Abstract
In several optical techniques, two (or more) simultaneous events can be analyzed by coding their information in a crossed fringe pattern. In this work, two phase extraction methods for the processing of crossed fringe patterns are presented, and compared with previously established methods.

Introduction: What is a crossed fringe pattern?
Depending on the optical technique used, the resulting crossed fringe patterns are formed by either the multiplicative or the additive superposition of the separate fringe patterns.

Additive
- Fringe projection
- Ronchi test with square grid
- Experimental-mechanic system

Multiplicative
- Photelasticity
- Deflectometry moiré with square grid

Problem: Demodulation of Crossed Fringe Pattern
The phase extraction is complex because:
- two, instead of one, phase informations must be estimated and,
- these phase informations are spatially superposed.

Previous solutions
- Multichannel Fourier Transform (FT)
 - FT in crossed fringe patterns has been applied in an experimental mechanics systems and in a fringe projection technique.
 - It is necessary to introduce a high-frequency carrier.
 - The two side-lobes must be processes separately in the frequency space.
 - The properties of the bandpass filter must be carefully selected.
- Spatial Carrier Phase Shift (SCPS)
 - It is a phase-shifting technique applied to sequential pixels.
 - Requires the introduction of a carrier with a specific selected frequency.
 - Although the phase obtained is noisy, the application of a low-pass phase filter permits the obtention of "acceptable" phase maps.

Proposed solution 1: Modified phase-shifting method (PS)
- The system must be able to apply phase shifts in two different directions.
- For Additive superposition fringe patterns a standard phase-shift method is able to extract correctly the phase data, however, for Multiplicative superposition fringe patterns, the spatial overlapping of the low intensity zones results in low-modulation areas where the phase information is lost!
- We solve this problem by acquiring two times each phase map, but shifting by \(\pi \) the low-modulation zones between acquisitions. The "bad" zones are suppressed by calculating the contrast of this two phase maps, using either a weighted average method or a maximum contrast method.

Proposed solution 2: Digital Multiplicative Moiré (DMM)
- It is necessary to introduce a high-frequency-carrier in the fringe pattern.
- The method is based in making a moiré effect between the fringe pattern and a computer generated grating. The moiré fringes are selected with a low-pass filter.
- Two computer gratings must be generated with a direction and frequency similar to the carriers introduced in the fringe patterns.
- By numerically displacing the gratings and using a phase-shifting algorithm, the phase maps are obtained.

Comparative Analysis of The Methods

<table>
<thead>
<tr>
<th></th>
<th>PS</th>
<th>DMM</th>
<th>FT</th>
<th>SCPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nº of images required</td>
<td>(\geq 12)</td>
<td>(\geq 12)</td>
<td>(\geq 12)</td>
<td>(\geq 12)</td>
</tr>
<tr>
<td>Spatial carrier required</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Extra-memory requirements</td>
<td>(\leq 5)</td>
<td>(\leq 5)</td>
<td>(\leq 5)</td>
<td>(\leq 5)</td>
</tr>
<tr>
<td>Approx. execution time (sec.)</td>
<td>5.3</td>
<td>5.3</td>
<td>5.3</td>
<td>5.3</td>
</tr>
<tr>
<td>Sensitivity to harmonics</td>
<td>+ or −</td>
<td>+ or −</td>
<td>+ or −</td>
<td>+ or −</td>
</tr>
<tr>
<td>Accuracy with superposition</td>
<td>additive</td>
<td>multiplicative</td>
<td>additive</td>
<td>multiplicative</td>
</tr>
<tr>
<td>Nº of images required</td>
<td>(\leq 11)</td>
<td>(\leq 11)</td>
<td>(\leq 11)</td>
<td>(\leq 11)</td>
</tr>
<tr>
<td>Spatial carrier required</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Extra-memory requirements</td>
<td>(\leq 2)</td>
<td>(\leq 2)</td>
<td>(\leq 2)</td>
<td>(\leq 2)</td>
</tr>
<tr>
<td>Approx. execution time (sec.)</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>Sensitivity to harmonics</td>
<td>+ or −</td>
<td>+ or −</td>
<td>+ or −</td>
<td>+ or −</td>
</tr>
<tr>
<td>Accuracy with superposition</td>
<td>additive</td>
<td>multiplicative</td>
<td>additive</td>
<td>multiplicative</td>
</tr>
</tbody>
</table>

Legend: + = High, − = Medium, = Low.
* = Depends on the phase shifting algorithm used.

Example: Progressive ophthalmic lens characterization by crossed gratings

Note the relation between the deflectograms obtained with Ronchi gratings and with crossed gratings.

The carrier frequency must be high-enough to separate the two phase informations.

Comparison of the informations obtained with the different methods

Demonstration of the low-modulation problem with simulated and real data