

Curso Académico 2014-15

GEOMETRÍA COMPUTACIONAL Ficha Docente

ASIGNATURA

Nombre de asignatura (Código GeA): GEOMETRÍA COMPUTACIONAL (800620)

Créditos: 6

Créditos presenciales: 6 Créditos no presenciales:

Semestre: 2

PLAN/ES DONDE SE IMPARTE

Titulación: GRADO EN MATEMÁTICAS Plan: GRADO EN MATEMÁTICAS Curso: 4 Ciclo: 1

Carácter: OPTATIVA

Duración/es: Segundo cuatrimestre (actas en Jun. y Sep.), Por determinar (no genera actas)

Idioma/s en que se imparte:

Módulo/Materia: CONTENIDOS AVANZADOS DE CIENCIAS DE LA COMPUTACIÓN/GEOMETRÍA COMPUTACIONAL

PROFESOR COORDINADOR

Nombre	Departamento	Centro	Correo electrónico	Teléfono
VALDES MORALES, ANTONIO	Geometría y Topología	Facultad de Ciencias Matemáticas	avaldes@ucm.es	

PROFESORADO

Nombre	Departamento	Centro	Correo electrónico	Teléfono
VALDES MORALES, ANTONIO	Geometría y Topología	Facultad de Ciencias Matemáticas	avaldes@ucm.es	

SINOPSIS

BREVE DESCRIPTOR:

GEOMETRÍA COMPUTACIONAL

REQUISITOS:

Programación en Python. Geometría elemental del plano y el espacio.

OBJETIVOS:

COMPETENCIAS:

Generales

Transversales:

Específicas:

Comprender los conceptos geométricos subyacentes a los algoritmos más comunes en Geometría Computacional. Implementar algunos algoritmos, decidiendo el más apropiado según su eficiencia y las posibles restricciones adicionales de cálculo o almacenamiento. Ser capaz de usar métodos geométricos para modificar los algoritmos, adaptándolos a problemas similares o hipótesis adicionales.

Otras:

CONTENIDOS TEMÁTICOS:

- 1 Diseño asistido por ordenador. Curvas de Bézier. Interpolación. Curvas splines. Superficies de Bézier.
- 2 Aprendizaje supervisado: discriminantes lineales y reducción de dimensionalidad. Discriminante de Fisher, algoritmo del perceptrón, máquinas de vectores soporte.
- 3 Problemas de Geometría Computacional discreta. Envolturas convexas, triangulación de polígonos, intersección de segmentos, diagramas de Voronoi,

Curso Académico 2014-15

GEOMETRÍA COMPUTACIONAL Ficha Docente

triangulaciones de Delaunay, particiones binarias del espacio.

ACTIVIDADES DOCENTES:
Clases teóricas: En las mismas se desarrollará la materia del curso, supondrán el 50% del total. Seminarios:
Clases prácticas: Los alumnos expondrán los resultados de sus trabajos, se resolverán problemas, etc. Supondrán el 50% restante. Trabajos de campo:
Prácticas clínicas:
Laboratorios:
Exposiciones:
Presentaciones:
Otras actividades:
TOTAL:
EVALUACIÓN: La asignatura se podrá superar mediante la realización y defensa de prácticas a lo largo del curso. Aquellos que no superen la asignatura por este procedimiento, tendrán la opción de realizar un examen de la misma.

BIBLIOGRAFÍA BÁSICA:

G. Farin, Curves and Surfaces for CAGD, 5^a ed., Morgan Kaufmann, 2001.

C.M. Bishop, Pattern Recognition and Machine Learning, Springer, 2007.
M. de Berg, O. Cheong, M. Kreveld, M. Overmars, Computational Geometry: Algorithms and Applications, 3rd edition, Springer, 2008.

Joseph O'Rourke, Computational Geometry in C, 2nd edition, Cambridge University Press, 1998

OTRA INFORMACIÓN RELEVANTE