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An improved moiré deflectometry phase-shifting technique is presented. A squared grating is used to
multiplex the information of the deflections in two orthogonal directions in one image. This procedure
avoids the need to rotate the gratings to obtain complete deflection information. However, the use of
these gratings makes impossible the application of standard phase-shifting algorithms. Specifically, the
problems associated with the nonsinusoidal profile of the moiré fringes and the low-modulation areas
produced by the square gratings are solved. A modified moiré deflectometry phase-shifting method is
designed to deal with these problems. In addition, a method to obtain the zero order of the prismatic
effect is developed. The technique configures a complete and automatic method of mapping ray deflec-
tions. From them the refractive power maps can be derived. Experimental results obtained with a
progressive-addition lens are shown. © 1998 Optical Society of America
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1. Introduction

Moiré deflectometry is a well-known technique for
mapping ray deflections on the basis of the moiré and
the Talbot effects.1,2 A typical moiré deflectometer
consists of a collimated light beam followed by two
gratings. Normally the tested phase object is placed
before the gratings, as shown in Fig. 1. In this
method the distortion of the moiré deflectogram is
proportional to the angular deflection of the incident
rays on the deflectometer gratings, denoted by G1
and G2 in Fig. 1.

Usually, for obtaining quantitative information
from the deflectogram intensity-based methods are
used, e.g., automatic fringe detection3 and local
fringe-direction measurement.4 These methods de-
pend on the number of observed fringes and are
highly sensitive to the noise. Also, it is not possible
to distinguish between positive and negative deflec-
tions.

On the other hand, phase-measurement methods
such as the heterodyne readout method5 and phase
shifting6 have been applied to moiré deflectometry.

In this case the calculated phase map is related to ray
deflection. Although for these methods at least
three images are required for different grating posi-
tions, they do not have the disadvantages described
above.

However, some problems remain in the moiré de-
flectometry phase-shifting method. First, if Ronchi
gratings are used, the nonsinusoidal profile of the
moiré fringes produces the appearance of harmonic
components in the computed phase map. Second,
the zero order of this phase map is unknown, mean-
ing that the measured deflection is known from a
constant. Third, to obtain complete deflection infor-
mation of the tested object, it is necessary to take two
measures with different grating orientations ~usually
perpendicular to each other!, thus implying a precise
rotation of either the object or the gratings. Finally,
the phase measured in the observation plane is de-
formed by the refractive power of the tested object
because it is necessary to perform back ray tracing to
link the measurements to the corresponding points
on the object.

We present a solution to these problems that con-
figures a complete and automatic method to map ray
deflections. This method is used to map the deflec-
tion of ophthalmic lenses in which the ray deflection
corresponds to the prismatic power, and by differen-
tiation of this power, a map of the refractive power of
the lens is obtained.7 A comparison between our
experimental results and those obtained with a com-
mercial focimeter shows good agreement.
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2. Experimental Setup

The experimental setup is a simple moiré deflecto-
meter similar to that the used in Ref. 6, and it is
shown in Fig. 1. It consists of an expanded colli-
mated He–Ne laser source, followed by two gratings
~G1 and G2!. The tested lens is placed before the
gratings. Different kinds of gratings have been test-
ed: Ronchi, sinusoidal, and squared gratings.

The G1 grating can be moved in its own plane by
means of two computer-controlled stepper motors
with a step of 0.125 mm. The G2 grating can be
moved along the z axis to adjust the distance Z be-
tween the two gratings. For obtaining the maxi-
mum fringe contrast this distance is set near a Talbot
plane Zk 5 kp2yl, where p is the grating period, l is
the wavelength of the monochromatic source used,
and k 5 1, 2, 3, . . . , is the Talbot plane number.

The moiré fringes are observed through a diffuser
screen that produces speckle noise. To minimize the
speckle, we rotate the screen. The CCD camera
used has square pixels of 7.4 mm on a side, so no
aspect-ratio considerations are necessary.

3. Suppression of Harmonic Components

Commonly in moiré techniques, Ronchi gratings
~square transmittance profile! are used. The inten-
sity of the moiré fringes obtained with these gratings
in the Fresnel limit is given by8
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where Z* 5 Zlyp2 is the normalized distance be-
tween the gratings, xyp and yuyp are the phase shifts
related to the relative translation and rotation, re-
spectively, of the Ronchi rulings, x is the offset of the
grating line, and u is the relative angle between the
gratings.

The effect of a phase object introduced in front of
the gratings is a distortion in the moiré deflectogram.
The phase object deflects the ray by an angle w~x, y!.

The intensity profile of the deformed moiré fringes
~for small u and the paraxial approximation! is8
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The phase object introduces a phase shift in the nth-
order harmonic component fn~x, y! given by

fn~x, y! 5 ~2n 1 1!
2pZ

p
w~x, y!. (3)

At separation distances of Z* 5 1, 2, 3, . . . , Eqs. ~1!
and ~2! exhibit the well-known triangular wave pro-
file of the moiré fringes. In this situation Pfeifer et
al.6 assumed that higher harmonics make little con-
tribution to the entire intensity @as a result of the
1y~2n 1 1!2 factor# and that the deflection is com-
puted from the fundamental order ~n 5 0! with a
simple three-step phase-shifting method. However,
in our setup we have noted that the effects of the
harmonics components are not negligible. Figure
2~a! shows a reference moiré deflectogram ~without
lens! in a finite fringe configuration obtained with a
linear Ronchi grid of 10 linesymm. Figure 2~b!
shows a detail of its Fourier transform ~obtained dig-
itally with a standard fast Fourier transform algo-
rithm!; as can be seen, harmonics up to the fourth
order are clearly discernible.

If a standard four-step phase-shifting algorithm is
used the effects of the harmonics are not clearly vis-
ible but appear in the differentiation of the phase
map. For the study of ophthalmic lenses this deriv-
ative contains information on the refractive power, so
we need to eliminate or at least minimize the effects
of the harmonics. A usual solution to this problem is
to defocus the CCD objective, but this implies a loss of
spatial resolution.

Two solutions for this problem were tested. First,
two gratings with a sinusoidal intensity profile were
used. The gratings used were commercial sine pat-
terns of 6 linesymm. With these gratings the result-
ing moiré fringe profiles are not longer triangular but

Fig. 1. Experimental setup of the phase-shifting moiré deflectometer. Lenses L1 and L2 expand and collimate, respectively, the laser
beam. Gratings G1 and G2 are at a distance Z. The screen S is at a distance Zs from the tested object.
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were sinusoidal. In this way the phase map and its
derivative do not present distortions resulting from
harmonics. Although an ideal solution, the sinusoi-
dal gratings are expensive and difficult to obtain at
high frequencies. Moreover, the resultant sinusoi-
dal profile of the fringes has low contrast and can be
distorted if the CCD presents nonlinearities.

The second solution is to use phase-shifting algo-
rithms designed for nonsinusoidal waveforms, like

the one presented by Hibino et al.9 In that study it
was demonstrated that 2j 1 3 samples are necessary
for the elimination of the effects of higher-harmonic
components up to the jth order in the presence of
constant phase-shift error and where the phase-shift
interval is 2py~ j 1 2! rad. After different tests the

Fig. 3. ~a! Derivative of the phase map of a progressive-addition
lens obtained with the four-step algorithm. Information loss is
due to the harmonics errors. ~b! Derivative of the phase map of
the lens of ~a! obtained with the 11-step algorithm. The harmon-
ics errors are reduced.

Fig. 2. ~a! Reference moiré deflectogram in a finite-fringe config-
uration with Ronchi gratings. ~b! Fast Fourier transform of ~a!
with a 23 zoom. Harmonics up to the fourth order are clearly
discernible.
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11-sample algorithm was selected as a compromise
between the sample number and harmonic suppres-
sion. This algorithm is designed to suppress up to
fourth-order harmonics, which is enough for our ex-
perimental configuration. The expression for this
phase-shifting algorithm is

f 5 arctan1(i51
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2 ,

ai 5 Î3 ~0 21 2 4 27 26 0 6 7 4 1 0!,
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where f is the calculated phase at point ~x, y!, ai and
bi are the sampling amplitudes of the ith sample, and
Ii is the ith sample’s irradiance defined by Ii 5 I~ai!,
where ai 5 2piy6.

To test the performance of this algorithm, we cal-
culated the deflection map in the x-direction lens with
a 4-step and the 11-step algorithms. The lens used
to illustrate the method is a progressive-addition lens
with the addition of 12.00D ~Selective from the
BBGR, Paris!. Figures 3~a! and 3~b! show the deriv-
atives of these phase maps. As can be seen from Fig.
3, the effects of the harmonics have been suppressed
in Fig. 3~b!, which corresponds to the 11-step algo-
rithm.

4. Squared Ronchi Gratings and Low-Modulation
Areas

As we said in Section 1, one of the difficulties of moiré
deflectometry is the need to rotate accurately either
the gratings or the object to obtain the two compo-
nents of ray deflection. Usually the rotation is done
at 90°, and this represents an extra complication in
the experimental setup. To avoid this problem, we
propose the use of squared Ronchi gratings ~SRG’s!.
A SRG can be represented as the superposition of two
Ronchi gratings crossed at 90°. To get enough light,
we make the first SRG ~G1! a completely black trans-
parency film with small white squares, whereas the
second ~G2! is the negative of this grating. The SRG
presents similar Talbot properties to common Ronchi
gratings, although some particularities are to be dis-
cussed in a future study.

The moiré pattern obtained with these SRG’s has
the information of the two components of the ray
deflection multiplexed in just one deflectogram. Fig-
ure 4 shows the moiré deflectogram of the progressive
lens described in Section 3 with the configuration of
infinite fringes ~the two SRG’s are parallel!. Note
the two sets of fringes corresponding to the x and the
y components of the ray deflection. The SRG used
was created in POSTSCRIPT and printed directly with a
graphics-art photocompositor. The grids have a fre-
quency of 10 linesymm in each principal direction,
and the distance Z was set to the first Talbot plane.
From Eq. ~3! it is shown that each fringe depicted in

Fig. 4 corresponds to a variation of 0.363° in the ray
deflection.

In this configuration, for obtaining the phase map
that corresponds to the ray deflection along one of the
two principal directions, the G1 grating must be
moved normal to the desired direction. So, by mov-
ing this grating first in the x and second in the y
direction, we obtain the ray deflections in y and x,
respectively. However, because both fringe patterns
are mixed, the phase maps obtained are affected by
low-modulation areas that are due to the fringe sys-
tem associated with the orthogonal deflection compo-
nent. This situation is similar to the low-
modulation areas that appear in photoelasticity, and
we solve it in the same way that Quiroga and
González-Cano10 did. In fact, the intensity profile of
the moiré fringes in infinite-fringe mode obtained
with the SRG can be expressed by

I~x, y! 5 I0 1 M cosF2p
Zwy~x, y!

p
1 aG

3 cosF2p
Zwx~x, y!

p
1 bG , (5)

where I0 is the background intensity, M is the overall
modulation of the fringe pattern, wx and wy are the
deflections in the x and the y directions, respectively,
and a and b are the phase shifts that are controlled by
movement of the G1 grating. To calculate wx, we
move G1 in the y direction by 11 steps ai, as explained
in Section 3, whereas the x position of G1 is given by
b1. In this case we get 11 intensity distributions I1i,
from which we compute

A1 5 (
i51

11

aiI1i, B1 5 (
i51

11

biI1i, (6)

Fig. 4. Moiré deflectogram of the progressive-addition lens in an
infinite-fringe configuration with SRG’s. Two black points used
for position reference can be observed.
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with ai and bi defined in Eq. ~4!. The phase map f1x
associated with deflection in the x direction can be
calculated by

f1x 5 arctan~A1yB1!, (7)

and the modulation of this phase map is

m1~x, y! 5 ~A1
2 1 B1

2!1y2

5 UM cosF2p
Zwy~x, y!

p
1 b1GU . (8)

From Eq. ~8!, the phase map f1x has low-
modulation areas when the cosine term is near zero,
yielding fringe breaks and logical inconsistencies.
On the other hand, moving G2 in the x direction in
such a way that b2 5 b1 1 p generates a second set
of intensity distributions, from which A2 and B2 are
computed in the same way as with Eqs. ~6!. Finally,
a second estimation, f2x 5 arctan~A2yB2!, is obtained
with a modulation given by

m2~x, y! 5 UM sinF2p
Zwy~x, y!

p
1 b1GU . (9)

In this case the low-modulation areas obtained are
associated with regions of low values of the sine term.
Because the sine and the cosine are in quadrature,
the regions of low values of the cosine term of Eq. ~8!
coincide with the region of high values for the sine
term of Eq. ~9!. Therefore for every point in the
phase map two estimations of the real phase fx are
obtained. To get the best possible value of the phase
estimate, we take a weighted average of the terms
A1,2 and B1,2, with the weights given by the corre-
sponding modulation.10 That is, the phase map is
computed as

fx 5 arctanSm1 A1 1 m2 A2

m1 B1 1 m2 B2
D . (10)

As an example, Fig. 5~a! shows the phase map in
the x direction, as obtained with Eq. ~7!, of the same
lens shown in Fig. 4 and also depicts the low-
modulation areas produced by the fringe system as-
sociated with deflection in the y direction. Figure
5~b! shows the phase map calculated with Eq. ~10!.
In this figure the improvement with respect to Fig.
5~a! is clearly visible. Finally, Fig. 5~c! shows the
phase map fy with the low-modulation areas sup-
pressed.

Although prismatic effects are important in the
study of an ophthalmic lens, the mapping of the re-
fractive power is more useful for its characterization.
Figures 6~a!, 6~b!, and 6~c! show the derivatives of the
phase maps fxx, fxy, and fyy, respectively. From

Fig. 5. ~a! Phase map associated with the x-deflection compo-
nent obtained with Eq. ~7!. The low-modulation areas corrupt the
information. ~b! Phase map associated with the x-deflection com-
ponent obtained with Eq. ~10!. The low-modulation areas were

suppressed. Each 2p jump in the phase map corresponds to a
variation of 0.363° in the ray deflection. ~c! Phase map associated
with the y-deflection component with low-modulation areas sup-
pressed.

10 September 1998 y Vol. 37, No. 26 y APPLIED OPTICS 6231



these phase maps it is simple to calculate the
sphere, the cylinder, and the axis, commonly used as
figures of merit for the characterization of ophthalmic
lenses.7

The measurement process requires 22 images to
map the deflection in each direction, yielding a total
of 44 images for obtaining complete deflection infor-
mation. Another set of 44 images is needed to sub-
tract the reference information without the lens.
The algorithm for acquisition and processing was pro-
grammed under the MATLAB environment with a Pen-
tium 166 computer. The complete processing time
without any optimization is approximately 7 min.

5. Calibration of Zero

As is well known, the phase-shifting techniques are
not absolute, that is, a point of known phase must be
obtained to realize an absolute measure of the phase.
To get this, one can use a commercial focimeter to
obtain the prismatic power in a specific point of the
lens ~for example the center!. The drawback of
needing a point of known phase can be overcome if
the tested object has a point with zero deflection in
the field of view. In such a case the zero-deflection
points can be detected by use of the standard setup
used here. For this two phase maps with slightly
different separations Z between the gratings are ob-
tained. That is,

fI,II~x, y! 5 F2p

p
ZI,IIw~x, y!Gmod 2p. (11)

If the displacement fulfills the condition

uZI 2 ZIIu , Up2 wmaxU , (12)

where wmax is the maximum ray deflection present in
the object, these phase maps are equal only at the
points with w~x, y! 5 0. Then, from their difference,
the zero-deflection points can be located, which
makes possible an absolute ray-deflection measure-
ment. Figures 7~a! and 7~b! show the absolute x-
and y-deflection maps obtained by the unwrapping of
the phase maps shown in Figs. 5~b! and 5~c!, respec-
tively. The solid lines correspond to the areas of
zero deflection.

Finally, a comparison of these results with the de-
flection measured with an automatic focimeter
~Humphrey, Model 360! was realized. It must be
noted that the deflection information measured with
the moiré method is obtained in the observation
plane S. Therefore a simple ray-tracing technique is
applied to obtain the corresponding information in
the object plane11 and to make possible a comparison
with the results obtained with the focimeter. To
perform ray tracing, it is necessary to know the dis-
tance between the observation plane and the tested
object, Zs. Figure 8 shows the profile along the prin-
cipal meridian of the y-deflection map shown in Fig.
7~c! as well as the deflection measured with the foci-
meter along the same meridian. Good agreement
between both methods can be seen.

Fig. 6. Phase derivatives representing ~a! the power along the x
direction fxx, ~b! torsion fxy, and ~c! the power along the y direction
fyy. The scale is expressed in diopters ~Dp!.
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6. Conclusions

We have presented an improved technique for mea-
suring ray deflections by moiré deflectometry phase
shifting. The use of squared gratings avoids the
need to rotate the gratings to obtain complete deflec-
tion information. A modified moiré deflectometry
phase-shifting method has been designed to deal with
the problems associated with the utilization of these
gratings. Finally, a method for obtaining the zero
order of the prismatic effect has been developed.
The technique constitutes a complete and automatic
method for mapping ray deflections and allows infor-
mation about the local refractive power of the tested
object to be obtained.

We thank J. Alonso, and J. A. Gomez-Pedrero for
their useful comments and continuous support dur-
ing the development of this paper.
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