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Summary

A generalization of the Prentice's law is presented in this paper. The idea consists of removing
some (but not all) of the approximations that comprise the paraxial approach. In that way, we
obtain a new formulation that permits us to compute the prismatic power of a lens made up of
arbitrary refracting surfaces, and to improve the precision obtained by Prentice's law when
applied to monofocal lenses. The resulting formalism is simple and manageable and its deri-
vation leads us to a precise definition of the local dioptric power matrix, introduced in a previous
paper, as well as a better understanding of the same. # 1998 The College of Optometrists.
Published by Elsevier Science Ltd. All rights reserved

Introduction

The knowledge of the prismatic e�ect produced by an

ophthalmic lens has great importance in the opto-

metric practice. For monofocal spherical lenses, the

Prentice's law establishes a linear relationship between

the modulus of the prismatic power and the distance

to the optical centre of the lens (Jalie, 1988). This re-

lationship has been extended to both astigmatic and

bifocal lenses by means of the dioptric power matrix

(Long, 1976; Keating, 1980; Harris, 1988, 1989a,b,

1992, 1993 and 1996). In these cases, a linear relation-

ship is obtained between the components of the pris-

matic power and the coordinates of the lens point

(referred to the lens optical centre) where we want to

calculate the prismatic power, using the dioptric power

matrix.

Although it is possible to calculate easily the pris-

matic power components of spherical, cylindrical,

spherotorical and even bifocal lenses, it is not possible

to do the same for progressive addition lenses (PAL).

This is due to the complicated shape of the progressive

surface, necessary to obtain di�erent powers for di�er-

ent sight directions.

On this subject we have presented a method for the
graphical characterization of a PAL by means of the
so called by us local dioptric power matrix (Alonso et
al., 1997). A generalized expression for the Prentice's
law applied to ophthalmic lenses made with arbitrary
shaped refracting surfaces is presented in this paper.
This expression allows the optical characterization of
these lenses by means of the local dioptric power
matrix, which is related with the equations describing
the lens surfaces. Besides this, our formalism is a more
accurate approximation of the exact ray tracing pro-
blem than the classical paraxial approach. Thus it
gives us a better estimation of prismatic powers for
any type of ophthalmic lens.
With the aid of the generalized Prentice's law

obtained, we have studied the prismatic e�ect pre-
sented by aspherical lenses formed by conicoidal
refracting surfaces. Finally, we have tested the accu-
racy of the generalized Prentice's law.

Generalized expression for the Prentice's law

When ray tracing is computed within the frame of
the classical paraxial approximation, the dependance
of the involved angles vs the height of incidence is
assumed to be linear. The prismatic power is de®ned
as the di�erence between the angles that the incident
and refracted rays form with the optical axis, so the
prismatic e�ect also depends linearly on the height of
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incidence (that is, we get the Prentice's law). In this
framework, there is no way of introducing the shape
of the surfaces, because only the curvature radius at
the surface vertex are considered, so it makes no sense
to talk about the geometry of the surface far from its
centre.

If we consider the refraction through an ophthalmic
lens, two factors make this classical paraxial scheme
inappropriate.

1. The surfaces can be highly aspherical, as happens in
a progressive addition lens. In this case, the
Prentice's law is useless in order to obtain even an
estimation of the prismatic e�ect.

2. The incidence point is far from the optical axis for
oblique sight directions. In such a case, the classical
paraxial approach gives inaccurate values of the
prismatic power for lenses made up of spherical sur-
faces.

To overcome these problems, we propose a modi®-
cation of the classical paraxial approach. We will con-
sider the refraction at a point not necessarily located
near the optical axis, however we will suppose that the
angles formed between the incident and refracted rays
with the normal to the surface at the incident point, yi
and yr are small, and ®rst order approximation can be
applied. Note that this approximation is adequate in
the system ophthalmic lens-eye, as shown in Figure 1.
This is because ophthalmic lenses usually have positive
radii of curvature, and the principal ray goes through
the centre of rotation of the eye. A possible change of
the surface geometry at the point of incidence can be
taken into account by using the principal curvatures as
well as surface orientation at this point.

Let us consider an ophthalmic lens composed by
two refracting surfaces S1 and S2. These surfaces may
be described by means of a Monge's chart (Kreyszig,

1991; Lipschutz, 1970), that is, the coordinates of a

point belonging to the surface are given by the ex-

pression

x; y; zi�x; y�
� �

; i�1;2 �1�
where x, y and z are the co-ordinates along a reference

system whose Z axis coincides with the optical axis of

the lens (See Figure 2). Let us consider a light ray inci-

dent at a point P located at S1 and let ki
1 be the uni-

tary vector in the direction of the incident ray. In the

same way, let kr
1 be the unitary vector parallel to the

direction of the refracted ray. The relationship between

these vectors is given by the vectorial form of the Snell

law (Hecht, 1974)

nkr1 ÿ ki1 � �n cos yr ÿ cos yi�N1; �2�
where n is the refraction index of the lens (we are sup-

posing the refraction index of the incident media as 1)

and N1 is the unitary normal vector at the point P of

S1.

As it is well known (Kreyszig, 1991; Lipschutz,

1970), the unitary vector normal to a surface described

by Equation (1) is

N � 1����������������������������������������
1� �@xzi�2 � �@yzi�2

q �ÿ@xzi;ÿ@yzi; 1�; i�1;2 �3�

where the symbols @x and @y are a short notation for

the partial derivatives @/@x and @/@y. This expression

can be approximated by

N ' �ÿ@xzi;ÿ@yzi; 1�; i�1;2 �4�
as far as we consider that the lens surfaces are not

excessively curved. According with our previous hy-

potheses the vectors ki
1 and kr

1 must be near to the

direction of the normal vector N1, so we can write

Figure 1. Refraction of a principal ray through the lens±eye
system. Because of the meniscus shaped form of the lens,
the angles formed by the principal ray the surface normals
are small regardless the incidence height.

Figure 2. Scheme employed to illustrate the refraction of a
ray through an arbitrary surface.
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their components as

ki1 '
ÿ
ki1x; k

i
1y; 1

�
; �5a�

kr1 '
ÿ
kr1x; k

r
1y; 1

�
: �5b�

Substituting Equation (5a), (5b) and (4) in
Equation (2), we arrive at the following approximate
expressions for their components of kr

1

nkr1x � ki1x � �1ÿ n� @xz1; �6a�
nkr1y � ki1y � �1ÿ n� @yz1: �6b�

We will make the same assumptions for the refrac-
tion at the second lens surface, so we have for the
components of kr

2

kr2x � nki2x ÿ �1ÿ n� @xz2; �7a�
kr2y � nki2y ÿ �1ÿ n� @yz2: �7b�

With the aid of Equations (6a), (6b), (7a) and (7b),
we can compute the paraxial trajectory of a ray
through the lens, taking into account that kr1x=ki2x
and kr1y=ki2y. Furthermore, within the thin lens ap-
proximation, we can substitute (6a) in Equation (7a),
and (6b) in Equation (7b), arriving at the following ex-
pressions:

kr2x � ki1x � �1ÿ n� �@xz1 ÿ @xz2�; �8a�
kr2y � ki1y � �1ÿ n� �@yz1 ÿ @yz2�; �8b�

The components of the prismatic power, Px and Py are
given by

Px � kr2x ÿ ki1x; �9a�
Py � kr2y ÿ ki1y; �9b�

so we arrive to the following generalized expression of
the Prentice's law, for lenses with arbitrary shaped
refracting surfaces

Px � �1ÿ n� �@xz1 ÿ @xz2�; �10a�
Py � �1ÿ n� �@yz1 ÿ @yz2�: �10b�

Local dioptric power matrix

We can rewrite Equations (10a) and (10b) in a more
useful matrix form if we use the following Taylor
expansion of the surface equations in the neighbor-
hood of a point Q on the lens surface with co-ordi-
nates (x0, y0), up to second order

zi�x; y� ' zi�x0; y0��@xzij0�xÿ x0� � @yzij0�yÿ y0��. . .

� 1

2
@2xxzij0�xÿ x0�2�@2xyzij0�xÿ x0��yÿ y0��. . .

� 1

2
@2yyzij0�yÿ y0�2 i�1;2 �11�

where @xziv0=@xzi(x0, y0). This means that we are ap-

proximating the lens surfaces in the neighborhood of

Q by their tangent paraboloids at Q. Substituting these

expansions in Equation (10a) and (10b), we arrive to

the following expressions for the prismatic powers in

the neighborhood of Q

Px � �1ÿ n��
@x dzj0 � @2xx dzj0�xÿ x0� � @2xy dzj0�yÿ y0�

�
;

�12a�
Py � �1ÿ n��

@y dzj0 � @2xy dzj0�xÿ x0� � @2yy dzj0�yÿ y0�
�
;

�12b�

where @xdzv0 =@xz1 (x0, y0)ÿ @xz2 (x0, y0), and so on.

Let us consider now a point S related with Q, whose

co-ordinates (xl, yl) are given by the relationships

0 � �@x dzj0 � @2xx dzj0�xl ÿ x0� � @2xy dzj0�yl ÿ y0�
�
;

�13a�
0 � �@y dzj0 � @2xy dzj0�xl ÿ x0� � @2yy dzj0�yl ÿ y0�

�
:

�13b�
In other words, we are considering the co-ordinates of

the optical centre of the astigmatic lens formed by the

tangent paraboloids to the surfaces S1 and S2 at the

point Q. The point S, that we call local optical centre

of the lens at the point Q, was introduced by us in pre-

vious paper (Alonso et al., 1997) from a conceptual

point of view. From Equations (13a) and (13b), we

obtain

@x dzj0 � ÿ @2xx dzj0�xl ÿ x0� ÿ @2xy dzj0�yl ÿ y0�
�
; �14a�

@y dzj0 � ÿ @2xy dzj0�xl ÿ x0� ÿ @2yy dzj0�yl ÿ y0�
�
: �14b�

Finally, by substituting Equations (14a) and (14b) in

(12a) and (12b) respectively, it is possible to obtain the

following matricial expression for the prismatic power

at the point Q 
Px

Py

!
� ÿ�nÿ 1�

"
@2xx dzj0 @2xy dzj0
@2xy dzj0 @2yy dzj0

# 
x0 ÿ xl
y0 ÿ yl

!
: �15�
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We will call local dioptric power matrix, to the matri-

cial function

F�x; y� � �nÿ 1� @
2
xx dz�x; y� @2xy dz�x; y�
@2xy dz�x; y� @2yy dz�x; y�

" #
; �16�

which allows the characterization of ophthalmic lenses

made up of surfaces of arbitrary shape as stated in

Alonso et al. (1997). From this de®nition and the ex-

pressions (10a) and (10b), we obtain the relation

between the elements of the local dioptric power

matrix fxx(x, y), fxy(x, y) and fyy(x, y), and the pris-

matic power components. These are

fxx�x; y� � ÿ @xPx; �17a�
fxy�x; y� � ÿ @yPx � ÿ @xPy; �17b�
fyy�x; y� � ÿ @yPy: �17c�

Equation (15) may be written in this alternative

form  
Px

Py

!
�
 
PL
x

PL
y

!
ÿ F�x0; y0�

 
x0
y0

!
; �18�

where PL
x , P

L
y are the components of a point dependent

prismatic e�ect which is due to surface orientation and

is not directly related to power. We call this local

ground prism at the point Q (Alonso et al., 1997), and

it is given by

PL
x � �1ÿ n��@x dzj0 ÿ @2xx dzj0 x0 ÿ @2xy dzj0 y0

�
; �19a�

PL
y � �1ÿ n��@y dzj0 ÿ @2xy dzj0 x0 ÿ @2yy dzj0 y0

�
: �19b�

According to the previous description, there are two

factors that account for the total deviation of a ray

refracted at any point on the lens surfaces. The ®rst

one is related to the local curvatures at the point of

incidence, which are directly related to refracting

power. This factor can be calculated by means of the

local dioptric power matrix, in a similar way as we do

with the matricial Prentice's law. The second factor is

related to the orientation of the normal vectors to the

surfaces at the point of incidence, and depends not

only on the second derivatives of the surfaces at that

point but also on the ®rst order derivatives. For that

reason, we can think of it as a local ground prism. In

fact, Equation (18) is a generalization of the implicit

expression for the prismatic power presented by a thin

lens with allowance for prism given by Harris and

Abelman (1991).

From Equations (15) and (18), it is possible to

obtain the following relationship for the co-ordinates

of the local optical centre 
xl
yl

!
� Fÿ1�x0; y0�

 
PL
x

PL
y

!
: �20�

This relation can be applied only if the determinant
of the local dioptric power matrix is not zero.
Otherwise, the inverse Fÿ1(x0, y0) does not exist and
we have to employ the Moore±Penrose formalism
extensively used by Harris (1992, 1993) with the diop-
tric power matrix.

Veri®cation of the Prentice's law generalized form

In order to evaluate the generalized expression of
the Prentice's law, Equations (10a) and (10b), we will
derive the prismatic e�ect produced by a monofocal
ophthalmic lens composed of conicoidal refracting sur-
faces (which includes as a particular case the monofo-
cal spherical lenses). According to Jalie (1988) the
sagittae of the conicoidal refracting surfaces are given
by

zi�x; y� �
Ri ÿ

�������������������
R2

i ÿ pir2
q
pi

; i�1;2 �21�

where Ri is the curvature radius of the ith surface,
r = (x2+y2)1/2 is the radial co-ordinate and pi is the
aspherical coe�cient which speci®es the type of coni-
coidal surface (for example pi=0 corresponds with a
paraboloid, pi=1 corresponds with a sphere, and so
on). In order to simplify the equations, we will use the
notation ri=

�������������������
R2

i ÿ pir2
p

for each surface. Substituting
(21) in Equations (10a) and (10b), we arrive at the
result

Px�x; y� � ÿ�nÿ 1� 1

r1
ÿ 1

r2

� �
x; �22�

Py�x; y� � ÿ�nÿ 1� 1

r1
ÿ 1

r2

� �
y: �23�

The term (nÿ 1)(1/r1ÿ1/r2) that appears in the pris-
matic e�ect along the x and y directions, resembles the
classical expression for the power of a thin lens with
curvatures radius r1 and r2, although in this case these
parameters depend on the co-ordinates x and y.
The elements of the local dioptric power matrix are

easily obtained by applying Equation (16),

fxx � �nÿ 1� 1

r1
ÿ 1

r2
� x2

p1

p31
ÿ p2

p32

 !" #
; �24�
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fyy � �nÿ 1� 1

r1
ÿ 1

r2
� y2

p1

p31
ÿ p2

p32

 !" #
; �25�

fxy � �nÿ 1�xy p1

p31
ÿ p2

p32

 !
: �26�

The components of the ground prism, obtained from

expressions (19a), (19b) are given by

PL
x � �nÿ 1� p1

p31
ÿ p2

p32

 !
x2�x� y�; �27�

PL
y � �nÿ 1� p1

p31
ÿ p2

p32

 !
y2�x� y�; �28�

and ®nally the co-ordinates of the local optical centre

are

xL �

p1

p31
ÿ p2

p32

 !
r2x 

1

r1
ÿ 1

r2

!
� p1

r31
ÿ p2

r32

 !
r2

; �29�

yL �

p1

p31
ÿ p2

p32

 !
r2y 

1

r1
ÿ 1

r2

!
� p1

r31
ÿ p2

r32

 !
r2

: �30�

The prismatic power presents rotational symmetry,

as well as the sagittae in expression (21). The orien-

tation of the prismatic power is radial, and the mod-

ulus of the prismatic power is given by

P�r� � ÿ�nÿ 1� 1

r1
ÿ 1

r2

� �
r: �31�

In Figure 3 we present the modulus of the prismatic

power for a ÿ7 D aspheric lens vs the radial co-ordi-

nate, for several values of the aspheric coe�cient of

the second lens surface (being p1=1). The generalized

Prentice's law predicts a nonlinear behavior of the

prismatic power except when the aspherical coe�cients

p1 and p2 are both zero, in which case r1=R1 and

r2=R2.

Figure 3. Plot of the prismatic power produced by a ÿ7 D aspherical vs the radial co-ordinate for several
values of the second lens surface. The lens is considered thin and the curvature radius of the surfaces are
R1=41.84 mm, R2=95.09 mm.
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In order to test the generalized form of the
Prentice's law, we have computed the prismatic power
along a radial direction for two spherical lenses by
means of numerical ray tracing. The ray tracing has
been done with three levels of approximation:

(a) Exact trigonometric ray tracing.
(b) Trigonometrical ray tracing within the thin lens

approximation, that is, the height of incidence on
the second lens surface is assumed to be the same
as on the ®rst surface.

(c) Ray tracing within the thin lens approximation. In
this approach we substitute the sine functions of
the Snell's law by their arguments, but we keep an
accurate calculation of the angles of incidence by
means of the local computation of the normal vec-
tors to the surfaces at the points of incidence.

The comparison between the ray tracing techniques
and the generalized Prentice's law for two spherical
lenses with powers ÿ6 D and +6 D is shown in
Figure 4. In order to obtain a better visualization of
the prismatic power behavior, we have excluded its lin-
ear dependance on the radial coordinate, that is, we
have substracted the linear prismatic power predicted
by the Prentice's law from the values calculated from
ray tracing and the generalized Prentice's law.
At 20 mm from the optical centre, the Prentice's law

gives errors of 11% and 9% for the +6 D and ÿ6 D
lenses, respectively. Comparatively, the generalized
Prentice's law gives errors of 1.5% and 1.6% for the
same lenses. We can notice also in Figure 4 that the
values calculated with the generalized Prentice's law
coincide with those obtained with approximation c.
This fact evidences the nature of the approximations
made in our formalism.

Conclusions

The matricial formulation of Prentice's law is a use-
ful rule to calculate the prismatic power of any type of
monofocal, bifocal or even trifocal lenses. The matrix
appearing in this formulation, the dioptric power
matrix, has been thoroughly studied in the literature
and, within the scope of the paraxial approximation, it
turns out to be a fundamental description of vergences,
refracting errors and lenses. The paraxial description
of a diopter (or a wavefront) only considers its power
(or curvatures) at the axis, and the exact shape of the
surface out of axis cannot be taken into account.
Then, because of the paraxial nature of the dioptric
power matrix, there is no sense in considering power
variations, so the techniques related to the matrix are
no longer applicable for progressive addition lenses.
In this work we have addressed this problem. We

have reconsidered the paraxial assumptions in such a
way that power variations far from the axis can be
taken into account. Of course, although exact ray tra-
cing can be easily carried out by means of a computer,
we have searched for a similar formalism to that of
the dioptric power matrix, because of its usefulness
and compactness. We have obtained a function matrix
that can be considered a direct generalization of the
dioptric power matrix, and it allows us, along with the
concept of local optical centre, to write a generaliz-
ation of the Prentice's law which is valid for lenses
with arbitrary geometry. The local optical centre is
de®ned as the optical centre of the monofocal lens
formed by the tangent paraboloids to the lens surfaces
at the point of incidence. We have introduced another
way of expressing this concept, by means of the local
ground prism, and we provide simple expressions to
compute all of them.

Figure 4. Prismatic power difference vs radial co-ordinate.
The solid curve has been obtained using the generalized
Prentice's law, whereas the curves named a, b and c corre-
spond with the numerical ray tracing calculations as
explained in the text. (a) +6 D spherical lens
(R1=51.024 mm, R2=123.058 mm, tc=7.62 mm). (b) ÿ6 D
spherical lens (R1=209.200 mm, R2=61.529 mm, tc=1 mm).
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Another interesting application for the presented
formalism is the possibility of a more precise compu-
tation of prismatic e�ects in monofocal lenses. In
e�ect, even in monofocal lenses, the ray deviations pre-
dicted by the paraxial approximation di�ers appreci-
ably from the correct values for medium and high
powered lenses and for points a few millimeters far
from the axis. Even more, Prentice's law does not dis-
tinguish between spherical or aspherical designs as far
as their curvatures at the axis are identical. The pre-
sented formalism does allow for this distinction, and
gives more accurate results for the prismatic e�ect in
any type of ophthalmic lens. Finally, we have pre-
sented a veri®cation of the accuracy of the method for
26 D spherical lenses.
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