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LIQUIDITY AND HEDGING

EFFECTIVENESS UNDER

FUTURES MISPRICING:
INTERNATIONAL EVIDENCE

A. ANDANI
J. A. LAFUENTE*
A. NOVALES

We analyze the hedging effectiveness of positions that replicate stock indexes
using corresponding futures contracts through the application of a dynamic, sto-
chastic hedging strategy proposed by Lafuente, J. A. and Novales, A. (2003).
Conclusive gains do not emerge in any of the markets analyzed over the period
considered, relative to the use of a constant unit hedge ratio. These findings 
are consistent with the trend observed in the IBEX 35 futures market study of
Lafuente, J. A. and Novales, A. (2003). Our empirical evidence suggests that,
contrary to what happens in less liquid markets, the discrepancy between theo-
retical and quoted prices in index futures contracts in fully developed markets
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does not represent a noise factor that can be successfully exploited for hedging. 
2009 © Wiley Periodicals, Inc. Jrl Fut Mark 29: 1–17; 2009

INTRODUCTION

Financial futures are frequently used in hedging operations, in which the
determination of the hedge ratio is the main issue. Several theoretical
approaches have been proposed in the literature to design an optimal hedge
with futures contracts (see Chen, Lee, & Shrestha, 2003, for an excellent
review that considers minimum variance, mean variance, expected utility, mean
extended-Gini coefficient, and semivariance approaches). The usual approach
takes into account not only the dynamic nature of market risk, but also the fact
that the key idea of hedging is to combine spot and futures trading to form a
portfolio with negligible fluctuations in its market value. Under that view, the
decision is to choose the number of futures contracts that minimizes the con-
ditional variance of the return on the hedged portfolio. The resulting optimal
hedge ratio is then obtained as the ratio between the conditional covariance of
spot and futures returns and the conditional variance of futures returns. These
conditional moments have usually been estimated from a particular specifica-
tion of the GARCH family of models (see, for example, Choudhry, 2003, 2004;
Ku, Chen, & Chen, 2007; Lee & Yoder, 2007; Park & Switzer, 1995 among
many others).

This study reviews the use of futures contracts on a specific stock market
index as hedging instrument for a portfolio that replicates the market index.
After showing that the empirical evidence is consistent with the absence of a
common ARCH feature between the returns from spot and futures markets, we
adopt the theoretical ratio proposed by Lafuente and Novales (2003), which is
consistent with the existence of a noise specific to the future market in addition
to a noise common to spot and futures market returns. A bivariate model with
heteroskedastic disturbances is used to represent the dynamics of returns in
both markets in order to estimate the minimum variance hedge ratio.

After estimating with data for 1997–2005, empirical evidence obtained
from out-of-sample simulations over 2006 for the Nikkei 225, S&P500, FTSE-
100, DAX, and IBEX 35 futures markets shows no systematic improvement in
hedging effectiveness relative to using a constant unit hedging ratio, contrary
to results in Lafuente and Novales (2003) for the IBEX 35 index for
1993–1996. We explore whether this result is consistent with the trend point-
ed out by Lafuente and Novales (2003) in their stochastic optimal hedge ratio
toward one over the 1993–1996 period, with a decreasing gain in hedging effi-
ciency relative to a unitary ratio, which the authors justified on the basis of
increased maturity of a still underdeveloped and illiquid market. Our goal is to
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analyze whether that trend continued after 1996, as the Spanish market
increased liquidity, as well as to examine the robustness of our empirical results
by examining similar evidence in fully developed markets in the United States,
Japan, and Germany.

If confirmed, such a finding would suggest that in mature index futures
markets with high trading volume, the time-varying noise that characterizes
basis risk cannot be exploited to improve upon the hedging efficiency provided
by a systematic unit ratio. Our results are fully in line with Roll, Schwartz, and
Subrahmanyam (2007), who present empirical evidence suggesting that liquid-
ity enhances the efficiency of the futures-cash pricing system.

The rest of the article is organized as follows. The section “Statistical
Characteristics of Returns” describes the data used in the analysis and the
results of testing for the presence of a common ARCH feature in the spot and
futures markets returns. The section “Optimal Dynamic Hedging” presents the
model used to determine the optimal hedge ratio and describes the estimation
of the relevant conditional moments. The section “Empirical Evidence” pres-
ents the empirical evidence on the evolution of conditional moments over the
analyzed period. A simulation of hedging trading is performed to test the poten-
tial implementation of the model, and the section “Conclusions” summarizes
and makes concluding remarks.

STATISTICAL CHARACTERISTICS OF RETURNS

We used daily closing data for the IBEX35, FT100, NIKKEI225, DAX, and
SP500 indexes. We select the trading day for the rollover of contracts according
to the evolution of the depth of futures market. Figure 1 shows the average rel-
ative trading volume between the nearest to maturity contract and the next to
maturity contract. With the exception of the S&P 500 futures market, the
other derivatives markets considered exhibit greater trading volume for the next
to maturity contract all the way to expiration. In the American market, volumes
traded reverse around five days before expiration.

The time period we consider, January 1997–December 2006, is interesting
because of the occurrence of several events: (a) the financial crisis of 1998 that
significantly affected the United States financial system; (b) the technology bub-
ble burst in 2000; (c) the subsequent deep generalized recession that spread
across markets and lasted until the beginning of 2003, and (d) a subsequent
period of systematic market stability, with the exception of isolated crises due to
geo-political tensions and inflationary fears. The latter part of this period was
characterized by abundant liquidity in capital markets, with low interest rates.

Table I presents the main statistics for the return series, computed as the
first differences of the logs of closing prices between successive trading days.

AQ1
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The sample mean daily return is negligible, as expected from a systematically
long and short trading strategy on consecutive trading days. Likewise, as is
usually the case with daily time series, stock return distributions show excess
kurtosis and some skewness, characteristics generally associated with condi-
tional heteroskedasticity. To assess the existence of ARCH effects in stock
returns, we perform Engle’s Lagrange multiplier test. Empirical values of the
test, not reported in the article, systematically reject the null, pointing to 
the convenience of using some parameterization for second-order moments of
stock market returns in the family of GARCH models.

In order to empirically justify the use of our proposed model, which
assumes the existence of a noise common to spot and futures returns, together

TABLE I

Descriptive Statistics of Stock Market Returns

NIKKEI225 SP500 FT100 DAX IBEX35

Spot Futures Spot Futures Spot Futures Spot Futures Spot Futures

Mean �0.0001 �0.0001 0.0003 0.0003 0.0002 0.0002 0.0003 0.0003 0.0004 0.0004
Standard Dev. 0.0147 0.0152 0.0115 0.0119 0.0115 0.0120 0.0162 0.0161 0.0141 0.0148
Asymmetry �0.0367 �0.1741 �0.0725 �0.1323 �0.1771 �0.0867 �0.2300 �0.0040 �0.1803 �0.1734
Kurtosis 1.7501 2.4852 3.0553 3.5657 2.5418 2.7153 2.6376 3.3604 2.4828 2.7844

0,00

0,50

1,00

1,50

2,00

2,50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 1715 18 19 20 21

Time to maturity (days)

Relative average trading volume
(Next to maturity/Nearest to maturity)

IBEX FT100 SP500 NIKKEI225 DAX

FIGURE 1
Relative volume traded in each stock market: number of next to maturity contracts traded over

number of nearest-to-maturity futures contracts traded, as a function of time-to-maturity.
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with a noise specific to the yield of the derivative instrument, we follow the
approach of Engle and Kozicki (1993) to test the null hypothesis that there is a
linear combination of the returns from the two markets, which is homoskedastic,
i.e., that the ARCH feature is common to both return series. The empirical
values of the test statistic are presented in Table II, systematically leading to
rejection of the hypothesis of a common ARCH feature. This pattern is consis-
tent with the proposed theoretical model.

OPTIMAL DYNAMIC HEDGING

The Optimal Hedge Ratio

In accordance with the empirical evidence above, we follow Lafuente and
Novales (2003) consider that the hedging problem can be specified:

s.t.

where bt denotes the spot position we want to hedge, and ht is the hedging
futures position, whereas St and Ft represent spot and futures market prices,
respectively. We denote the correlation between the two Brownian processes:

. sS,t denotes the size of the common noise shared by the
two markets. The discrepancy between the price quoted in the futures market
and the theoretical price according to the cost-of-carry valuation model arises

r12,t � Corr(dz1t, dz2t)

dFt,T � mf,t Ft,T dt � sS,t Ft,T 
dz1,t � sN,t Ft,T  

dz2,t

dSt � mS,tStdt � sS,tStdz1,t

Min Var abt 
dSt

St dt
� ht 

dFt,T

Ft,T dt
b5ht6

TABLE II

Testing for Common ARCH Features

K 1 2 3 4 5 6 7 8 9 10

Min TR2

NIKKEI225 41.1 65.3 98.9 110.4 142.9 158.5 178.5 180.1 177.3 188.5
SP500 70.5 113.6 160.0 169.9 187.1 189.8 207.4 223.3 224.5 238.8
FT100 102.4 268.1 336.8 353.0 361.2 378.7 378.9 379.2 380.4 380.5
DAX 82.2 217.7 257.4 262.9 291.1 324.7 329.0 333.0 375.9 387.5
IBEX 83.1 153.3 197.6 228.2 229.5 281.6 324.7 348.4 350.1 370.2

Critical values 

a � 0.05 6.0 11.1 15.5 19.7 23.7 27.6 31.4 35.2 38.9 42.6
a � 0.01 9.2 15.1 20.1 24.7 29.1 33.4 37.6 41.6 45.6 49.6

Note. The first panel shows the minimum TR2 in a set of regressions of (rS,t � drf,t)
2 on k lags of r 2

S,t , r
2
f,t , and rS,t , rf,t over a grid of values

for d, where T denotes the sample size. The last two rows show critical values at the a-significance level.
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from a basis risk of size sN,t, that we specifically attribute to the futures market.
As shown in Lafuente and Novales (2003), the theoretical expression for the
minimum variance (optimal) hedge ratio solving the problem above is

where represents the relative importance of the specific noise as
compared to the common noise. Under the proposed model, the optimal hedge
ratio remains below one provided that spot and futures market returns do not
share a single common noise. The optimal ratio is positive (implying a short
futures position) when both disturbances are positively correlated. In contrast,
if the correlation between the two noises was negative, the optimal hedge ratio
could lie either above or below 1.0.

Estimating Time-Varying Variances 
for the Theoretical Noises

Given the conclusive empirical evidence in the literature on the existence of a
co-integration relationship between the logarithms of spot market and futures
market prices, our specification of the conditional mean for both series of
returns incorporates an error correction term. Lien (1996) shows that disre-
garding the co-integrating relationship could lead to a smaller than optimal
futures position and a relatively poor hedging performance. There is also abun-
dant empirical evidence (see Lien & Yang, 2006 among many others) support-
ing the hypothesis that the co-integration vector is (1, �1) which, in turn,
implies that the empirical basis is stationary. Estimated co-integration vectors
for the pair: [log(futures price) log(spot price)] by Johansen’s procedure, after
normalizing the first entry to unity are S&P 500: [1.000, �1.005], Nikkei 225:
[1.000, �1.015], FTSE100: [1.000, �1.006], DAX: [1.000, �1,001], 
Ibex35: [1, �0,999]. In all cases, the null hypothesis of the co-integration vec-
tor being [1.000, �1.000] is not rejected at conventional significant levels.
Hence, we define the error correction term as the “spread” between the loga-
rithm of the spot price and the future price.

To capture the correlations between the return innovations and estimate
the conditional variance–covariance matrix of spot and futures markets
returns, we use the bivariate dynamic conditional correlation (DCC) GARCH
model proposed in Engle (2002). Monte Carlo experiments reveal not only that
the bivariate version of the DDC-MV-GARCH model provides a very good
approximation to a variety of time-varying correlation processes, but also that
this model often compares favorably with the simple multivariate GARCH. 

dt � sN,t�sS,t

h*t
bt

�
s2

S,t � r12,t sS,t sN,t

s2
S,t � s2

N,t � 2r12,tsS,t sN,t
�

1 � r12,t dt

1 � d2
t � 2r12,tdt
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The (DCC) GARCH specification combines the flexibility of univariate
GARCH models with a parsimonious parametric specification for the condi-
tional correlation. Furthermore, bearing in mind the objectives of the present
study, Ku et al. (2007) compare the DCC-GARCH model proposed in Engle
(2002) with the constant correlation specification, to find evidence of greater
hedging effectiveness from the model with time-varying correlation.

Hence, we represent the dynamics of spot and futures markets returns, rs,t

and rf,t, through the error correction model:

with , where is the information set available
at time t�1 and �t is the conditional variance–covariance matrix of market
return innovations.1

We represent the time evolution of the elements in the conditional 
variance–covariance matrix by a GARCH(p,q) specification with possible asym-
metric effects:

With regard to the conditional correlation, the dynamics of the DCC model is

where

Once the conditional moments have been estimated, the conditional vari-
ance for futures market returns, as well as their conditional covariance and cor-
relation with spot market returns can be recovered using the expressions in
Lafuente and Novales (2003):

 ŝ2
f,t � ŝ2

S,t � ŝ2
N,t � 2ŝs,t ŝN,t r̂12,t

�
a

m
h�1 hs,t�h h f,t�h

Ba a
m
h�1h

2
s,t�hb

 
a a m

h�1h
2
f,t�hb

, hk,t �
ek,t

sk,t
, k � s, f.ct�1

rSf,t � (1 � k1 � k2)r � k1rSf,t�1 � k2°t�1

ae2S,t�1 IS,t�1

e2f,t�1 If,t�1
b, Ik,t�1 � e 1, siek,t�1 � 0, k � S, f

1, siek,t�1 � 0, k � S, f
f .� aD11 D12

D21 D22
b

� a
q

j�1
aB(j)11 B(j)12

B(j)21 B(j)22
b as2

S,t�1

s2
f, t�1
b

as2
S,t

s2
f,t
b � avS

vf

b � a
p

i�1
aA(i)11 A(i)12

A(i)21 A(i)22
b ae2S,t� i

e2f, t� i
b

�t�1(es,t ef,t)���t�1 � N(0,©t)

arS,t

rf,t
b � a

n

i�1
aa(i)11 a(i)12

a(i)21 a(i)22
b arS,t� i

rf,t� i
b � agS

gf
b (ln˛St�1 � ln˛Ft�1) � aeS,t

ef,t
b

1When the Normality assumption was rejected for the residuals, we estimated the model using a t-Student
conditional distribution for the innovations when evaluating the log-likelihood function.
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where , and denote the conditional variances of futures and
spot market returns and their conditional covariance, as estimated from the
DCC-GARCH model.

EMPIRICAL EVIDENCE

The sample information was divided into two sub-periods. The first period runs
from January 1997 to December 2005, which was used for initial estimation
and specification testing. The second sub-period, from January 2006 to
December 2006, was left as an out-of-sample window to test the effectiveness
of simulated hedging operations.

The Bivariate GARCH Model

Table III shows the parameters obtained in the estimation of the DCC-GARCH
model. In all cases, we sought for the most parsimonious specification possible.2

In the case of the S&P500 and FTSE-100, a t-Student conditional distribution
was considered, whereas the Normal distribution was used for IBEX35, DAX,
and Nikkei225. In general, the estimates show significant coefficients for
ARCH and GARCH effects, suggesting volatility clustering in both market
returns. Similarly, the parameters that represent the cross effects in mean and
variance also reveal significant cross-market interactions. The speed of adjust-
ment to short-run price deviations from their long-run equilibrium is also
significant, thus evidencing that the markets are arbitraged in such a way that
the empirical basis has a restricted evolution over time. Finally, the presence of
significant asymmetric effects should be noted for the SP500 as well as the
Nikkei225. Figures 2a–c show the evolution over time of the relative impor-
tance of the noise specific to the futures market, as compared to the common
noise, , in each of the stock markets considered.

Hedging Simulations

Having estimated the model for the period 1997–2005, we incorporated data for
the out-of-sample 2005–2006 period in ten-day windows. This is a compromise

ŝN,t �ŝS,t

ŝs,f,tŝ2
s,t,ŝ2

f,t

 r̂12,t �
ŝSf,t � s2

S,t

ŝS,t2ŝ2
S,t � ŝ2

f,t � 2ŝSf,t

 ŝSf,t � ŝ2
S,t � ŝs,tŝN,t r̂12,t

2To assess the ability of the estimated model to capture the main statistical characteristics of market returns,
a battery of standard specification tests was employed, including the Ljung–Box Q-statistics on the standard-
ized residual and their squared values. All series of residuals were found to be free of serial correlation at the
5% significance level.
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between maintaining a constant hedge ratio and changing the hedge too often,
which would imply unbearable transaction costs. The model was re-estimated
every ten days, obtaining at each point a hedge ratio, before incorporating addi-
tional data on a ten-day period for a new estimation. Once the entire series of
hedge ratios had been obtained for 2006, we implemented two different hedg-
ing strategies by applying to each ten-day trading window (the time interval
[t�1, t�10]), either the hedge ratio estimated the last day in each rolling sam-
ple (at time t) or the average hedge ratio computed over the last five trading
days in each sample (from t-4 to t). Thus, the 250 market days in the year

TABLE III

Maximum Likelihood Estimation of the Parameters Involved in the DCC-GARCH model

NIKKEI225 SP500 FT100 DAX IBEX35

Spot mean equation

a11 �0.037 �0.300** �0.184** �0.198** �0.506**
a12 0.018 0.286** �0.224** 0.230** �0.290**
a(2)11 0.200** 0.515**
a(2)12 0.203** 0.275**
gs �0.406** �0.085** �0.070* �0.473** �0.021

Futures mean equation

a21 0.054 0.097** 0.296** 0.139** �0.219
a22 �0.090 �0.110** �0.003 �0.123** �0.189
a(2)21 �0.274** 0.230
a(2)22 �0.018 0.166
gf 0.342** �0.002 0.020 �0.221** 0.342**

Spot variance equation

ws 0.000** 0.000 0.000 0.000** 0.000
A11 0.024 �0.076* 0.176** 0.004 �0.169**
A12 0.038 0.092** �0.070 0.123** 0.207**
B11 0.528 1.013** 0.633** 0.877** �1.602*
B12 0.351 �0.058 0.247** �0.005 2.460**
D11 0.079** 0.049**
D12 0.131** 0.059**

Futures variance equation

wf 0.000* 0.000 0.000 0.000** 0.000
A21 0.081 �0.056 0.170** 0.094** 0.010
A22 �0.047 0.066* �0.057 0.033 0.039
B21 0.716* 0.031 �0.313** �0.111** �0.106
B22 0.208 0.924** 1.184** 0.978** 1.049**
D21 0.962** �0.057**
D22 0.361** 0.037**

Correlation dynamics

K1 0.037* 0.021 0.143** 0.112** 0.009*
K2 0.959** 0.970** 0.800** 0.870** 0.990**

Note. In the case of the S&P 500 and the FTSE-100, the conditional distribution is a t-Student. Degrees-of-freedom were estimated
at 7.1 and 5.7, respectively. *Significant at the 5% level; **significant at the 1% level.
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3Due to the availability of a shorter number of market days.
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FIGURE 2 (Continued )

allowed for performing 25 ten-day hedging operations with each strategy,
except in the case of the NIKKEI, for which only 24 were carried out.3 The
volatility of the series of returns on the portfolio hedged with the GARCH ratio
was then obtained under each of these two hedging strategies, computing the
reduction in volatility relative to the spot position. The volatility of the portfolio
hedged with the unitary ratio was obtained similarly, and the implied reduction
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FIGURE 2
(a) Ratio of estimated variances for specific and common noise components: Nikkei225 and S&P500.

(b) Ratio of estimated variances for specific and common noise components: FT100 and DAX. 
(c) Ratio of estimated variances for specific and common noise components: Ibex35.
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in volatility was also calculated. Finally, we compared the reduction in volatility
obtained by application of each of the two strategies based on a GARCH ratio
and the strategy based on imposing a constant unit ratio:

Hedging effectiveness � 100

where volatility is measured by the standard deviation of returns over the peri-
od chosen for comparison.

We present results obtained throughout the out-of-sample period, as well
as over each quarter. Tables IV and V present the results of applying the two
hedging strategies described in the previous paragraph. The results obtained do
not exhibit a systematic advantage over the unit ratio, which suggests that the
incorporation of transaction costs would make the application of a dynamic
hedging strategy with the GARCH ratio even less interesting.

Finally, we now consider the gain or loss in terms of utility, taking into
account the transaction costs from adjusting the position in the derivatives
market. To this end, we consider a specification of the expected utility function:

(as in Kofman & McGlenchy, 2005; Kroner & Sultan,
1993; Lee, Yoder, Mittelhamner, & McCluskey, 2006 among others), where g
denotes the degree of risk aversion, with the level of risk being measured by the
conditional variance of returns. Denoting transaction costs by t and assuming 
a zero expected return, an investor would have an expected utility of

if the hedge ratio is updated from as against an
expected utility equal to if the hedge ratio remains unchanged.
Thus, an investor whose utility is given by the specification considered will
adjust the hedging position if and only if

where denotes the hedge ratio applied as the result of the last revision
of the futures position.

To implement this strategy, we consider a risk-aversion coefficient of 4 and
average costs of 0.0011%,4 and the optimal ratio obtained in the last trading

(h**
t     � bt)

� � g(s2
s,t � 2ss˛f,t(h

*
t �bt) � s2

f,t(h
*
t �bt)

2

�bt) � s2
f,t(ht**� bt)

2)t � g(s2
s,t � 2ss˛f,t(h

**
t

� gs2
t (x*)

h*
t �bt to h**

t �bt ,�t � gs2
t (x**)

EtU(x) � Et(x) � gs2
t (x)

Volatility(hedged position) � Volatility(Unhedged position)

Volatility(Unhedged position)

4This corresponds to the MEFF Spanish commission of 1.3 Euros for the regular futures contract and the 2006
average value of the IBEX 35. As to the transaction costs associated to the bid–ask spread, we use the mean
spread for the short-term index futures contracts on FTSE-100 (1,4), as reported in Fahlenbrach and Sandas
(2003). We applied the same commission to all indexes. As the position does not change often, our results are
robust to transaction costs inside a (0.0020–0.0060%) range.
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TABLE IV

Out-of-Sample Hedging Effectiveness

Hedging Effectiveness
Difference 

GARCH /GARCH/
Hedge Ratio GARCH (%) Unitary (%) /Unit./ (%)

NIKKEI225
January–March 2006 0.962 �81.34 �82.41 �1.07
April–June 2006 0.942 �81.90 �82.12 �0.22
July–September 2006 0.966 �76.45 �76.77 �0.32
September–December 2006 0.947 �75.49 �75.07 0.42
Average 2006 0.954 �79.78 �80.22 �0.44

SP500

January–March 2006 0.975 �74.32 �74.73 �0.41
April–June 2006 0.967 �76.70 �77.36 �0.66
July–September 2006 0.976 �70.04 �70.53 �0.49
September–December 2006 1.001 �68.58 �68.89 �0.31
Average 2006 0.980 �73.37 �73.87 �0.50

FT100

January–March 2006 1.002 �80.58 �80.54 0.03
April–June 2006 0.978 �88.91 �88.71 0.20
July–September 2006 0.990 �80.86 �80.86 0.00
September–December 2006 1.007 �79.63 �79.91 �0.28
Average 2006 0.995 �83.62 �83.59 0.03

DAX

January–March 2006 0.964 �83.01 �84.53 �1.52
April–June 2006 0.986 �77.66 �77.66 0.00
July–September 2006 0.981 �81.76 �82.60 �0.85
September–December 2006 0.955 �80.89 �81.02 �0.14
Average 2006 0.971 �80.06 �80.52 �0.45

IBEX35

January–March 2006 0.945 �79.42 �79.90 �0.48
April–June 2006 0.951 �80.77 �80.86 �0.09
July–September 2006 0.946 �85.57 �87.29 �1.72
September–December 2006 0.966 �85.18 �85.76 �0.58
Average 2006 0.952 �82.43 �83.07 �0.63

Note. The hedge ratio obtained for the last day in each rolling sample is applied to the following ten trading days.

day in each rolling sample, t, is applied to the following ten trading days (from
t�1 to t�10). Thus, over the out-of-sample period, we use the utility compari-
son rule every ten trading days to decide on whether to maintain the same hedge
ratio that was applied previously, or to change it to the variance-minimizing ratio
calculated in the immediately preceding period. The results obtained for each
market are presented in Table VI in terms of aggregate utility for 2006, as well
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TABLE V

Out-of-Sample Hedging Effectiveness

Hedging Effectiveness Difference 

GARCH /GARCH/
Hedge Ratio GARCH (%) Unitary (%) /Unit./ (%)

NIKKEI225
January–March 2006 0.949 �80.81 �82.41 �1.60
April–June 2006 0.945 �82.12 �82.12 0.00
July–September 2006 0.949 �76.09 �76.77 �0.68
September–December 2006 0.942 �75.28 �75.07 0.20
Average 2006 0.946 �79.56 �80.22 �0.66

SP500

January–March 2006 0.977 �74.32 �74.73 �0.40
April–June 2006 0.965 �76.55 �77.36 �0.81
July–September 2006 0.984 �70.14 �70.53 �0.39
September–December 2006 1.001 �68.69 �68.89 �0.21
Average 2006 0.982 �73.36 �73.87 �0.51

FT100

January–March 2006 0.991 �80.34 �80.54 �0.20
April–June 2006 0.982 �88.74 �88.71 0.03
July–September 2006 0.991 �80.84 �80.86 �0.01
September–December 2006 1.005 �79.34 �79.91 �0.57
Average 2006 0.993 �83.49 �83.59 �0.10

DAX

January–March 2006 0.968 �83.33 �84.53 �1.20
April–June 2006 0.988 �77.65 �77.66 �0.01
July–September 2006 0.980 �82.06 �82.60 �0.55
September–December 2006 0.953 �80.89 �81.02 �0.13
Average 2006 0.973 �80.18 �80.52 �0.34

IBEX35

January–March 2006 0.940 �79.36 �79.90 �0.55
April–June 2006 0.952 �80.80 �80.86 �0.06
July–September 2006 0.950 �85.72 �87.29 �1.57
September–December 2006 0.971 �85.31 �85.76 �0.45
Average 2006 0.954 �82.49 �83.07 �0.58

Note. The average hedge ratio over the last five trading days in each rolling sample is applied to the following ten 
trading days.

as in terms of the utility gain relative to the non-hedged market position.
Managing the hedge ratio according to the utility comparison rule often pro-
vides the highest utility gain, but it is very similar to the one obtained under the
constant unit ratio, as well as to the one emerging from applying the GARCH
ratio from the previous period.
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TABLE VI

Utility Gains Under Different Hedging Strategies

NIKKEI225 SP500 FT100 DAX IBEX35

Aggregate utility

Spot position �0.17320 �0.04371 �0.06721 �0.10819 �0.06527
Unitary hedge ratio �0.00558 �0.00261 �0.00252 �0.00976 �0.00233
GARCH hedge ratio (*) �0.00649 �0.00381 �0.00374 �0.01095 �0.00322
GARCH hedge ratio with �0.00526 �0.00256 �0.00252 �0.01091 �0.00228

decision criterion (**)

Utility gain on the spot position 

Unitary hedge ratio (%) 96.8 94.0 96.2 91.0 96.4
GARCH hedge ratio (*) (%) 96.3 91.3 94.4 89.9 94.9
GARCH hedge ratio with decision 97.0 94.1 96.3 89.9 96.5

criterion (**) (%)

Note. (*) The hedge ratio is changed every ten days, applying the ratio from the last trading day in each rolling sample. (**) The
desirability of applying a new ratio was appraised every ten days, the decision being made in accordance with the expected utility.

CONCLUSIONS

This article analyzes the use of index futures as a hedging instrument for a
portfolio that replicates the underlying asset for the futures contract. To this
end, we have used the theoretical model proposed by Lafuente and Novales
(2003), which includes a specific noise in the futures price in addition to the
common noise that it is assumed to share with the spot market price, according
to the cost-of-carry valuation model.

We have analyzed daily closing data on futures and spot markets for the
NIKKEI225, SP500, FT100, DAX, and IBEX35 indexes over the 1997–2005
period. The null hypothesis on the existence of a common ARCH feature
(Engle & Kozicki, 1993) underlying the heteroskedastic behavior detected in
spot and futures markets returns is rejected, validating the existence of a noise
specific to the futures market, as included in our econometric model. We esti-
mate an asymmetric bivariate error–correction model with a DCC-GARCH
structure to represent the conditional mean, variance, and covariance of future
and spot market returns, and we simulate out-of-sample hedging strategies that
apply a hedge ratio calculated from the estimated econometric specification.

The results show that GARCH dynamic strategies do not lead to a system-
atic improvement in hedging effectiveness, as compared to the improvement
that would be obtained by applying a constant unit ratio.

These results are in sharp contrast with those obtained using intraday data
for the period 1993–1996 by Lafuente and Novales (2003) for the Spanish
market. One reason might be that the present study uses daily data, which
implies a loss of information on price fluctuations that may bias upward the
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estimation of co-movement between spot and futures prices, moving optimal
hedge ratios closer to 1.

However, we believe that what is really central to explain the different
results is the fact that the Spanish market was in 2006 a significantly more
mature market, with a sufficiently high level of activity that would quickly cor-
rect any arbitrage opportunity. Indeed, our results are consistent with the trend
detected in Lafuente and Novales (2003) about the optimal hedge ratio for the
Spanish market gradually coming closer to 1 toward the end of the 1993–1996
sample period, thereby limiting the potential gain in hedging effectiveness
obtained from the dynamic GARCH ratio. The similar conclusions we have
reached for fully developed option markets in the United States, Japan, and
Germany reinforce that interpretation.

The empirical evidence for the Spanish futures market is also consistent
with the recent article of McMillan and Quiroga (2008). These authors show
that the equilibrium speed of adjustment between spot and futures market prices
was reduced after the introduction of the mini-futures contract in the Spanish
market in November 2001, the effect being particularly pronounced after the
second year, when mini-futures contracts started being more heavily traded.

Even more significantly, the result that noisy deviations from the no-arbi-
trage relationship in mature market prices may be of no consequence for
improving the efficiency of hedging a spot portfolio with futures contracts goes
along the lines of Roll, Schwartz, and Subrahmanyam (2007), who have shown
evidence that liquidity enhances the efficiency of the futures-cash pricing sys-
tem for the S&P500 stock index futures market.
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