SPIE 6913, 69131C, 2008.

[6] R. F. Wagner, D. G. Brown, M. S. Pastel, “Application of
information theory to the assessment of computed tomography”,
Med. Phys. 6, 83-94, 1979.

[71 W.J.H. Veldkamp et al., “The value of scatter removal by a grid
in full field digital mammography”, Med. Phys. 30, 1712-1718,
2003.

[8] R. Rico, S.L. Muller, G. Peter “Automatic scoring of COMAN
a dose study”. Proc. SPIE 5034, pp. 164-173, 2003.

[9] Z. Wang, A. C. Bovik, and L. Lu, “Why is image quality
assessment so difficult,” in Proc. IEEE Int. Conf. Acoust. , Speech,
and Signal Processing, vol. 4, (Orlando), pp. 3313-3316, May
2002.

[10] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli,
“Image quality assessment: From error visibility to structural
similarity”, IEEE Trans. Image Processing, vol. 13, pp. 600-612,
Apr. 2004.

[11] Z. Wang, E. P. Simoncelli, and A. C. Bovik, “Multi-scale
structural similarity for image quality assessment, in Proc. of the
37th IEEE Asilomar Conf. on Sig., Sys. and Comp., (Pacific Grove,
CA), Nov. 2003.

[12] D. M. Rouse and S. S. Hemami, "Analyzing the Role of
Visual Structure in the Recognition of Natural Image Content with
Multi-Scale SSIM”, Proc. SPIE Vol. 6806, Human Vision and
Electronic Imaging 2008.

[13] CDMAM Readout at www.euref.org, 14 February 2009.

[14] G. Prieto, M. Chevalier, E. Guibelalde, “A CDMAM Image
Phantom Software Improvement for Human Observer
Assessment”. E.A. Krupinski (Ed.): IWDM 2008, LNCS 5116, pp.
181-187, Springer-Verlag Berlin Heidelberg 2008.



