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a b s t r a c t

This paper proposes an ICAPM in which the risk premium embedded in variance swaps is the factor
mimicking portfolio for hedging exposure to changes in future investment conditions. Recent empirical
evidence shows that the fears by investors to deviations from Normality in the distribution of returns
are able to explain time-varying financial and macroeconomic risks in addition to being a determinant
of the variance risk premium. Moreover, variance swaps hedges unfavorable changes in the stochastic
investment opportunity set, and is not a redundant asset because significantly expands the efficient
mean-variance frontier. Thence, we should expect the variance swap risk premium to be priced in the
market. We report relatively favorable evidence on the incremental pricing information associated with
the variance risk premium, particularly at shorter horizons.
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1. Introduction6

As shown by Carr and Wu (2009), Todorov (2010), and Egloff7

et al. (in press), the average variance risk premium is negative and8

sizeable for all available horizons. Since the payoff of a variance9

swap contract is the difference between the realized variance and10

the variance swap rate, the observed negative returns for long posi-11

tions on variance swap contracts for all time horizons suggest that12

investors are willing to accept negative returns for insuring against13

future realized variance. Recently, Nieto et al. (2010) use the impli-14

cations of an asset pricing model proposed by Chabi-Yo (2009) to15

find evidence that as it is the case with standard indicators of dif-16

ferent types of macroeconomic and financial risks, the variance risk17

premium responds to changes in higher order moments of the con-18

ditional distribution of market returns.1 This common dependence19

suggests that the variance swap may offer hedging against a vari-20

ety of risks and, consequently, the variance risk premium could be21

capturing the market willingness to pay for such a hedge.22

A natural question then refers to whether the fluctuations in23

the variance risk premium may act as a sufficient statistic summa-24

rizing the information contained in a variety of macroeconomic25

∗ Corresponding author.
E-mail addresses: belen.nieto@ua.es (B. Nieto), anovales@ccee.ucm.es

(A. Novales), gonzalo.rubio@uch.ceu.es (G. Rubio).
1 See the related evidence reported by Bondareko (2004) who shows that the

variance risk premium explains returns that exhibit significant skewness.

and financial risk indicators which is relevant for asset valua- 26

tion. In the continuous-time Intertemporal Asset Pricing Model 27

(ICAPM hereafter) of Merton (1973), the value function depends 28

not only on aggregate wealth, but also on the innovations to some 29

state variables that describe the stochastic behavior of the invest- 30

ment opportunity set. These additional variables may hint at ways 31

to design an appropriate hedge against unfavorable changes in 32

the stochastic investment opportunities and the optimal portfolio 33

should be made up by a combination of the market and the hedg- 34

ing portfolios. In this paper, we employ the payoff of the variance 35

swap as the hedging variable for alternative investment horizons. 36

Therefore, we take the ICAPM as the natural framework to inves- 37

tigate whether the variance risk premium may add information to 38

the return on market wealth as an aggregate risk factor explaining 39

the cross-section of expected returns.2 40

Specifically, the stochastic discount factor (SDF hereafter) is 41

specified as a power function of the return on the market port- 42

folio, expanded with an exponential function of the excess return 43

of the variance swap contract as hedging variable. We perform sev- 44

eral empirical tests of the model that suggest that the variance risk 45

premium contains relevant information that helps pricing average 46

stock returns. The measures of the global fit indicate that the model 47

performs better when it includes the variance risk premium factor 48

2 Malkhozov (2009) shows how the variance risk premium arises in asset pricing
models with stochastic volatility and production economies with dynamic hedging
effects.
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than when it only incorporates the market return portfolio. This49

evidence is generally observed for both the non-linear specifica-50

tion and the beta (linear) specification of the model. Specifically,51

the comparison between the one-factor model and the two-factor52

model at the one-month investment horizon reveals that the mean53

absolute pricing error decreases from 0.343 to 0.288 in the non-54

linear specification, and that the pseudo cross-sectional R-square55

used in the estimation increases from 0.278 to 0.412 in the beta56

specification. Moreover, we also show that, on average, test port-57

folio betas relative to the variance risk premium factor are strongly58

negative when we allow for regressions with two regimes based59

on a market return threshold. The relatively favorable evidence on60

the variance risk premium being a financial factor that is priced61

in the market is consistent with the result in Nieto et al. (2010),62

who show that the variance swap is not being spanned by a set of63

assets composed of government and corporate bonds and the stock64

market portfolio.365

The paper is organized as follows. Section 2 briefly describes66

the variance swap contract and defines the variance risk premium.67

Section 3 contains a description of the data. The two-factor asset68

pricing model is presented in Section 4, while Section 5 reports the69

results of the empirical tests. Section 6 concludes with a summary70

of our findings.71

2. Variance swap contracts and the variance risk premium72

A variance swap is an over-the-counter financial instrument73

that pays the difference between a standard estimate of the real-74

ized variance of the return on a given asset (a stock market index75

in this case) and the fixed variance swap rate. More in detail, one76

leg of the variance swap pays an amount based upon the realized77

variance of the price changes of the underlying asset. Convention-78

ally, these price changes will be daily log returns, based upon the79

most commonly used closing price. The other leg of the swap pays80

a fixed amount, the strike, quoted at the deal’s inception. Thus the81

net payoff to the counterparties is the difference between these82

two values. It is settled in cash at the expiration of the deal, though83

some cash payments are likely to be made along the way by one84

or the other counterpart to maintain an agreed upon margin. The85

payoff of a variance swap issued at time t and maturing at time t + �86

is therefore given by,87

Nvar(RVt,t+� − SWt,t+�), (1)88

where Nvar denotes variance notional, also called variance units,89

RVt,t + � is the annualized realized variance over the life of the con-90

tract, and SWt,t + � is the delivery price quoted at time t for the91

variance of the asset between t and t + �, also known as the variance92

swap rate. Hence, profits and losses from a variance swap depend93

directly on the difference between realized and implied variance.94

Since variance swaps cost zero at entry, no arbitrage requires95

that the variance swap rate must be equal to the risk-neutral96

expected value of the realized variance. Therefore,97

SWt,t+� = EQ
t (RVt,t+�), (2)98

where EQ
t (.) is the time-t conditional expectation operator under99

some risk-neutral measure Q. The variance risk premium at period100

t is then defined as,101

VRPt+�
t = EP

t (RVt,t+�) − SWt,t+�, (3)102

where EP
t (.) is the time-t conditional expectation operator under103

the physical probability measure P. If investors price variance risk,104

3 See also the related evidence reported by Chabi-Yo (2008).

the variance swap rate will differ from the expected realized vari- 105

ance under P at the corresponding horizon, the difference being the 106

variance risk premium. 107

3. Data and descriptive statistics 108

In this paper we analyze variance swap contracts on the S&P 109

500 index. Daily variance swap rates on five different maturities 110

from January 4, 1996 to January 31, 2007 are obtained from Bank 111

of America. We get monthly data by using the quotes on the last 112

day of each month. Our estimation of the realized variance employs 113

intra-daily data observed at 30-min intervals, from 9 a.m. to 3 p.m., 114

on the S&P 500 index returns provided by the Institute of Financial 115

Markets. For each month in our sample, we compute the realized 116

variance for each maturity � of a variance swap contract (� = 1, 2, 3, 117

6, and 12 months) using quadratic changes on the value of the S&P 118

500 index, as given by 119

RVt,t+� = L

L∑
l=1

(
Pt,l − Pt,l−1

Pt,l−1

)2

, (4) 120

where Pt is the level of the index at time t, L is the number of 30-min 121

intervals comprised in the interval (t, t + �). We work with variance 122

swap rates and realized variances in percent numbers. 123

For each month t and each maturity � we compute the log vari- 124

ance risk premium as the logarithm of the ratio between realized 125

variance and the swap rate, 126

VRPt+�
t = log

(
RVt,t+�

SWt,t+�

)
, (5) 127

which can be read as the excess rate of return of the variance swap 128

contract. Clearly, VRPt+�
t is known only at time t + �. Fig. 1 displays 129

variance swap rates and realized variance for 1-, 3- and 6-month 130

maturities. As expected, the swap rate is most often above the level 131

of realized variance, especially for longer maturities. This evidence 132

is similar to that shown by Carr and Wu (2009) for stock market 133

indices and, to a lesser extent, for individual stocks.4 It is clear that 134

investors are willing to accept a significantly negative return to long 135

variance swaps on the S&P index in exchange for being hedged 136

against future unexpected volatility shocks. Therefore, shorting 137

variance swap contracts in the S&P index generates significantly 138

positive average excess returns during our sample period, since 139

the variance risk premium can be seen as the return on holding 140

the variance swap contract. 141

Panel A of Table 1 reports the variance risk premium descrip- 142

tive statistics for alternative maturities. The variance risk premium 143

is always negative on average, and it becomes more negative with 144

maturity. Panel B of Table 1 reports the correlation coefficients 145

between the variance risk premia at any two different maturities. 146

Correlations between variance risk premia at adjacent maturities 147

are high, debilitating for faraway maturities. The correlation matrix 148

suggests the existence of at least two factors in the structure of 149

variance risk premium.5 150

Monthly data on value-weighted stock market portfolio returns 151

(RW) and the risk-free rate (Rf) are taken from Kenneth French’s 152

4 Driessen et al. (2009) and Vilkov (2008) show that the variance risk premium
for stock indices are systematically larger, i.e., more negative, than for individual
securities. They argue that the variance risk premium can in fact be interpreted as the
price of time-varying correlation risk. Antón (2010) replicates their analysis using
Eurostoxx50 and, contrary to the previous results, he reports individual variance
risks different form zero.

5 This is consistent with the formal analysis contained in Egloff et al. (in press)
and Amengual (2009). They show that two factors are needed to capture the term
structure variation of the variance swap rates. The first factor might control the
instantaneous change in the variance rate, while the second could represent the
level to which the variance reverts.
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Fig. 1. Monthly variance swap rate and realized variance for different maturities.
January 1996 to January 2007.

web page. We also collect the excess returns of 25 size/book-to-153

market value-weighted portfolios and 17 industry value-weighted154

portfolios. We compute monthly series of cumulative returns155

corresponding to the five maturity intervals of the variance swap156

rates for the market return, the risk-free rate, and the 25 and 17157

portfolio returns.158

4. A two-factor intertemporal asset pricing model159

Evidence presented in Nieto et al. (2010) indicates that the160

variance risk premium is able to anticipate different kinds of161

risk embedded in traditional state variables, such as the stock162

market risk, risk of default, illiquidity risk or consumption and163

Table 1
Variance risk premia descriptive statistics.

VRP1 VRP2 VRP3 VRP6 VRP12

Panel A: descriptive statistics
Mean −0.646 −0.635 −0.659 −0.694 −0.736
Median −0.697 −0.682 −0.719 −0.751 −0.734
Maximum 0.834 0.952 0.841 0.706 0.441
Minimum −1.556 −1.612 −1.631 −1.576 −1.600

Panel B: linear correlations
VRP1 1 0.793 0.659 0.402 0.224
VRP2 1 0.910 0.650 0.453
VRP3 1 0.798 0.574
VRP6 1 0.793
VRP12 1

VRP is the variance risk premium associated with the alternative horizons of the
variance swap contract between 1 and 12 months. It is computed as the differ-
ence between the ex-post realized variance at the end of the swap contract and the
observed variance swap rate.

employment growth risk. On the other hand, previous empirical 164

literature about the ICAPM shows that innovations to state vari- 165

ables that forecast future investment opportunities seem to be 166

priced by investors.6 It may therefore be the case that the ICAPM 167

holds as a two factor model with the excess return of the vari- 168

ance swap contract as the hedging factor. Bollerslev and Todorov 169

(2010) show that, even though the equity market risk premium 170

and the variance risk premium share similarities in the general 171

dynamic dependencies in jump risk premia, they maintain impor- 172

tant differences in the way how they capture the compensations 173

for rare events (tail events).7 Their results imply that any satis- 174

factory model explaining the cross-sectional variation of expected 175

returns should be able to generate a large and time-varying com- 176

pensation for fears of economic recessions. This is precisely the 177

role that the variance risk premium may be playing in the ICAPM 178

framework. 179

It is well known that, assuming no arbitrage opportunities, a 180

positive SDF (mt) exists such that, 181

Et

[
mt+1Re

j,t+1

]
= 0, (6) 182

where Re
j,t+1 is the excess return on asset j from t to t + 1. The alter- 183

native asset pricing models are generated by specifying different 184

SDFs; that is, assuming different preferences for investors or dif- 185

ferent stochastic processes for asset prices. For example, under 186

the ICAPM, the SDF contains, in addition to the aggregate wealth 187

return, variables that capture time variation in future investment 188

opportunities. Although the model is generally accepted because 189

evidence shows that state variables other than the market index 190

are important for pricing stock returns, the debate about which 191

state variables must enter in the SDF remains open. Therefore, 192

a natural question to ask is whether the information embed- 193

ded in fluctuations in the variance risk premium may act as 194

a sufficient statistic summarizing relevant information for asset 195

valuation. 196

To explore this possibility, we use five time horizons corre- 197

sponding to the five maturities of the swap contracts and data 198

sampled at monthly frequency, to estimate the following ICAPM 199

specification 200

Et+�−1

[((
RW,t+�

)−�
exp

{
c1VRPt+�

t

})
Re

j,t+�

]
= 0, (7) 201

where RW,t + � is the gross cumulative return on wealth between t 202

and t + �, VRPt+�
t is the variance risk premium, i.e., the log-difference 203

6 See Brennan et al. (2004), Hahn and Lee (2006), and Petkova (2006).
7 Similarly, Bondareko (2004) shows that the variance risk premium has a com-

ponent that is independent of the risk premium on primitive assets.
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Table 2
GMM estimation. 25 size/book-to-market portfolios and 17 industry portfolios. Monthly data, January 1996 to January 2007.

Horizon Panel A: first step Panel B: Hansen–Jagannathan distance

� c1 T(g′g) MAPE � c1 T Dist2 MAPE

1 month 3.57 (2.11) 0.0992 (0.092) 0.3425 2.07 (1.97) 64.895 (0.010) 0.4588
2.54 (2.15) 0.90 (0.65) 0.0758 (0.286) 0.2881 1.95 (1.98) 0.29 (0.43) 63.689 (0.018) 0.4389

2 months 5.78 (2.95) 0.1024 (0.008) 0.3480 3.02 (2.74) 92.063 (0) 0.4609
4.10 (2.97) 1.12 (0.67) 0.0893 (0.041) 0.3298 2.93 (2.74) 0.11 (0.44) 91.866 (0) 0.4595

3 months 8.37 (3.76) 0.1038 (0.000) 0.3514 4.27 (3.42) 105.805 (0) 0.4542
6.48 (3.87) 1.08 (0.84) 0.0948 (0.001) 0.3406 4.30 (3.41) −0.03 (0.39) 105.790 (0) 0.4542

6 months 16.76 (5.68) 0.1202 (0) 0.3903 8.19 (5.16) 118.208 (0) 0.4702
12.22 (5.63) 1.24 (0.54) 0.0960 (0) 0.3292 8.19 (5.13) 0.00 (0.31) 118.208 (0) 0.4702

12 months 25.31 (7.00) 0.1340 (0) 0.4261 12.53 (6.60) 121.344 (0) 0.4732
20.08 (6.92) 1.21 (0.41) 0.1048 (0) 0.3569 12.57 (6.59) −0.02 (0.26) 121.336 (0) 0.4745

We estimate the standard version and an intertemporal version of the CAPM using the variance risk premium as the hedging factor in the intertemporal specification. The

vector of moment conditions is E
[

((RW,t+� )−� exp{c1VRPt+�
t })Re

j,t+�
|It+�−1

]
= 0, where R̃W is the gross return on wealth, � is the relative risk aversion coefficient, Re

j
is the

excess return on portfolio j and VRP represents the variance risk premium, computed as the log difference between the realized variance at the end of the swap contract
(t + �) and the variance swap rate at the beginning of the contract (t). We use a linear projection to compute the component of the variance risk premium that is orthogonal
to the market return. The estimation is made for different investment horizons (�), from 1- to 12-months, using always monthly data. Results reported on Panel A refer to
the first step GMM estimation while the estimates shown in Panel B have been obtained using the inverse of covariance matrix of the portfolio excess returns as weighting
matrix. Columns 2, 3, 6, and 7 contain the estimated coefficients. Associated standard errors are shown below, in brackets. Column 4 provides the value of T times the sum
of squared pricing errors. The p-value for the test of overidentifying conditions is shown in brackets, while in Panel B the specification test of the model is performed using
the Hansen–Jagannathan distance (column 9). Finally, MAPE indicates the mean absolute pricing error across portfolios, in percentage terms.

between the variance swap rate at month t with maturity on t + �204

and the realized variance of the market index between t and t + �,205

as defined by expression (5), Re
j,t+�

is the excess cumulative return206

between t and t + � on asset j, and � = 1, 2, 3, 6 and 12 months.207

This SDF specification is consistent with Brennan et al. (2004),208

and it ensures a positive SDF. These authors argue that if the interest209

rate and the maximal Sharpe ratio follow a joint Markov process,210

the investment opportunity set is fully described by their joint211

dynamics. Accordingly, they propose a three-factor intertemporal212

model in which the SDF is the product of an exponential function213

of the innovations of these two variables and a power function of214

the aggregate wealth return.8215

The basic idea behind Eq. (7) relies on focusing on the two key216

risk premia in financial markets: (i) the equity risk premium for217

holding the market portfolio, and (ii) the variance risk premium for218

holding the variance of the market portfolio. It is clear that both219

risk premia should be correlated. Bollerslev and Todorov (2010)220

show that roughly 60% of the equity risk premium is due to fears221

of rare events, while half of the variance risk premium is also due222

to investor fears. Then, in the empirical estimation of Eq. (7), rather223

than using directly the variance risk premium, it may be advis-224

able to employ the residuals of a linear projection of the variance225

risk premium on the market excess portfolio return. Our aim is226

therefore to test whether the variance risk premium has incremen-227

tal explanatory power over and above the market portfolio return228

within an ICAPM framework.229

5. Asset pricing model performance230

5.1. The non-linear version of the two-factor ICAPM231

Panel A in Table 2 reports estimates of the coefficients of the232

iso-elastic SDF, obtained by applying first-stage GMM to Euler233

Eq. (7), which amounts to minimizing the Euclidean norm of234

the average vector of pricing errors.9 The test assets are the 25235

Fama–French portfolios and 17 industry portfolios. Below each236

8 More recently, Brennan et al. (2006) include market volatility as the third state
variable into their exponential pricing kernel.

9 It is basically the Hansen–Jagannathan (1997) distance (HJ-distance) with the
identity matrix as the weighting matrix. See Appendix A for a brief description of
the estimation method and the calculation of the p-value for the test of overidenti-
fication restrictions.

estimate, in parentheses, we report the standard errors that are 237

computed taking into account the fact that pricing errors have 238

different variances and nontrivial covariances. The J-test statistic 239

for overidentifying restrictions, given by T times the sum of the 240

squared pricing errors, T(g′g), is reported in the fourth column, 241
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Fig. 2. Time series of estimated stochastic discount factors from GMM parameter
estimates obtained using the identity matrix as weighting matrix. January 1996 to
January 2007.
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Fig. 3. Fama–French and industry portfolio absolute pricing errors from GMM parameter estimates obtained using the identity matrix as weighting matrix. January 1996 to
January 2007.

with its p-value in parenthesis. The last column of the table (MAPE)242

is the mean absolute pricing error across portfolios. We estimate243

model (7) twice, with and without the exponential factor for the244

variance risk premium, and for the five time horizons available245

in our database. The sample frequency is always monthly, from246

January 2006 to January 2007, which permits the comparison247

between results across the different horizons and panels of Table 2.248

When we use the identity matrix as the weighting matrix249

in Panel A, the results for the one-month horizon show that250

the J-test fails to reject both pricing specifications. Estimates251

of risk aversion look reasonable, between 2.5 and 3.6, although252

estimated standard errors are relatively large. The coefficient of253

the variance risk premium (c1) is positive, as expected, but it is 254

also estimated with low precision.10 Apart from that, both the 255

J-statistic and the MAPE become lower when adding the variance 256

10 To understand the positive sign of the coefficient associated with the variance
risk premium in the proposed SDF, it should be noted that if the variance risk pre-
mium increases and becomes positive, the marginal utility of wealth would decrease.
One additional unit of wealth would then not be highly valued, because we would
already be hedged by going long in the variance swap contract. Hence, the estimate
associated with the variance risk premium should be positive, as it is the case in
Table 2.
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Table 3
Estimates and standard errors of intercepts and risk premia for the traditional Fama–MacBeth two-pass cross-sectional regressions, monthly data, January 1996 to January
2007.

�̂0 �̂m �̂vrp Statistic 1 Statistic 2

FM estimate 0.00445 0.00218 0.237 0.334
FM St. error (0.00475) (0.00647)
SH St. error [0.00475] [0.00682]

FM estimate 0.00444 0.00169 −0.08337 0.358 0.462
FM St. error (0.00467) (0.00628) (0.08017)
SH St. error [0.00467] [0.00673] [0.08670]

This table presents the Fama–MacBeth two-step cross-sectional estimation results for the one-factor (CAPM) and two-factor (ICAPM) capital asset pricing models using the
variance risk premium as the hedging factor:
Re

jt
= �0 + �mˇjmt + �vrpˇjvrpt + ujt .

The test assets are the returns on the 25 FF portfolios plus 17 industry portfolios in excess of the T-bill rate. We report risk premium parameter estimates (�̂), standard errors
under the Fama–MacBeth (FM) methodology in parenthesis, and the Shanken (SH) errors-in-variable-robust standard errors in brackets. The overall goodness of model fit is
measured by the two following statistics:

Statistic 1:

∑T

t=1
(TSSt −RSSt )∑T

t=1
TSSt

; Statistic 2: 1
T

T∑
t=1

(
1 − RSSt

TSSt

)
.

TSS and RSS denote the Total Sum of Squares and the Residual Sum of Squares, respectively.

risk premium to the market factor, reflecting an improvement257

in the fit of the model. Hence, the variance risk premium, as the258

second factor in an ICAPM framework, seems to contain some259

relevant information for explaining the cross-section of average260

returns.261

For all other horizons, the two pricing specifications are rejected262

by the J-test at the standard 5% significance level, although the263

enlarged specification at the 2-month horizon presents a p-value264

of 0.04. The risk aversion estimate increases with the horizon. The265

estimated coefficient for the variance risk premium is always pos-266

itive, with a relatively low standard error for maturities of six and267

twelve months. The monthly average pricing errors of the CAPM268

and the two-factor model are higher than those obtained for the269

shortest horizon. The reduction in MAPE by introducing the VRP as270

the second factor for asset pricing is negligible at 2- and 3-month271

horizons, but it is around 16% at the 1-month horizon, and 18% at272

the 6- and 12-month horizons.273

Panel B of Table 2 displays estimation results using the inverse274

of the matrix of second order moments of excess returns as weight-275

ing matrix. Therefore, the pricing specification tests are now based276

on the traditional HJ-distance.11 Neither one of the two alterna-277

tive pricing specifications are rejected at the one-month horizon at278

the 1% significance level. On the contrary, both specifications are279

rejected at conventional significance levels for all other horizons.280

As before, the relative risk aversion coefficient increases with the281

horizon, but it is uniformly lower than in Panel A. The coefficient of282

the variance risk premium is smaller than in Panel A, close to zero283

except at the one-month horizon, and it is estimated with large284

standard errors. As a consequence, the contribution of the variance285

risk premium is now much smaller than when estimating with the286

identity matrix. Asset prices in our sample are much better fitted287

under the first-step GMM estimates. In fact, MAPE is lower for all288

horizons by at least 25%, relative to estimates obtained under the289

HJ-metric.290

11 We could have also used the optimal GMM weighting matrix; that is, the
variance–covariance matrix of pricing errors, instead of a pre-specified matrix. How-
ever, that choice would have precluded the comparison between the values of the
objective function for different specifications of the SDF. To establish that compar-
ison, we need to use the same weighting matrix for each SDF specification. On the
other hand, we are also specifically interested in pricing the original portfolios,
which is why we also emphasize the use of the identity as weighting matrix. In
any case, the correlations among the pricing errors are taken into account when
computing the standard errors of the parameter estimates, as shown in Appendix
A. See Cochrane (2005) for a detailed discussion of these issues.

As an alternative way to compare the two model specifications, 291

we now compute the time series for the SDFs obtained with 292

the parameters estimated with an identity weighting matrix. To 293

capture the strong cross-sectional and time-series variation of 294

expected returns, we need a SDF with enough volatility. Moreover, 295

0
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Two factors ICAPM with VRP

Fig. 4. Fitted expected returns vs. average realized returns. January 1996 to January
2007. This figure shows realized returns on the horizontal axis and fitted expected
returns on the vertical axis for 25 size and book-to-market sorted portfolios and 17
industry portfolios. For each portfolio, the realized average return is the time-series
average of the portfolio return, while the fitted expected return is the fitted value
for the expected return from the corresponding model.
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Fig. 5. Variance risk premium betas across 25 Fama–French and 17 industry portfolios from a pooled OLS regression with two regimes based on a market return threshold.
January 1996 to January 2007.

its volatility should be high at the beginning of recessions and296

low when expansion periods begin. Fig. 2 shows the time-series297

of estimated SDFs for the two asset pricing models, for the one-298

and six-month horizons. At the shortest maturity, the SDF for the299

one-factor model becomes more volatile and with higher peaks300

in declining stock market periods once we add the variance risk301

premium as the second factor. This contribution of the variance302

risk premium is consistent with the relatively best results pro-303

vided by the variance risk premium-based ICAPM relative to the304

one factor model in Table 2. At the six-month horizon, adding305

the variance risk premium again increases the volatility of the306

estimated SDF, relative to the one-factor model. This extensive307

representation of the SDF over the whole sample seems quite308

revealing of the difference between the two specifications. Fur-309

thermore, the reduction in MAPE indicates that the increased310

volatility in SDF actually helps pricing the portfolios in our311

sample.312

Independently of the non-concluding global evaluation of the313

model through the J-test, it is worthwhile to examine the model314

ability to explain portfolio prices in detail. We now describe which315

specific portfolios the model is more able to price correctly. Fig. 3316

shows the average over time of the absolute pricing errors (APE)317

for each of the 42 original portfolios at the one- and six-month318

horizons, under the CAPM as well as under the ICAPM specifica- 319

tion that incorporates the variance risk premium. When we add 320

the variance risk premium to the one-factor model, the APE is 321

reduced for most of the 42 portfolios considered. More specifi- 322

cally, the two-factor model reduces the APE for three out of the 323

five extreme growth portfolios, FF31, FF41, and FF51 at both hori- 324

zons. Interestingly, this is not the case for FF11, the portfolio 325

of growth and small assets, whose performance shows a higher 326

APE, or for the FF21 portfolio, whose pricing errors are essen- 327

tially equal under the two specifications. It is also important to 328

point out that the variance risk premium consistently helps pric- 329

ing the extreme value Fama–French portfolios (FF15, FF25, FF35, 330

and FF45).12 Finally, at the one-month horizon, the ICAPM achieves 331

a better fit for portfolios FF12 throughout F15 (smallest assets) 332

than the one-factor model. This evidence therefore suggests that 333

the VRP factor contributes to an improvement in pricing extreme 334

value, extreme growth and small-firm portfolios. Regarding indus- 335

try portfolios, it turns out that adding the variance risk premium 336

leads to a smaller APE for Mines, Oil, Machinery and Utilities at both 337

12 With the exception of the largest FF55 portfolio.
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Fig. 6. Fitted expected returns vs. average realized returns from cross-sectional
regressions under two-regime betas based on a market return threshold. January
1996 to January 2007. This figure shows realized returns on the horizontal axis
and fitted expected returns on the vertical axis for 25 size and book-to-market
sorted portfolios and 17 industry portfolios. For each portfolio, the realized aver-
age return is the time-series average of the portfolio return, while the fitted
expected return is the fitted value for the expected return from the corresponding
model.

horizons. Uncovering the characteristics of these sectors that pro-338

vide a better fit in prices remains an interesting issue for further339

research.340

5.2. The linear version of the two-factor ICAPM341

Estimating a tight theoretical model with a relatively short time342

series data can easily lead to a significant loss of efficiency in estima-343

tion that may condition the results of the tests for model adequacy.344

Despite the fact that the VRP seems to contain significant incremen-345

tal information when pricing the cross-section of our test portfolios,346

especially at the shortest horizon, it should be recognized that the347

estimated coefficient of the VRP at this horizon is obtained with348

a large standard error. This consideration moves us to analyze in349

this section the pricing results obtained for the 25 Fama–French350

and the 17 industry portfolios under the linear beta representa-351

tion of Eq. (7) for the one-month horizon. We therefore perform352

the well known Fama and MacBeth (1973) two-pass cross sectional353

analysis in which the monthly cross-sectional regressions are given354

by:
355

Re
jt = �0 + �mˇjmt + �vrpˇjvrpt + ujt (8)356

Table 4
Estimates and standard errors of alphas and betas from a pooled OLS regression with
two regimes based on a market return threshold, January 1996 to January 2007.

Extremely low market return Regular market return

ˆ̨ ˆ̌
m

ˆ̌ vrp ˆ̨ ˆ̌
m

ˆ̌ vrp

Estimates 0.0093 1.0523 −0.0677 0.0022 0.8814 −0.0007
St. errors 0.0161 0.1467 0.0073 0.0011 0.0162 0.0015

This table reports the overall market beta and the variance risk premium beta from
a pooled OLS time-series regression under a two-regime specification defined by
a given market return. The market return threshold is simultaneously estimated
with the two regressions. The test assets are the 25 FF portfolios and 17 industry
portfolios, with the returns in excess of the T-bill rate. The maximum likelihood
estimate is the threshold level for which the least square estimates of the regressions
for the good and bad regimes lead to the lowest aggregate residual sum of squares:

Min
{u,˛,ˇm,ˇvrp }

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

42∑
j=1

T1(u)∑
t=1

(
Re

jt
− ˛1(u) − ˇm1(u)Re

mt − ˇvrp1(u)VRPt+1
t

)2

+
42∑
j=1

T2(u)∑
t=1

(
Re

jt
− ˛2(u) − ˇm2(u)Re

mt − ˇvrp2(u)VRPt+1
t

)2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

where u is the market return threshold, and ˇm1, ˇvrp1, and ˇm2, ˇvrp2 are the market
and the variance risk premium betas for the regime with the market return above
and below the threshold, respectively.

The results are presented in Table 3. Columns 1–3 report the risk 357

premia estimates, together with the Fama–MacBeth and Shanken’s 358

(1992) standard errors. Columns 4 and 5 provide two pseudo-R2
359

statistics based on the residual sum of squares of the cross-sectional 360

regressions. The coefficient associated with the variance risk 361

premium beta turns out not to be statistically different from zero.13
362

But as in the non-linear model, it looks as if this could be more 363

a consequence of estimating the risk premium for the variance 364

swap payoff with low precision, since the incorporation of the vari- 365

ance risk premium as hedging factor leads to an increase in the 366

cross-sectional overall goodness of fit from 0.237 to 0.358, or from 367

0.334 to 0.462, depending upon the statistical measure we may 368

employ. The better fit of the linear model after incorporating the 369

variance risk premium can be clearly appreciated in the two graphs 370

of Fig. 4, that contain fitted expected returns versus average real- 371

ized returns for the 42 portfolios for the CAPM and the ICAPM. The 372

largest revisions occur for the FF25 portfolio, and for the Steel and 373

Mine industry portfolios. The variance risk premium also improves 374

average pricing for the small-value Fama–French portfolios, FF14 375

and FF15, which is consistent with the evidence reported on the 376

GMM estimates.
377

5.3. The linear version of the two-factor ICAPM with two regimes 378

based on a market return threshold 379

As suggested by our proposed SDF, stock returns should react 380

very differently to the variance risk premium depending upon the 381

state of the economy. In fact, as we already pointed out, the vari- 382

ance risk premium has very distinct compensation behavior for 383

negative tail events. The previous non-significant cross-sectional 384

results ignore the possibility of different conditional sensitivities of 385

stock returns to the variance swap payoffs on “bad” versus “good” 386

scenarios. We now want to analyze whether the actual informa- 387

tion content of the variance risk premium occurs mainly during 388

recessions. 389

13 As expected, under the linear specification, the sign of the coefficient associated
with the variance risk premium is negative.
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Table 5
Estimates and standard errors of intercepts and risk premia for the market threshold two-regimes Fama–MacBeth two-pass cross-sectional regressions, January 1996 to
January 2007.

�̂0 �̂m �̂vrp Statistic 1 Statistic 2

FM estimate 0.00438 0.00377 0.188 0.278
FM St. error (0.00526) (0.00613)
SH St. error [0.00526] [0.00746]

FM estimate 0.00247 0.00437 −0.26525 0.274 0.412
FM St. error (0.00467) (0.00642) (0.19408)
SH St. error [0.00467] [0.00739] [0.21250]

This table presents the Fama–MacBeth two-step cross-sectional estimation results for the one-factor (CAPM) and two-factor (ICAPM) capital asset pricing models using the
variance risk premium as the hedging factor:
Re

jt
= �0 + �mˇ+/−

jmt
+ �vrpˇ+/−

jvrpt
+ ujt ,

where ˇ+/−
jmt

and ˇ+/−
jvrpt

denote the betas in the corresponding states.

The test assets are the 25 FF portfolios and 17 industry portfolios, with returns in excess of the T-bill rate. We report risk premia parameter estimates (�̂), standard errors
under the Fama–MacBeth (FM) methodology in parenthesis, and the Shanken (SH) errors-in-variable-robust standard errors in brackets. The overall goodness of model fit is
measured by two statistics:

Statistic 1:

∑T

t=1
(TSSt −RSSt )∑T

t=1
TSSt

; Statistic 2: 1
T

T∑
t=1

(
1 − RSSt

TSSt

)
.

TSS and RSS denote the Total Sum of Squares and the Residual Sum of Squares, respectively.

In order to investigate this issue, we allow for market and vari-390

ance risk premium betas to change over time as a function of the391

market state. We define factor regression regimes as a function392

of a given level of market returns, and estimate such threshold393

simultaneously with the betas for the market and the variance risk

premium in each regime. In each regime we use the pooled data for 394

the 42 portfolios for the corresponding periods. This is a Threshold 395

Regression Model, which we estimate under the assumption of a 396

Normal error term. The maximum likelihood estimate is the thresh- 397

old level for which the least squares estimates of the regressions

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

D
ec
-9
7

A
pr
-9
8

A
ug
-9
8

D
ec
-9
8

A
pr
-9
9

A
ug
-9
9

D
ec
-9
9

A
pr
-0
0

A
ug
-0
0

D
ec
-0
0

A
pr
-0
1

A
ug
-0
1

D
ec
-0
1

A
pr
-0
2

A
ug
-0
2

D
ec
-0
2

A
pr
-0
3

A
ug
-0
3

D
ec
-0
3

A
pr
-0
4

A
ug
-0
4

D
ec
-0
4

A
pr
-0
5

A
ug
-0
5

D
ec
-0
5

A
pr
-0
6

A
ug
-0
6

D
ec
-0
6

A
pr
-0
7

A
ug
-0
7

D
ec
-0
7

R�2 ICAPM - R�2 CAPM
Regression with rolling OLS betas 

R�2 ICAPM-R�2 CAPM
Regression with two regimen OLS betas

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

D
ec
-9
7

A
pr
-9
8

A
ug
-9
8

D
ec
-9
8

A
pr
-9
9

A
ug
-9
9

D
ec
-9
9

A
pr
-0
0

A
ug
-0
0

D
ec
-0
0

A
pr
-0
1

A
ug
-0
1

D
ec
-0
1

A
pr
-0
2

A
ug
-0
2

D
ec
-0
2

A
pr
-0
3

A
ug
-0
3

D
ec
-0
3

A
pr
-0
4

A
ug
-0
4

D
ec
-0
4

A
pr
-0
5

A
ug
-0
5

D
ec
-0
5

A
pr
-0
6

A
ug
-0
6

D
ec
-0
6

A
pr
-0
7

A
ug
-0
7

D
ec
-0
7

Fig. 7. Differences between adjusted R2 from monthly cross-sectional regressions under rolling OLS and two-regime beta estimates. January 1996 to January 2007.
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for the good and bad regimes lead to the lowest aggregate residual398

sum of squares:399

Min
{u,˛,ˇm,ˇvrp}

⎧⎨
⎩

42∑
j=1

T1(u)∑
t=1

(
Re

jt − ˛1(u) − ˇm1(u)Re
mt − ˇvrp1(u)VRPt+1

t

)2
400

+
42∑
j=1

T2(u)∑
t=1

(
Re

jt − ˛2(u) − ˇm2(u)Re
mt − ˇvrp2(u)VRPt+1

t

)2

⎫⎬
⎭ , (9)401

where u is the market return threshold, and ˇm1, ˇvrp1, and ˇm2,402

ˇvrp2 are the market and variance risk premium betas for the403

regimes above and below the threshold, respectively.404

The maximum likelihood estimate of the market return thresh-405

old is −7.20%. This is an extreme return that splits the sample406

into “good/regular” regime for the 95% of the sample, and a “very407

low/very bad” regime that includes 5% of the sample. Given this par-408

tition, the results for the two-regime betas are reported in Table 4.409

The difference on the overall variance risk premium betas between410

both regimes are striking. The variance risk premium beta is highly411

significant and equal to −0.067. Since the variance risk premium is412

negative for most periods, long positions on variance swaps have413

positive payoffs only in those states in which the realized volatil-414

ity is high enough to compensate the fears embedded in the risk415

neutral expectation of volatility. Moreover, it is also well known416

that volatility increases in periods of extremely low returns. This417

explains the large negative and highly significant variance risk pre-418

mium beta in bad states. On the other hand, the variance risk419

premium beta for periods with positive or relatively small negative420

returns becomes practically zero. Even more illustrative is the evi-421

dence contained in Fig. 5 in which we present the variance risk pre-422

mium betas for both regimes for each portfolio separately. For most423

portfolios, the variance risk premium betas become negative and424

large in bad states. However, they are practically zero in good and425

regular states. Interestingly, the extreme small-growth portfolios426

and construction have positive variance risk premium betas in bad427

states. This implies that the variance swap does not play its hedg-428

ing role relative to these portfolios. It should be recalled that our429

sample period coincides with the boom in the real estate industry.430

Given this evidence, we now run the Fama–MacBeth two-pass431

cross sectional regressions using for the market return and the vari-432

ance risk premium the appropriate betas for the market state in433

each period:434

Re
jt = �0 + �mˇ+/−

jmt
+ �vrpˇ+/−

jvrpt
+ ujt, (10)435

where ˇ+/−
jmt

and ˇ+/−
jvrpt

denote the betas in the appropriate “good” or436

“bad” states. As before, Fig. 6 shows a clear improvement in fit when437

we include the two-regime variance risk premium betas relative to438

the CAPM. More precisely, Table 5 reports the risk premia coeffi-439

cients from the cross-sectional regression of expression (10). The440

compensation for the variance risk premium beta becomes much441

more negative than in Table 3 moving from −0.083 to −0.265 with a442

clear increase in precision. Moreover, the two measures of goodness443

of fit employed in the paper increase from 0.188 to 0.274 and from444

0.278 to 0.412 when we add to the cross-sectional regression the445

variance risk premium betas conditional on the market threshold.446

To summarize our findings, Fig. 7 contains the monthly differ-447

ences between the adjusted R2 statistic from each Fama–MacBeth448

cross-sectional regressions with and without the variance risk beta449

as an explanatory variable. Independently of using a market thresh-450

old in the estimation of betas, we find an increase in the explanatory451

power of the two-factor ICAPM relative to the one-factor CAPM452

model in all months of our sample. We may therefore conclude453

that the variance risk premium contains incremental information 454

for asset pricing over and above the market portfolio. 455

6. Conclusions 456

Recent available evidence show that the excess return on the 457

variance swap contract hedges equity market risks, interest rate 458

and business cycle risks. This evidence motivates the consideration 459

of a two-factor ICAPM with the variance risk premium playing the 460

role of a hedging portfolio. The question is whether the variance risk 461

premium acts as a sufficient statistic summarizing the information 462

contained in a variety of risk indicators that might be potentially 463

relevant for asset valuation. 464

Specification tests based on GMM estimates using the identity 465

matrix as metric do not reject the model at one- and two-month 466

horizons at conventional significance level, although the opposite 467

is obtained at the remaining horizons. The time-varying behavior 468

of the estimated SDF under the two-factor model presents a rela- 469

tively more volatile behavior than the simple one-factor model, and 470

pricing errors on individual portfolios are generally lower when 471

the variance risk premium is incorporated into the model. More 472

specifically, and relative to the one-factor model, the variance risk 473

premium seems to explain small and value stocks, as well as Mines, 474

Steel, Oil, Machinery, and Utilities. This is reflected in a reduction in 475

global measures of fit between 16 and 18% for 1-, 6- and 12-month 476

horizons, even though the reduced size of pricing errors does not 477

seem to be small enough to not reject the model at these longer 478

horizons according to the standard test for over-identification con- 479

straints. The linearized version of the model supports these results 480

by providing a clearly improved fit to observed returns for the 25 481

Fama–French portfolios and the 17 industry portfolios, always at 482

the one-month horizon. 483

Although it is standard practice, considering time-invariant 484

parameter values for the full sample period might be too strong an 485

assumption to make the model compatible with the data. When 486

we include a recession threshold in the estimation of the vari- 487

ance risk premium betas in the linearized version of the model, we 488

obtain that the compensation to the variance risk premium beta 489

in asset pricing is limited to recession periods. Hence, the role of 490

the variance risk premium as a pricing factor seems to concentrate 491

on periods of significant market downturns. The cross-sectional 492

overall measures of fit for the two-factor ICAPM relative to the 493

one-factor CAPM specification increase independently of using con- 494

ditional bad state betas or constant betas. The increase in monthly 495

adjusted R2 in the cross sectional regression from adding the vari- 496

ance risk premium beta is often sizeable. Overall, our results suggest 497

that the premium in variance swaps contains relevant informa- 498

tion for asset pricing, possibly because summarizes information 499

contained in a variety of macroeconomic and financial risk indi- 500

cators. Analyzing the distinct gains in fitting prices of the different 501

portfolios remains as an interesting issue for further research. 502
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Appendix A.517

Let Re
t be the N × 1 vector of excess return of the N assets at time t518

and mt(�) be one out of the two specifications of the SDFs described519

in Section 4, where � is the vector of the preference parameters for520

each particular specification. We define an N × 1 vector of moment521

conditions containing the pricing errors generated by the model at522

time t,523

ft(�) = [Re
t − mt(�)Re

t ], (A.1)524

and the corresponding sample averages,525

gT (�) =
∑T

t=1ft(�)

T
(A.2)526

Then GMM estimator minimizes the following quadratic form527

gT (�)′WT gT (�) (A.3)528

where WT is a weighting N × N matrix.529

For estimation, we could use the optimal weighting matrix in530

Hansen (1982), S−1
T , whereQ3531

ST =
∑T

t=1ft(�)ft(�)′

T
(A.4)532

Instead of that, we employ a pre-specified weighting matrix533

which is either the identity matrix (for the results of Panel A of534

Table 4) or the matrix of the second moments of excess returns (for535

the results of Panel B of Table 4).536

The asymptotic variance–covariance matrix of the GMM esti-537

mates is given by538

V = 1
T

(D′
T WT DT )−1D′

T WT ST WT DT (D′
T WT DT )−1, (A.5)539

where DT is a matrix of partial derivatives defined by540

DT =
∑T

t=1∂ft(�)/∂(�)

T
(A.6)541

Then, the standard errors of the estimated coefficients �̂ are542

computed from the estimated variance:543

V̂ = 1
T

(
D̂′

T WT D̂T

)−1
D̂′

T WT ŜT WT D̂T

(
D̂′

T WT D̂T

)−1
, (A.7)544

where D̂T and ŜT are obtained replacing � by �̂ in DT and ST, respec-545

tively.546

The evaluation of the model performance is carried out by test-547

ing the null hypothesis:548

H : T[Dist(�)] = 0, (A.8)549

with Dist =
√

g(�)′Wg(�) where, as mentioned above, the weight-550

ing matrix, W, is either the identity matrix or the second moment551

matrix of excess returns.552

If the weighting matrix is optimal, T[Dist(�̂)]
2

is asymptoti-553

cally distributed as a Chi-square with N − P − 1 degrees of freedom,554

where P is the number of parameters. However, for any other555

weighting matrix (including the identity matrix), the distribution556

of the test statistic is unknown. Jagannathan and Wang (1996)Q4557

show that, in this case, T[Dist(�̂)]
2

is asymptotically distributed558

as a weighted sum of N − P − 1 independent Chi-square random559

variables with one degree of freedom. That is560

T[Dist(�̂)]
2 d→

N−P−1∑
i=1

�i�
2
i (1), (A.9)561

where �i, for i = 1, 2, . . ., N − P − 1, are the positive eigenvalues of 562

the following matrix: 563

A = S1/2
T W1/2

T

[
IN −

(
W1/2

T

)−1
DT

(
D′

T WT DT

)−1
D′

T W1/2
T

]
564

×
(

W1/2
T

)′(
S1/2

T

)′
(A.10) 565

in which X1/2 means the upper-triangular matrix from the Choleski 566

decomposition of X, and IN is a N-dimensional identity matrix. 567

Therefore, in order to test the different models we estimate, we 568

proceed in the following way. First, we estimate the matrix A by 569

Â = Ŝ1/2
T W1/2

T

[
IN −

(
W1/2

T

)−1
D̂T

(
D̂′

T WT D̂T

)−1
D̂′

T W1/2
T

]
570

×
(

W1/2
T

)′(
Ŝ1/2

T

)′
(A.11) 571

and compute its nonzero N − P − 1 eigenvalues. Second, we gener- 572

ate {vhi}, h = 1, 2, . . ., 100, i = 1, 2, . . ., N + 1 − P, independent random 573

draws from a �2(1) distribution. For each h, uh =
∑N−P−1

i=1 �ivhi 574

is computed. Then we compute the number of cases for which 575

uh > T[Dist(�̂)]
2
. Let p denote the percentage of this number. We 576

repeat this procedure 1000 times. Finally, the p-value for the speci- 577

fication test of the model is the average of the p values for the 1000 578

replications. 579
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