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Abstract

We provide an analytical discussion of the optimal hedge ratio under discrepancies between

the futures market price and its theoretical valuation according to the cost-of-carry model. As-

suming a geometric Brownian motion for spot prices, we model mispricing as a specific noise

component in the dynamics of futures market prices. Empirical evidence on the model is pro-

vided for the Spanish stock index futures. Ex-ante simulations with actual data reveal that

hedge ratios that take into account the estimated, time varying, correlation between the com-

mon and specific disturbances, lead to using a lower number of futures contracts than under a

systematic unit ratio, without generally losing hedging effectiveness, while reducing transaction

costs and capital requirements. Besides, the reduction in the number of contracts can be sub-

stantial over some periods. Finally, a mean–variance expected utility function suggests that the

economic benefits from an optimal hedge can be substantial.
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1. Introduction

Since its launching in January 1992, the Ibex 35 futures contract quickly became

the most actively traded derivative contract in Meff Renta Variable, the Spanish
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equity derivatives exchange. In fact, the futures market on the Spanish Ibex 35 stock

index is also one of the most active futures stock index markets in the world. Accep-

tance of a market for a stock index futures contract is related to the hedging ability

of this derivative instrument. Operating with futures, it is not only possible to guar-

antee a certain profit, but to also bound the losses obtained over a given time period.
Hedging spot positions in the Spanish stock market became especially relevant in re-

cent years, because the systematic decrease in interest rates as a consequence of the

fiscal and monetary policies aimed to achieve the European Union, caused a dra-

matic reallocation of private savings from riskless assets to stock exchange positions.

The relevant issue in a hedging operation is to determine the hedge ratio, which

provides the number of futures contracts that must be sold to counteract the oppo-

site evolution in spot prices, so that, the potential losses in one market can be offset

by the gains obtained in the other. A biased estimation of the hedge ratio implies that
the losses in one market will be higher or lower than the profits in the other one. This

is troublesome for a hedging strategy, whose aim is to transform a position in the

spot market into a riskless portfolio.

According to the cost-of-carry valuation (the standard forward pricing model),

which assumes perfect markets and non-stochastic interest rates and dividend yields,

the theoretical price at time t (F �
t;T ) of an index futures contract maturing at time T

equals the opportunity cost of keeping a basket replicating the spot index between t

and T:

F �
t;T ¼ Steðr�dÞðT�tÞ; ð1Þ

where St is the index value and (r � d) is the net cost of carry associated to the
underlying stocks in the index, i.e., the riskless rate of return minus the dividend

yield of the stocks in the index. Alternatively, Eq. (1) can be written

rs;t ¼ rf �;t þ ðr � dÞ; ð2Þ

where rs;t ¼ ln St=St�1ð Þ and rf �;t ¼ lnðF �
t;T=F

�
t�1;T Þ, the spot and theoretical futures

returns, respectively. Under the previous assumptions, the relationship in (2) implies

that: (a) the variance of returns in the spot market equals the variance of returns in
the futures market, (b) the contemporaneous rates of return of the underlying stock

index and the futures contract are perfectly and positively correlated, and (c) the

non-contemporaneous rates of return are uncorrelated and no lead–lag relationships

between returns should appear. However, in the presence of market imperfections

such as transactions costs, asymmetric information, capital requirements and short-

selling restrictions, there could be discrepancies between the traded futures price and

its theoretical valuation according to the cost-of-carry model (see Mackinlay and

Ramaswamy, 1988; Lim, 1992; Miller et al., 1994; Yadav and Pope, 1990, 1994;
B€uuhler and Kempf, 1995; among others).
Market imperfections may also produce a lead–lag relationship between spot and

futures market returns, as well as between their volatilities. Then, it may be possible

to anticipate price movements and risk fluctuations in one market from past infor-

mation in the other market, a relevant question when using the futures contract as
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a hedging instrument for risky stock portfolios. In fact, there is a wealth of studies

showing empirical evidence for the main international stock index futures markets

supporting the existence of such lead–lag relationships (see, for example, Stoll and

Whaley, 1990; Wahab and Lasghari, 1993; Pizzi et al., 1998; Iihara et al., 1996;

Koutmos and Tucker, 1996; Racine and Ackert, 1999; among others).
We start by providing empirical evidence in favor of significant mispricing in the

Spanish stock index futures market. Assuming that the evolution of the stock index

and the futures market returns are driven by heteroscedastic, geometric Brownian

motion processes, we include a market-specific noise in the dynamics of theoretical

futures returns. The motivation for such a noise is that, by itself, it produces a spread

between theoretical and market futures prices, although such a hypothesis would

only make sense when volatility in the spot and futures markets could not be sum-

marized by a single factor. We use Engle and Kozicki (1993) approach to test for a
single common ARCH factor between the two markets, conclusively rejecting such

hypothesis. Hence, the two markets do not share an identical source of volatility,

against the cost-of-carry model.

We also provide empirical evidence for this model using data from 20/12/93 to 20/

12/96 from the Spanish stock index futures market. A bivariate error correction

model with GARCH perturbations is used to estimate the conditional second mo-

ments of market returns. Our model has the following characteristics: (a) it incorpo-

rates the long-run equilibrium relationship between spot and futures prices, (b) it
takes into account the cross-market interactions between returns and volatilities,

(c) it does not impose a constant conditional correlation coefficient in the matrix

of second moments for market returns, a significant difference with most previous

analysis (Park and Switzer, 1995; Iihara et al., 1996; Koutmos and Tucker, 1996;

Racine and Ackert, 1999; Lien and Tse, 1999; among others), and (d) it captures

the presence of an intraday U-shaped seasonal pattern for both spot and futures

market volatility. Our model specification and technique estimation allow us to cap-

ture stochastically this intraday seasonal pattern for market volatilities rather than
through deterministic variables, as it is standard in the literature. We estimate the

model with hourly returns, using the nearest to maturity contract, to then recover

estimates for the parameters in the theoretical model. Our estimates imply a less than

perfect correlation between spot and futures returns, leading to an optimal hedge ra-

tio below one to hedge the spot index portfolio, without losing any hedging effective-

ness in ex-ante simulations of hedging strategies using actual data.

The rest of the paper is organized as follows. The optimal hedge ratio under de-

partures from cost of carry valuation is analytically derived in Section 2, and its main
properties are discussed. In Section 3 we describe the data used in our analysis. We

start Section 4 with some preliminary empirical evidence on regularities in returns

and volatilities in Spanish spot and futures stock markets. We then present the

econometric approach followed to estimate dynamic relationships across markets

in conditional first and second order moments for returns, discussing the main re-

sults. In Section 5 we recover estimates for the theoretical parameters of the model.

In Section 6 we make ex-ante simulations to investigate if taking into account depar-

tures from the theoretical cost-of-carry valuation enhances the hedging effectiveness
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of the futures contract. Finally, Section 7 summarizes and presents concluding re-

marks.

2. The optimal hedge ratio

Let us assume that spot prices evolve according to a geometric Brownian motion:

dSt ¼ ls;tStdt þ rs;tStdz1;t; ð3Þ

where St is the index value, ls;t and rs;t are the conditional mean and standard de-

viation of spot returns, and dz1;t ¼ e1t
ffiffiffiffiffi
dt

p
, with e1t i.i.d.�N (0, 1), a Wiener process.

Taking into account the no arbitrage relationship between spot and futures prices

(1), the process for the evolution of the theoretical price of a futures contract can be

obtained applying ÎIto�s lemma:

dF �
t;T ¼ lf ;tF

�
t;Tdt þ rs;tF �

t;Tdz1;t; ð4Þ

where lf ;t ¼ ls;t � ðr � dÞ. In perfect markets, the no arbitrage equilibrium rela-

tionship is expected to hold, and the volatility of spot and futures returns should be

the same. However, there is a wealth of studies showing systematic discrepancies

between the traded futures price and its theoretical price according to the cost-of-
carry valuation. In that situation, (4) would not be the correct representation of the

dynamic evolution of the traded futures price. We model such discrepancy by in-

troducing a second noise specific to the derivative market:

dFt;T ¼ lf ;tFt;Tdt þ rs;tFt;Tdz1;t þ rN ;tFt;Tdz2;t; ð5Þ

where Ft;T is the traded futures price and dz2;t ¼ e2t
ffiffiffiffiffi
dt

p
, with e2t i.i.d.�N (0, 1). We do

not impose any restriction on the conditional correlation between the common noise

(e1t) and the specific disturbance for the futures market (e2t), which we denote by q12;t.
Under (5), market returns will not exhibit a perfect and positive correlation. From

(3) and (5), the correlation coefficient between returns, qsf ;t, can be written

qsf ;t ¼
Covt

dSt
Stdt

;
dFt;T
Ft;Tdt

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vart

dSt
Stdt

� �� �
Vart

dFt;T
Ft;Tdt

� �� �s ¼
r2s;t þ q12;trs;trN ;tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2s;t r2s;t þ r2N ;t þ 2q12;trs;trN ;t

� �r :

ð6Þ
Only when rN ;t ¼ 0, that is, when the two markets share the same noise, a perfect and
positive conditional correlation between market returns will be observed.

It is assumed that the hedger holds a long spot position bt and intends to short
futures to minimize the variance of the return from the hedged position over a given

investment horizon. The hedge ratio is the number of monetary units allocated to

the short futures position per monetary unit invested in the cash market. Denoting

by ht the short futures position, the investor�s hedging decision in a two period
framework is
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Min
fhtg

Vart bt
dSt
Stdt

�
� ht

dFt;T
Ft;Tdt

�
;

s:t:
dSt ¼ ls;tStdt þ rs;tStdz1;t;

dFt;T ¼ lf ;tFt;Tdt þ rs;tFt;Tdz1;t þ rN ;tFt;Tdz2;t;

ð7Þ

which amounts to

Min
fhtg

b2t r
2
s;t 1

"
þ ht

bt

� �2
1
�

þ d2t þ 2q12;tdt

�
� 2 ht

bt

� �
ð1þ q12;tdtÞ

#
; ð8Þ

where dt ¼ rN ;t=rs;t denotes the relative size of the specific noise in terms of the

common noise. As shown in Appendix A, this problem leads to the optimal hedge

ratio:

h�t
bt

¼
r2s;t þ q12;trs;trN ;t

r2s;t þ r2N ;t þ 2q12;trs;trN ;t
¼

1þ q12;tdt

1þ d2t þ 2q12;tdt

: ð9Þ

This analytical description of the optimal ratio is undetermined only when q12;t ¼ �1
and dt ¼ 1. In this particular case, 1þ d2t þ 2q12;tdt ¼ 1þ q12;tdt ¼ 0, and the objec-
tive function is equal to the variance of the unhedged position, b2t r

2
s;t, regardless of

the hedge ratio. The futures price then becomes non-stochastic and it does not
provide any hedging capability. When this situation arises, the optimal hedge ratio

will be zero if there is any hedging cost.

In the general case, the minimized conditional variance of the hedged position is

b2t r
2
s;t 1

 
þ

1þ q12;tdt

1þ d2t þ 2q12;tdt

� 2
1þ q12;tdt

1þ d2t þ 2q12;tdt

!
¼ b2t r

2
s;td

2
t

1� q212;t
1þ d2t þ 2q12;tdt

ð10Þ

with d2t ð1� q212;tÞ=ð1þ d2t þ 2q12;tdtÞ being the variance reduction factor, i.e., the ratio
between the conditional variances of the hedged and unhedged position.

Proposition 1. The optimal hedge ratio is just a function of: (a) the relative standard
deviation of the specific and common disturbances, and (b) the conditional correlation
between both noises.

Proof. See Eq. (8). �

Proposition 2. If dt ¼ ðrN ;t=rs;tÞ ! 0 the optimal hedge ratio converges to one and the
minimized variance of the global position return approaches zero. Both limits hold
regardless of the correlation between the specific and common innovations.
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Proof. From (9) and (10), h�t =bt ! 1 and the variance reduction factor converges to

zero when dt ¼ ðrN ;t=rs;tÞ ! 0, for any value of q. �

As the relative size of the standard deviation of the specific noise approaches zero,

spot and futures market innovations become increasingly similar. Consequently,
both markets tend to share a common noise and the optimal hedge ratio converges

to one, the optimal value when there are no discrepancies between the traded price of

a futures contract and its valuation according to the cost-of-carry model. As ex-

pected, under no departures from the cost of carry valuation full hedging effective-

ness is achieved and the risky spot position can be safely converted into a riskless

portfolio.

Proposition 3. If dt ¼ ðrN ;t=rs;tÞ ! 1 the optimal hedge ratio converges to zero,
regardless of the correlation between the specific and common innovations.

Proof. From (9), h�t =bt ! 0 when dt ¼ ðrN ;t=rs;tÞ ! 1. �

If the specific futures market noise becomes very large, relative to the common

market noise, spot market fluctuations are relatively negligible. In this case, a small

number of futures contracts is needed to cover the spot position. The minimized

variance of the global position return approaches b2t r
2
t ð1� q212;tÞ, and the variance

reduction factor depends on the correlation between common and specific innova-

tions.

Proposition 4. Under either positive or zero correlation between the specific and
common disturbances, the optimal hedge ratio is positive, less than 1, and decreasing
in dt.

Proof.When q12;t 2 ½0; 1�, (9) is always positive. The inequality 1þ q12;tdt < 1þ d2t þ
2q12;tdt holds, so the hedge ratio is below one. Finally, the derivative of

h�t
bt
in (9) with

respect to dt is negative for q12;t > 0. �

If the specific and common noises are positively correlated, fluctuations in the fu-

tures market tend to follow those of the spot market. Consequently, to cover a spot

position we need to sell futures in a given proportion of the resources allocated to the

long spot position. As dt increases, fluctuations in the futures market amplify those

of the spot index, and an increasingly smaller number of futures needs to be sold, so
the optimal hedge ratio decreases to zero. A similar argument also applies under zero

correlation.

Proposition 5. The optimal hedge ratio is monotonically increasing (decreasing) in the
correlation between specific and common innovations if dt < 1 (>1).

Proof. The derivative of h�t =bt in (9) with respect to q is positive if dt < 1, and positive
if dt > 1. �
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Proposition 6. (i) If the common and specific innovations are perfect and positively
correlated, the optimal hedge ratio is ðh�t =btÞ ¼ 1=ð1þ dtÞ and we achieve full risk
hedging, (ii) if the common and specific noises are perfect and negatively correlated, the
optimal hedge ratio is ðh�t =btÞ ¼ 1=ð1� dtÞ and we again achieve full risk hedging.

Proof. Both results are easily obtained from (9) and (10). �

For non-zero values of dt, and a positive correlation between specific and common

noises, full hedging is only achieved under q12;t ¼ 1 or q12;t ¼ �1. From (6), q12;t ¼ 1
amounts to qsf ;t ¼ 1, perfect correlation between returns in both markets, as as-
sumed by the cost-of-carry valuation model. On the other hand, q12;t ¼ �1 amounts
to either qsf ;t ¼ 1 (if dt < 1), or qsf ;t ¼ �1 (if dt > 1), and in both cases we can get a
perfect hedge. When correlation is less than perfect, the minimized variance of the
hedged position is given by (10), and it is strictly positive.

Proposition 7. The optimal hedge ratio is negative if and only if dt > 1 and
�ð1þ d2Þ=2d < q12;t < �1=dt.

Proof. For a given q12;t, the optimal hedge ratio can be written: h�t =bt ¼ ð1þ
q12;tdtÞ=ð1þ d2t þ q12;tdtÞ ¼ u1ðq12;tÞ=u2ðq12;tÞ, with u1ðq12;tÞ < 0 iff q12;t < �1=dt, and

u2ðq12;tÞ < 0 iff q12;t < �ð1þ d2Þ=2d. When dt < 1, we have: �1=dt < ð1þ d2Þ=2d <
�1 < q12;t, and the optimal hedge ratio is positive. When dt > 1, we have:
�ð1þ d2Þ=2d < �1=dt. In that case, if q12;t < ð1þ d2Þ=2d we have u1ðq12;tÞ < 0,
u2ðq12;tÞ < 0, and h�t =bt > 0. If q12;t > �1=dt, u1ðq12;tÞ > 0, u2ðq12;tÞ > 0, and again
h�t =bt > 0. Finally, if dt > 1 and �1 < q12;t < �1=dt, we have u1ðq12;tÞ < 0, u2ðq12;tÞ >
zz0, and h�t =bt < 0. �

For the range of correlation values between the common and specific noises men-

tioned in the proposition, we should take the same position in both, spot and futures
markets. This makes sense when the specific noise is relatively large (dt > 1) and dis-
plays a large enough negative correlation with the common noise since then the in-

novation in the futures market tends to fluctuate in the opposite direction to the spot

market innovation. This is a situation unlikely to arise in practice.

Figs. 1 and 2 show the optimal hedge ratio as a function of either the correlation

between specific and common noises, q12;t, or their standard deviation ratio, dt, for

given values of the other parameter. Fig. 1 shows that, under positive correlation be-

tween the two noises, the optimal hedge ratio decreases as the standard deviation ra-
tio increases, since then the futures market provides better diversifying opportunities.

Fig. 2 shows that for most correlations, the optimal hedge ratio is quite robust to

moderate changes in the market noise ratio 1, dt.

1 For a large negative correlation, the hedge ratio may be above one if dt is low. There is then also a
significant range for dt in which the optimal decision to minimize the return variance of the global position
is to buy, rather than sell, futures. However, such a large, negative correlation should be considered

unlikely.
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Therefore, as expected, incorporating departures from the cost of carry valuation

of the futures contract enriches the hedging analysis. The model suggests that, if the

futures markets has a specific noise and, consequently, the spot and futures markets

do not share an identical disturbance, the optimal ‘‘short futures position’’ requires a

less than proportional allocation relative to the long spot position provided that the
specific and common noises are uncorrelated or positively correlated. On the other

hand, under a negative correlation between the two noises, the optimal hedge ratio

per unit long spot position might be above or below one, and it might lead in extreme

cases to also taking a long position in the futures market.

3. The data on Spanish markets

We now proceed to analyze the empirical evidence on the model proposed in the

previous section. Data on the futures market on the Ibex 35 Spanish stock market

index was provided by MEFF RV (Mercado Espa~nnol de Futuros, Renta Variable)
for the period December 15, 1993–December 15, 1996. This period is interesting

Fig. 1.

Fig. 2.
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for three reasons: (a) By December 1993, the initial years of exponential growth in

the Spanish stock index futures market had already ended, becoming a highly liquid

market; (b) negotiated volume stabilized around three million contracts per year,

and (c) it covers three different episodes for the Spanish stock market: During

1994, market capitalization registered an annual loss of almost 7%; 1995 was char-
acterized by high price fluctuations and a moderate return, while 1996 showed a sys-

tematic growth in the Ibex 35, with an annual return close to 40%. Hence, the period

analyzed can be considered as a representative sample of all possible market scenar-

ios.

We have matched two data sets: One concerning the price and transaction time

for each trade in the futures contract on the Ibex 35 index, and another with minute

by minute Ibex 35 index data. An important source of bias when estimating condi-

tional second order moments of spot and futures market returns can be the use of
non-synchronous data. We eliminate this possibility by matching each futures price

with the cash index value observed at the same minute. This way, we have two price

series matched to the minute. Since the opening cash index is reflecting closing spot

prices from the previous day, we remove the first hour trading interval for the spot

market 2, and select hourly market prices between 11:00 and 17:00 h. We also ex-

clude overnight returns because they are measured over a longer time period, to

end up with six observations for each trading day. From these hourly prices we gen-

erate the percent return series for each market by taking the first difference of the
natural logarithm of prices, multiplied by 100. Since the nearest to maturity contract

is systematically the most actively traded, only data for the nearby futures contract is

used. Switching is made to the next contract on the third Friday of each month,

when a futures contract matures. Even though in some markets switching to the next

contract is made before maturity to ensure sufficient volume of trade, in the Spanish

market there is enough liquidity to allow for exhausting the contract period. There-

fore, we handle 36 futures contracts along the sample, with 743 trading days. 3 Over-

all, we have 4458 return observations for each market.
For each registered time, we calculate the theoretical price F �

t;T for a futures con-

tract maturing at time T according to the discrete analogue of 1,

F �
t;T ¼ Stð1þ rt;T Þ �

X
i

XT
j1t

dij
Pij

xi;jSjð1þ rj;T Þ; ð11Þ

where: Sj is the cash index at time j, rj;T is the risk free rate of return between t and T,
di;j is the gross dividend paid in period j on the ith component of the Ibex 35, Pij is the
stock market price of that component at time j, and xij is its weight in Ibex 35. We

have used as risk-free return the interest rate on repo operations in the secondary

2 The futures market opens at 10:45 AM. With data between December 1993 and November 1994,

Fern�aandez and Yzaguirre (1996) show that, most often, it is just after 11:00 AM that all the 35 assets in the

Ibex 35 have been negotiated at least once.
3 We could not include data from: 02/14/95, 12/27/96, 05/27/96 and 07/29/96 because they were

incomplete in the Meff Renta Variable tapes.
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market for Spanish Treasury bills. To actually compute theoretical prices, we pro-

ceed backwards starting at maturity of each contract, using actual dividend and

interest rate data. Hence, a cost-of-carry varying according to market conditions is

taken into account. 4 Then, we compute mispricing at time t as the absolute spread
between actual futures market prices Ft;T , and our theoretical cost-of-carry valuation,
Mt ¼jFt;T � F �

t;T j.
Deviations from the theoretical futures price may be positively related to the con-

tract maturity, due to a greater risk of unanticipated dividend changes, unanticipated

earnings or financing costs of marking to market, or difficulties to track the index in

the spot market directly, as suggested by Mackinlay and Ramaswamy (1988), Bhatt

and Caciki (1990), Brenner and Kroner (1995), among others. A regression of aver-

age mispricing on time to maturity yielded a low R2 of 0.10, but a significant coef-
ficient of 0.319, with standard deviation of 0.037. This is evidence that increased
uncertainty leads in fact to larger deviations from the theoretical price for longer ma-

turities.

A different issue concerns the possibility that treating the risk-free interest rate

and the dividend yield as being constant might seriously bias the evidence of mispric-

ing. Even though we have used the actual, time varying net cost-of-carry, we checked

that spurious evidence of mispricing is not produced by a residual effect from time

variation in the cost-of-carry components. Regressions from daily mispricing on in-

terest rates or the dividend yield produced in each case a non-significant slope and a
near to zero R2. When added to time-to-maturity as explanatory variables in the mis-
pricing regression, these variables did not contribute with any significant explanatory

power. This analysis suggests that we can safely consider that indeed, the use of ac-

tual interest rate and dividend data avoids the bias that could arise by imposing a

constant cost-of-carry.

4. Estimating a volatility transmission model

4.1. Some statistical characteristics

Tables 1–3 present descriptive statistics for intraday hourly returns, as well as for

squared returns, in both markets. Table 1 shows the mean, standard deviation, skew-

ness, kurtosis and autocorrelation functions for spot and futures market returns. As

expected, the mean return is very small in both markets, the null hypothesis of a zero

mean not being rejected in either case. There is slight negative skewness and heavy
tails in both return series, compared with the Normal distribution. Departures from

Normality are however, more important in the spot market, where the central cluster

is sharper. Both return series exhibit positive first order autocorrelation, suggesting

that the observed return anticipates a return of the same sign next hour. However,

4 Average daily mispricing was 11.4, 8.4 and 5.8 basis points over 1994, 1995 and 1996, respectively.

Annual cost-of-carry was 4.9%, 6.4% and 5.4% for each of three years.
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Table 1

Summary statistics (market returns)

Spot market Futures market

Mean�103 �0.0281 0.0002

Standard deviation 0.0036 0.0030

Skewness �0.7131 �0.0582
Kurtosis 10.7904 3.4209

qðrt; rt�kÞa
k ¼ 1 0.0758� 0.0241

k ¼ 2 0.0073 0.0029

k ¼ 3 0.0542� 0.0139

k ¼ 4 0.0232 0.0460�

k ¼ 5 �0.0099 0.0181

k ¼ 6 �0.0175 0.0028

k ¼ 7 �0.0231 �0.0451�
k ¼ 8 �0.0216 �0.0121
k ¼ 9 �0.0051 0.0001

k ¼ 10 0.0144 0.0408�

k ¼ 11 0.0043 0.0110

k ¼ 12 0.0250 0.0406�

k ¼ 18 0.0100 0.0296�

k ¼ 24 0.1390� �0.0040

Ljung–Box statisticsb 73.41 (0.00) 54.39 (0.00)

aAutocorrelation function. The standard error for the autocorrelation coefficients can be approximated

by 1=
ffiffiffiffiffiffiffiffiffiffi
4458

p
’ 0:015. An asterisk denotes a coefficient significant at the 5% level.

b Ljung–Box test uses 24 autocorrelation coefficients. Its p-value is shown in parentheses.

Table 2

Autocorrelations functions (squared returns)

Spot market Futures market

qðr2t ; r2t�kÞa
k ¼ 1 0.0874� 0.1435�

k ¼ 2 �0.0028 0.0760�

k ¼ 3 �0.0056 0.0261

k ¼ 4 0.0255 0.0732�

k ¼ 5 0.1015� 0.1001�

k ¼ 6 0.2506� 0.1982�

k ¼ 7 0.0299� 0.0630�

k ¼ 8 �0.0028 0.0397�

k ¼ 9 �0.0135 0.0389�

k ¼ 10 0.0028 0.0315�

k ¼ 11 0.0241 0.0820�

k ¼ 12 0.1341� 0.1464�

k ¼ 18 0.1697� 0.1183�

k ¼ 24 0.1591� 0.1325�

Ljung–Box statisticsb 724.08 (0.00) 800.83 (0.00)

aAutocorrelation function. The standard error for the autocorrelation coefficients can be approximated

by 1=
ffiffiffiffiffiffiffiffiffiffi
4458

p
’ 0:015. An asterisk denotes a coefficient significant at the 5% level.

b Ljung–Box test uses 24 autocorrelation coefficients. Its p-value is shown in parentheses.
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that autocorrelation coefficient is significant at the 5% level just for the spot market.

This is consistent with the argument that infrequent trading of stocks in the index

portfolio causes a larger inertia in the stock index (see, for example, Miller et al.,

1994).

Autocorrelation coefficients for squared intraday returns are displayed in Table 2.

Estimated coefficients slowly decrease to zero, revealing non-linear dependence in the
return series in both markets. Therefore, to analyze the intraday causal relationship

between spot and futures markets, the methodology representing the dynamics of

market returns must take into account higher order dependence, possibly as a result

of changing volatility over time. Interestingly enough, estimated autocorrelation co-

efficients for lags multiple of six are systematically positive and significant, being

much higher than the rest. This structure may be motivated by an intraday seasonal

Table 3

Cross-correlation functions

Returns Squared returns

qðrs;t; rf ;t�kÞa qðr2s;t; r2f ;t�kÞ
k ¼ �24 0.0062 0.0617�

k ¼ �18 0.0321� 0.0618�

k ¼ �12 0.0415� 0.0881�

k ¼ �11 0.0003 0.1191�

k ¼ �10 0.0353� 0.0740�

k ¼ �9 �0.0051 0.0105

k ¼ �8 �0.0066 0.0307

k ¼ �7 �0.0281 0.0215

k ¼ �6 �0.0081 0.1194�

k ¼ �5 �0.0179 0.2490�

k ¼ �4 0.0144 0.0527�

k ¼ �3 0.0281 0.0201

k ¼ �2 0.0123 0.0195

k ¼ �1 0.0309� 0.1037�

k ¼ 0 0.6708� 0.3457�

k ¼ 1 0.1275� 0.1724�

k ¼ 2 0.0198 0.0333�

k ¼ 3 0.0358� 0.0295�

k ¼ 4 0.0255 0.0388�

k ¼ 5 0.0314� 0.0421�

k ¼ 6 0.0102 0.0958�

k ¼ 7 �0.0301� 0.1187�

k ¼ 8 �0.0392� 0.0307�

k ¼ 9 0.0007 0.0245

k ¼ 10 0.0117 0.0012

k ¼ 11 0.0149 0.0048

k ¼ 12 0.0268 0.0569�

k ¼ 18 0.0232 0.0754�

k ¼ 24 0.0094 0.0632�

Note: An asterisk denotes a coefficient significant at the 5% level.
a rs;t and rf ;t�k denote spot and futures market returns in periods t and t � k, respectively. The standard

error for each cross-correlation coefficient can be approximated by 1=
ffiffiffiffiffiffiffiffiffiffiffiffi
4; 458

p
’ 0:015.
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pattern in volatility in both markets, since we have six data points each market day.

This is consistent with Chan et al. (1991) and Daigler (1997), among others, which

find evidence of a U-shape pattern of volatility along the day. Lafuente (1999) has

characterized the same regularity for the spot and futures markets on the Spanish

Ibex 35 index.
Table 3 shows the cross-correlation function between intraday cash and futures

returns. The estimated contemporaneous correlation of 0.67 is high, but it is not

close to one, the value implied by the cost-of-carry model. The first lagged return

in each market seems to contain some forecasting power regarding the return in

the other market, although predictability seems to be more important from the fu-

tures to the spot market than in the other direction. Both estimated coefficients

are positive, showing that, in the short-run, price movements occur in the same di-

rection in both markets.
Since there is not much dynamic structure in returns, squared market returns are a

good proxy for conditional variances. Table 3 presents their cross-correlation func-

tion, suggesting highly persistent cross-market volatility interactions. These prelim-

inary results indicate that a lead–lag relationship exists not only between market

returns, but also between their volatilities. We incorporate these findings in the mod-

eling strategy that follows.

Besides, a contemporaneous correlation well below one suggests that more than a

single common ARCH factor may be needed to explain fluctuations in volatility over
time in both markets. To formally test this hypothesis we provide in Table 4 results

from the Engle and Kozicki (1993) test for an ARCH common feature between the

two return series, showing a clear rejection of this hypothesis, in agreement with our

theoretical model in Section 2.

4.2. The model for returns and volatilities in spot and futures markets

To estimate the conditional variance–covariance matrix of spot and futures re-

turns in a model that correctly represents the dynamics of intraday returns in both

markets, as well as their interactions, a model should be specified capturing (a)

the cross-market dependence between returns, (b) the cross-interactions between

Table 4

Common ARCH features tests

k 1 2 3 4 5 6 7 8 9 10

df 2 5 8 11 14 17 20 23 26 29

min TR2 15.4 17.3 20.6 20.7 41.2 121.7 147.4 154.8 155.0 155.8

Critical values

a ¼ 0:05 6.0 11.1 15.5 19.7 23.7 27.6 31.4 35.2 38.9 42.6

a ¼ 0:01 9.2 15.1 20.1 24.7 29.1 33.4 37.6 41.6 45.6 49.6

Notes: min TR2 shows T times the minimum R2 coefficient in a set of regressions of ðrs;t � drf ;tÞ2 on k lags of

r2s;t, r
2
f ;t and rs;trf ;t: df denotes the degrees of freedom for each value of k. The last two rows show critical

values at the a-significance levels.
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volatilities, and (c) the presence of an intraday seasonal pattern in spot and futures

market volatilities.

We use an error correction 5 model with GARCH innovations. Let rs;t and rf ;t be
the market returns, that is, rs;t ¼ st � st�1, and rf ;t ¼ ft � ft�1, where st and ft denote
the logarithm of spot index and trading futures prices respectively. The dynamics
governing intraday market returns are described by

rs;t
rf ;t

� �
¼ a11 a12

a21 a22

� �
rs;t�1
rf ;t�1

� �
þ bs

bf

� �
ðst�1 � ðc1 þ c2ft�1ÞÞ þ

es;t
ef ;t

� �
; ð12Þ

with et, the vector of innovations having a conditional distribution: et ¼
ðes;tef ;tÞ0 j Xt�1

�N (0, Rt), where Xt�1 is the information set available at time t � 1 and
Rt is the conditional covariance matrix of returns. We include as explanatory vari-

able st�1 � ðc1 þ c2ft�1Þ, an error correction term incorporating the short-run ad-
justing mechanism to deviations from the long-run equilibrium relationship.

From standard notation, the second order moment dynamics corresponding to a

GARCH (p; q) model can be represented:

vechRt ¼ vech�RR þ HqðBÞvech ete
0
t

� �
þ WpðBÞvechRt; ð13Þ

with Uð0Þ ¼ Hð0Þ ¼ 0, B being the backshift operator, et the innovation vector,
vech Rt ¼ ðr2s;t rsf ;t r2f ;tÞ

0
and vech ete0t

� �
¼ ðe2s;t es;tef ;t e2f ;tÞ

0
:

However, we use an alternative VARMA (vector autoregressive moving average)

representation. Consider the 3� 1 stochastic vector:
nt ¼ vechðete0tÞ � vechRt ð14Þ

of deviations to the vector of conditional means.

Substituting (13) into (12) and rearranging:

CrðBÞvechðete0tÞ ¼ vech�RR þ UpðBÞnt; ð15Þ

where CrðBÞ ¼ ½I � ðWpðBÞ þ HqðBÞÞ�, r ¼ maxfp; qg, and UpðBÞ ¼ ½I � WpðBÞ�, that
is, an ARMA(r, p) representation. Motivated by (15), we posit a pure moving av-
erage process for the vector of second order moments of intraday returns:

vechðete0tÞ ¼ vech�RR þ ð/1Bþ /2B
6 þ /3B

12 þ /4B
18Þnt: ð16Þ

which is a version of (15) restricted by WpðBÞ ¼ �HqðBÞ, together with a particular
structure for the WpðBÞ polynomial, aimed to capture seasonality in variance. If the
moving average polynomial has no roots inside the unit circle, this representation

captures a dependence among squared innovations potentially spanning up to three

market days. The following restrictions are introduced: (a) matrices /2, /3, and /4

5 We tested the cointegration hypothesis through three tests proposed by Engle and Granger (1987).

The first one applies the Augmented Dickey and Fuller (1979) statistic to the residuals from the

cointegration equation. Additionally, we also use the tests based on the augmented restricted and

unrestricted vector autoregression representation. The results, not shown in the paper, provided consistent

evidence supporting the presence of a common unit root between the natural logarithm of both market

prices, so that an error correction model for the returns is appropriate.
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are diagonal, and (b) we assume: /112 ¼ /121 ¼ /122 ¼ /123 ¼ /132 ¼ 0, where /1ij denotes
the (i; j) element in matrix /1. These restrictions are not relevant concerning the
objectives of the paper, and they are made only to avoid the numerical difficulties

that would arise when estimating an over-parametrized model. We still permit cross-

market interactions between volatilities through /131 and /113.
Intraday seasonality in volatility is captured by the diagonal elements in matrices

/j ðj ¼ 2; 3; 4Þ; which relate the conditional volatility at a given hour to volatility at
the same hour in previous days. The same applies to the conditional covariance. This

is more general than previous analysis of the main international stock index futures

markets by Park and Switzer (1995), Iihara et al. (1996), Koutmos and Tucker

(1996), Racine and Ackert (1999), among others, since in addition to allowing for

conditional covariances to change over time, we do not assume the conditional cor-

relation coefficient, i.e., the ratio between the conditional covariance and the product
of the conditional standard deviations, to be constant over time.

4.3. Estimation results

Under the assumption of a conditional Gaussian bivariate distribution for the

vector of innovations, the log likelihood for the bivariate GARCH model is

LðhÞ ¼ � 1
2

T logð2pÞ
"

þ
XT
t¼1
log jRtj þ etR

�1
t e0t

#
; ð17Þ

where h is the parameter vector to be estimated, and et ¼ ðes;t ef ;tÞ0. The log likelihood
function is highly nonlinear in h and a numerical maximization technique is required.
We use an exact maximum likelihood algorithm included in the E4 Matlab tool-
box, 6 which uses a state space representation of the model. The optimization al-

gorithm used is BFGS (Broyden, Fletcher, Goldfarb and Shanno). Unconditional

second order moments are used as initial conditions when generating time series for

the conditional variances and covariance. We adopt the following estimation strat-

egy: (a) we first estimate the cointegration equation by ordinary least squares, in-

corporating the residuals as an exogenous vector in the model, and (b) in consistency

with the imposed restrictions, we fix the three elements in vech�RR to be equal to the
estimated unconditional second order moments of market returns in the global
sample. Therefore, the numerical algorithm does not iterate in these three parame-

ters. Overall, we have nineteen parameters left to estimate.

Tables 5 and 6 show the results of fitting the bivariate GARCH model to hourly

data on spot and futures market returns. As we should expect, estimated coefficients

on the error correction term have opposite signs, although the one in the futures

market equation is not significant. The estimated error correction term turned out

to be: st ¼ 0:0505þ 0:9936ft, so that the difference st�1 � ðc1 þ c2ft�1Þ can be safely
interpreted as the opposite of the empirical basis, i.e., the difference between the

6 This toolbox has been developed in the Departamento de Econom�ııa Cuantitativa, Universidad

Complutense, Madrid (Spain).
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futures price and the stock index. This is usually taken as an indicator of the subse-

quent tendency in the spot market, a large positive basis anticipating an increasing

spot market. Our results are consistent with this view: the short-run estimated adjust-

ment predicts that a positive basis, the most frequent case in our sample, 7 will tend

to be followed by an increase in the spot index, rather than by a downward futures

market.

Relative to market interactions, the model suggests one-way causality from the fu-

tures to the spot market for both, returns and volatilities. First, there are effects from
lagged return innovations in the futures market to returns in the spot market, while a

similar effect does not show up in the other direction. Second, the size of lagged in-

novations in futures market returns influences volatility in both markets, while the

size of past innovations in spot market returns does not have any influence on fu-

tures market volatility. Finally, our results show a seasonal pattern not only for con-

ditional volatilities of returns in the spot and futures markets, but also for their

conditional covariance.

Table 7 reports estimated average volatilities for each trading time interval along
the 743 trading sessions. An intraday U-shaped curve for both volatilities is shown,

suggesting that the opening and closing trading periods have the higher volatility.

Table 6

Maximum likelihood estimation. Variance equation

Dependent variablea

�s;t �f ;t �s;t�f ;t

Coefficient Estimate Coefficient Estimate Coefficient Estimate

/111
b 0.002 (0.004) /131 0.004 (0.003) /222 0.078 (0.008)�

/113 0.065 (0.011)� /133 0.036 (0.008)� /322 0.012 (0.007)�

/211 0.136 (0.004)� /233 0.036 (0.011)� /422 0.007 (0.005)

/311 0.077 (0.007)� /333 0.051 (0.008)�

/411 0.068 (0.004)� /433 0.035 (0.005)�

a Estimated standard errors in parentheses. An asterisk denotes a coefficient significant at the 5% level.
b/r

ijdenotes the (i,j) element in matrix /r (r ¼ 1,2,3,4).

Table 5

Maximum likelihood estimation. Equation for mean returns

Dependent variable

Spot market returna Futures market return

Coefficient Estimate Coefficient Estimate

a11 0.061 (0.017)� a21 �0.006 (0.014)
a12 �0.106 (0.021)� a22 �0.032 (0.018)
bs �0.078 (0.014)� bf 0.012 (0.012)

a Estimated standard errors in parentheses. An asterisk denotes a coefficient significant at the 5% level.

7 Along the sample period the empirical basis was positive for 74% of the observed hourly prices.
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This empirical finding is consistent with those in Chan et al. (1991) and Daigler

(1997).

The average estimated conditional correlation coefficient between innovations in

both markets is 0.789. Such high positive value reflects that innovations in both price

processes have most often the same sign and, consequently, futures and spot prices
move in the same direction. On the other hand, the estimated correlation is below

one, implying that the assumptions required for perfect correlation (no transaction

costs and non-stochastic interest rates and dividend yields) are too restrictive. The

average conditional variance of returns in the futures market is higher than that

of returns in the spot market, this being observed in 75% of the available data.

We will come back to this point in Section 5.

To validate the model, we used three diagnostic tests for the residuals from the

estimated GARCH model: (a) A Ljung–Box statistic for the standardized residuals
to test the conditional mean specification, (b) a Ljung–Box statistic for the squared

residuals to test for remaining heteroscedasticity, and (c) the BDS statistic proposed

by Brock et al. (1986) to test the null hypothesis that the sequence of standardized

residuals can be interpreted as realizations from independent and identically dis-

tributed random variables. The three suggest that the bivariate error correction

GARCH model successfully captures the dynamics of cross-market interactions be-

tween the first and the second order moments of hourly returns.

5. Parameter estimates for the theoretical model

Let us denote by r̂r2s;t, r̂r
2
f ;t and r̂rsf ;t the estimated conditional variances and covari-

ance for the spot and futures market return innovations from the GARCH model.

To recover estimates for r2N ;t and q12;t we use the theoretical expressions for the con-
ditional variance of futures market returns and its conditional covariance with spot

market returns:

Table 7

Average intraday statistics from the GARCH model

Trading hour

intervals

Conditional second order momentsa

Spot

volatility r2s;t

Futures

volatility r2f ;t

Spot-futures

covariance rsf ;t

Conditional

correlation qsf ;t

11:00–12:00 0.092 0.164 0.083 0.672

12:00–13:00 0.083 0.089 0.069 0.808

13:00–14:00 0.081 0.084 0.068 0.830

14:00–15:00 0.084 0.086 0.070 0.823

15:00–16:00 0.086 0.090 0.072 0.813

16:00–17:00 0.101 0.107 0.082 0.789

Global 0.088 0.103 0.075 0.789

a Each entry is the average of GARCH moments estimated using daily data up to the time shown as the

upper end of each interval. There are 743 data points in each of these samples. The last row uses all data

points.
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r̂r2f ;t ¼ r̂r2s;t þ r̂r2N ;t þ 2r̂rs;tr̂rN ;tq̂q12;t; ð18Þ

r̂rsf ;t ¼ r̂r2s;t þ r̂rs;tr̂rN ;tq̂q12;t: ð19Þ

From (19),

r̂rs;tq̂q12;t ¼
r̂rsf ;t � r̂r2s;t

r̂rN ;t
: ð20Þ

Substituting (20) into (18) and rearranging:

r̂r2N ;t ¼ r̂r2s;t þ r̂r2f ;t � 2r̂rsf ;t; ð21Þ

and we recover estimates for the conditional correlation between the common and

specific noises from (20) and (21):

q̂q12;t ¼
r̂rsf ;t � r̂r2s;t

r̂rs;t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂r2s;t þ r̂r2f ;t � 2r̂rsf ;t

q : ð22Þ

Finally, the optimal hedge ratio can be estimated from (9) using d̂dt ¼ r̂rN ;t=r̂rs;t and
q̂q12;t. Figs. 3–5 provide the time evolution for the estimated parameters r̂r2s;t, r̂r

2
N ;t, and

q̂q12;t respectively, for the Ibex 35 spot and futures markets. The conditional standard
deviation of the specific noise turns out to be smaller than that of the general market

noise in 93% of the observations. In the remaining 7% observations r̂rN ;t is sometimes

well higher than r̂rs;t. Consequently, the ratio d̂dt ¼ r̂rN ;t=r̂rs;t oscillates between 0.10 and

3.71, but with an average value of 0.67. On the other hand, the correlation bqq12;t
between the specific and common noises is most often negative, so that either market

could turn out to be more volatile than the other. In fact, it is easy to show that,
under negative q12;t, the futures market is more volatile than the spot market when
jq12;tj < 1

2
dt. Mean values over the whole sample are

8 bqq12;t ¼ �0:26 and bddt ¼ 0:67, so
the above inequality holds and the futures market is estimated to be on average more

volatile than the spot market, as was already shown in Table 7. In fact, r̂r2f ;t > r̂r2s;t is
observed in 75% of the available data.

For our average estimated standard deviation ratio bddt ¼ 0:67, a perfect, positive
correlation q12;t ¼ 1 between the common and specific noises would lead to an opti-
mal hedge ratio of 0.60, and the return of the hedged position would have zero vari-
ance. The optimal hedge ratio would increase for smaller values of q12;t, reaching
0.69 when q12;t ¼ 0:0, the variance of daily returns of the hedged position then being
31% of the variance of the unhedged position (the market). An optimal unit hedge

ratio would arise for a correlation of q12;t ¼ �0:67, and the variance of the hedged
position would be 45% of the market variance. This is the minimum reduction in

variance that is achieved when bddt ¼ 0:67. From there, even more negative corre-

lations would make the hedge ratio to rapidly increase, while the variance of

the hedged position would again converge to zero. From (9), our estimated average

8 Expression (22) applied to average volatilities and covariance produces q̂q12;t ¼ �0:22, very close to the
sample average of �0:26.
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correlation of q12;t ¼ �0:26 would lead to an optimal hedge ratio of h�=b ¼ 0:76, and
a variance reduction factor of 0.38, provided coefficients were stable at their esti-

mated values on the full sample. In fact, Table 8 shows that there is enough param-

eter variation so that annual mean values of the main variables change significantly

over time.

6. Simulated hedging operations

To calibrate the effectiveness of the optimal hedge ratio characterized in previous

sections, we simulate a hedging operation using actual market data for each of the

twelve futures contracts maturing in 1996. For this exercise, we start from an estima-

tion of model in Section 2 with data up to December 1995, designing the hedging

strategy on the basis of out-of-sample forecasts. The hedging position is revised

every Friday, when the model is estimated again, and a forecast of the optimal hedge

ratio to be applied over the next week is obtained. 9 In three cases, a market holiday
fell on a Friday and the hedging position was revised the previous market day. Every

Friday, futures contracts were either bought or sold, as needed, to match the fore-

casted hedge ratio. To obtain net returns, we computed the cost of the weekly hedg-

ing operation taking into account (a) the bid–ask spread, by paying the ask price

when buying a futures contract, and receiving the bid price when selling the contract,

and (b) round-trip costs (50 pesetas/contract). 10 Futures contracts mature the third

Friday of each month. At that point, we perform a new simulation for the next con-

tract starting with an initial portfolio which consists of a spot Ibex 35 basket, hedged
with our estimated GARCH ratio.

Table 8

Annual mean estimates for the main variables

r2f r2s rsf r2N d q12 h�=b Variance

Reduction factor

1994 0.225 0.126 0.114 0.123 0.951 �0.088 0.54 0.52

1995 0.118 0.076 0.067 0.060 0.807 �0.085 0.63 0.43

1996 0.051 0.048 0.043 0.013 0.448 �0.176 0.88 0.19

Full sample 0.103 0.088 0.071 0.049 0.669 �0.265 0.76 0.38

9 Experiments using the ex-ante hedge ratio calculated with the subsample used in estimation, or the

average of that ratio and the one predicted for the last day of the week, yielded similar results to those

reported in Table 8.
10 For the period under analysis, Circular 17/93 from MEFF established 70 pesetas/contract as the

maximum transaction cost. However, traders negotiating on their own account have variable discounts

proportional to the negotiated number of contracts. Consulted market makers consider 50 pesetas/

contract to be a representative average round-trip cost.
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Weekly hedging effectiveness is measured as the percent reduction in volatility of

hourly returns from the hedged position during that week, relative to those obtained

by the unhedged position:

100� volatility ðhedged positionÞ � volatility ðunhedged positionÞ
volatility ðunhedged positionÞ : ð23Þ

Following the discussion in Section 2, we start by comparing the standard deviation

of the returns offered by the hedged position, with that for market returns (the

unhedged position). As a benchmark, we also use the portfolio hedged with a unit

ratio. The first column in Table 9 shows the average hedge ratio over the life of each
contract. The average ratio over the 12 contracts maturing during 1996 is 0.92, in line

with the 0.88 ratio obtained in Table 8 from the parameter estimates for 1996. Thus,

the number of futures contracts involved in the hedging strategy under the estimated

ratio is 8% lower than under the unit hedge ratio and, as a consequence, transaction

costs and capital requirements are smaller than when a unit ratio is systematically

applied. In fact, the reduction in the number of futures contracts should generally be

expected to be more important. Table 8 shows that estimating with 1994 data leads

to an average hedge ratio of just 54.1%, and a 52% expected reduction on variance,
while estimates for 1995 produce a 63.4% hedge ratio and a 43% expected reduction

in return variance. Hence, the number of futures contracts needed for hedging would

Table 9

Median hedging effectivenessa

Maturity GARCH

hedge ratio

Reduction in standard

deviation of returns

Kolmogorov–

Smirnov testb
Reduction in

Garman–Klass volatility

Hedge ratio Hedge ratio

GARCH (%) Unit (%) GARCH (%) Unit (%)

January 96 0.918 63.0 62.7 0.604 (0.859) 89.9 92.2

February 96 0.920 55.9 53.4 0.389 (0.998) 20.0 7.3

March 96 0.912 17.1 76.9 1.862 (0.002) 38.4 94.2

April 96 0.898 61.5 58.6 0.618 (0.839) 90.5 90.6

May 96 0.942 58.6 56.6 0.493 (0.969) 94.7 94.8

June 96 0.935 67.5 67.5 0.591 (0.876) 92.1 93.8

July 96 0.944 73.3 72.5 0.713 (0.689) 95.5 97.0

August 96 0.864 �14.6 �22.2 0.342 (0.999) 33.5 39.3

September 96 0.914 �40.0 �39.5 0.232 (0.999) 14.1 17.6

October 96 0.920 58.0 54.3 0.583 (0.885) 90.6 88.3

November 96 0.932 43.6 53.3 0.414 (0.995) 90.6 93.2

December 96 0.936 59.3 59.5 0.466 (0.982) 96.8 95.2

Median 0.920 58.3 57.6 90.6 92.7

aHedging effectiveness is defined as the percent reduction in either weekly standard deviation of returns

(left panel) or daily Garman–Klass volatility (right panel), in both cases relative to the market (the un-

hedged position), over the last month of each contract.
b The null hypothesis is that empirical distributions of returns from the two hedged positions are the

same, p-values are shown in parentheses.
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have been much lower than that used in hedging with a unit ratio in either of those

two years.

The next two columns present out-of-sample effectiveness for the predicted hedge

ratio, as well as for the constant unit ratio over the last month of life of each con-

tract. Hedging effectiveness under both strategies turns out to be quite similar: Over
the 12 contracts maturing during 1996, median reduction in volatility was of 58.3%

for the GARCH ratio, and 57.6% for the unit ratio, respectively. Both hedged posi-

tions reduced the variance of returns, relative to those offered by the market, in 10 of

the 12 contracts. In fact, over the 53 weeks considered in our out-of-sample simula-

tion, the GARCH ratio produced a lower return variance than the unhedged posi-

tion in 40 weeks, and a lower return variance than the unit ratio in 33 weeks.

Median weekly reduction in return variance relative to the market was again similar,

60.6% for the GARCH ratio and 59.8% for the unit ratio. As expected, these num-
bers improve upon the variance reduction factor of 0.19 which, as shown in Table 8,

should be obtained for an ex-post, constant parameter simulation.

For a full comparison between the two hedging strategies, we applied a version of

Kolmogorov–Smirnov statistic to test for equality of the empirical distributions of

returns from the two hedged portfolios over each of the 12 contracts. We first pro-

duced a single list of all hourly returns observed under either hedging strategy. The

test was then applied by comparing the values of the empirical distribution function

under each strategy, for each observation in the full sample of returns. Working with
all individual observations should lead to increased power in the Kolmogorov–Smir-

nov test. Table 9 shows that the null hypothesis of equal return distributions cannot

be rejected at any sensible significance level, except for the March contract. In that

month, GARCH hedging led to 17% reduction in volatility relative to the market,

for a 77% reduction of the unit hedge ratio.

Even though our theoretical model is developed in terms of volatility of returns, it

may also be of interest to consider price volatility. To that extent, we use Garman

and Klass (1980) statistic, applied to the six hourly data points, to compute daily vol-
atility of the market price of the hedged and unhedged positions. The overwhelming

evidence of non-stationarity of prices suggests using this measure of volatility as op-

posed to the standard deviation, which could produce misleading conclusions. The

GARCH ratio led to lower volatility than the unhedged position in 50 out of the

53 weeks, and lower volatility than the unit hedge ratio in 31 weeks. 11 Median re-

duction in price volatility relative to the market was of 90.6% for the GARCH ratio,

for a reduction of 92.7% of the unit ratio.

According to either measure, hedging strategies did not perform well during Au-
gust and September, and the GARCH ratio did not work very well over March

either. March brought rather extreme volatility, being the monthly median Gar-

man–Klass volatility 2.56 times annual median volatility. That kind of unusual vol-

11 The GARCH ratio produced lower volatility than the unit ratio in 121 days, for 130 days in which

the volatility under the unit ratio was lower. That the daily performance of the unit ratio is more often

better is due to the fact that the weeks when the unit ratio does better, it produces lower volatility in a

majority of days.
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atility seems to quickly deteriorate the performance of hedge ratios below 1. Median

daily price volatility in August was 15% higher than over the whole year. A similar

argument could not explain the poor performance of both hedging strategies over

September, when volatility remained below annual volatility. Besides, hedging

turned out to be quite successful in July, in spite of volatility being 39% over the an-
nual median. Reflecting the poor hedging performance, correlation coefficients be-

tween daily market returns and those obtained from each of the two hedged

portfolios were high, between 0.55 and 0.60, during August and September. Return

correlations between the market and the GARCH hedged portfolio was also high in

March, of 0.62. This suggests that there are conditions other than the level of vola-

tility affecting hedging performance. Characterizing them remains an interesting

issue for further research.

It is also useful to consider the economic benefits from hedging, as obtained from
some specification for the hedger�s utility function. Let us assume a mean–variance
expected utility function as in Kroner and Sultan (1993), EtUðxÞ ¼ EtðxÞ � cvartðxÞ,
where c has the interpretation of the degree of risk aversion and risk is measured by
the conditional variance of returns. Weekly variance of returns from the unhedged

position was 0.11368 over 1996. Average variance for the hedged position, 12 r2t ¼
r2s;t � 2rsf ;tðh�t =btÞ þ r2f ;t h

�
t =bt

� �2
was 0.07503 when the GARCH ratio was used, be-

ing 0.07578 when a unit ratio was systematically used. Hence, under a null expected

return for the hedged portfolio, and with a risk aversion value c ¼ 4, we obtain an
average weekly utility of UðxÞ ¼ �4ð0:11368Þ ¼ �0:45470 for the unhedged posi-
tion, �y � 4ð0:07503Þ ¼ �y � 0:30012 for the position hedged with the GARCH
ratio, where y denotes transaction costs as a rate of return, and �4ð0:07578Þ ¼
�0:30312 under a unit hedge ratio. Hence, the investor�s weekly utility increases,
on average, by (0:00300� y) if he uses the conditional hedge rather than the unit
ratio, which is what he will do so long as y < 0:00300. But we have already men-
tioned that transaction costs for the Spanish market are at most 70 pesetas per con-

tract, which for an average cost of 407,038 pesetas of replicating the Ibex35 basket,
amounts to a negative return of 0.017%. Therefore, even though the reduction in

weekly variance is not too large, the conditional hedge increases average utility for

an investor with a mean–variance utility and a risk aversion coefficient c ¼ 4, even
after accounting for transaction costs. Relative to not hedging, the gain of either

hedged strategy is obvious.

To approximate a real hedging situation, we can also consider an strategy in

which the portfolio is rebalanced each week only when the benefits of doing so offset

the associated costs, i.e, when the increased expected utility from rebalancing is large
enough to offset the transaction costs of updating the hedge. The return volatility

from rebalancing would be r2t ¼ r2s;t � 2rsf ;tðh�t =btÞ þ r2f ;t h
�
t =bt

� �2
, while that from

maintaining the same hedge would be, r2t ¼ r2s;t � 2rsf ;tðh�0t =btÞ þ r2f ;t h
�0
t =bt

� �2
, where

12 Using the definition for dt; dt ¼ rN ;t=rs;t, and the relationships, r2f ;t ¼ r2s;t þ r2N ;t þ 2q12;trN ;trs;t,

rsf ;t ¼ r2s;t þ q12;trN ;trs;t, it is not hard to show that expression (8) for the variance of the hedged portfolio

can be written as, b2t r2s;t � 2rsf ;tðh�t =btÞ þ r2f ;t h�t =bt
� �2h i

.
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ðh�0t =btÞ denotes the hedge ratio from the last rebalancing. Therefore, a mean–

variance expected utility maximizing investor will rebalance at time t if and only if

�y � c r2s;t

 
� 2rsf ;t

h�t
bt

þ r2f ;t
h�t
bt

� �2!
> �c r2s;t

 
� 2rsf ;t

h�0t
bt

þ r2f ;t
h�0t
bt

� �2!
:

ð24Þ

An investor following this optional weekly rebalancing strategy over 1996 would

have obtained a time aggregate utility level of �15:254, versus utility levels of
�15:606 and �15:763, had he used the GARCH ratio or the unit hedge ratio every
week, respectively. Years with more volatile ratios, as 1994 and 1995, should be

expected to show even more clearly the benefits from optimal rebalancing. The utility

level derived from the unhedged portfolio would have been of �23:645.

7. Summary and concluding remarks

We have derived a two period hedging model allowing for departures from the

cost-of-carry valuation of a futures contract on a stock index. Assuming a geometric

Brownian motion for the dynamics of the spot index, we have modeled mispricing by

introducing a specific noise in the dynamics of the theoretical futures price, possibly

correlated with the noise common to both markets. The optimal hedge ratio is shown

to depend on two factors: the relative size of the specific and common noises, and

their correlation. A detailed analysis of this theoretical model shows that it can cap-

ture many interesting features of practical hedging situations, specially when the sto-
chastic behavior of returns in the spot and futures markets widely differs.

We have provided empirical evidence on the model using data from the Spanish

stock index futures market over the sample period from December 1993 to December

1996. A bivariate error correction model with GARCH innovations has been used to

estimate the parameters of the theoretical model, from which we have computed es-

timates for the optimal hedge ratio during this sample period. The model allows for

transmission of returns and volatilities between both markets, showing that the fu-

tures market has a stronger influence on the spot market aspects than the other
way around. Furthermore, we have provided significant evidence on intraday sea-

sonality in volatility in both markets. This model should be a useful tool to discuss

different characteristics of the dynamic relationship between spot and futures mar-

kets, beyond the implications for hedging exploited in this paper.

Empirical results support that spot and futures markets do not have a common

ARCH feature. Our findings suggest that there is a specific noise in the Spanish fu-

tures market with a small, negative correlation with the noise common to the spot

and futures markets. A negative correlation in the theoretical model does not pre-
clude futures market returns to be more volatile than spot market returns and, in

fact, we observe that to be the case in 75% of the available data.

Ex-ante simulations with actual data reveal that hedge ratios that take into ac-

count the estimated, time varying, correlation between the common and specific dis-
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turbances, lead to using a lower number of futures contracts than under a systematic

unit ratio, without losing hedging effectiveness. Using less futures contracts for hedg-

ing implies lower transaction costs and smaller capital requirements. Besides, the

reduction in the number of contracts can be substantial over some periods. Consid-

ering an investor with a mean–variance expected utility function, we have also
shown that the economic benefits from an optimal conditional hedging can be sub-

stantial.
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Appendix A. First order condition for the hedging model

Substituting the theoretical dynamics of spot and futures market returns into the

objective function, the problem can be written

Min
fhtg

Vart bt ls;t

��
þ rs;t

dz1;t
dt

�
� ht lf ;t

�
þ rs;t

dz1;t
dt

þ rN ;t
dz2;t
dt

��
: ðA:1Þ

Using properties of the variance, and taking into account that Vart dz1;t=ð
dtÞ ¼ Vart dz2;t=dtð Þ ¼ 1 and Covt ðdz1;t=dtÞ; ðdz2;t=dtð ÞÞ ¼ q12;t, we get the expression
for the objective function:

b2t r
2
s;t þ h2t ðr2s;t þ r2N ;t þ 2q12;trs;trN ;tÞ � 2bthtðr2s;t þ q12;trs;trN ;tÞ: ðA:2Þ

Setting the derivative with respect to ht equal to zero,

2½htðr2s;t þ r2N ;t þ 2q12;trs;trN ;tÞ � btðr2s;t þ q12;trs;trN ;tÞ� ¼ 0: ðA:3Þ

From (A.3), simplifying and rearranging we obtain Eq. (9). The second order con-

dition ensures that this hedge ratio is in fact optimum, since

o2VartðhtÞ
oh2t

¼ 2ðr2s;t þ r2N ;t þ 2q12;trs;trN ;tÞ ¼ 2Vart
dFt;T
Ft;Tdt

� �
> 0: ðA:4Þ
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