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Abstract

This paper introduces a new continuous-time model based on the logarithm of the commodity

spot price assuming that the log-price converges to a cyclic level. In short, this model incorporates

that assumption by modelling the mean reversion level through a Fourier series. Under this

assumption, we compute closed-form expressions for the values of several commodity derivatives.

Finally, we analyze the empirical in-sample performance of our model versus two alternative

competitors, namely, those proposed in Schwartz (1997) and Lucia and Schwartz (2002). Our

findings show that this model outperforms both benchmarks, providing a simple and powerful

tool for portfolio management, risk management and derivative pricing.
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1 Introduction

Characterizing the stochastic behaviour of commodity prices constitutes an issue of special rele-

vance for practitioners in financial markets and it has been deeply analysed in many academic

papers throughout the years. That is hardly surprising, since some commodity markets are very

liquid and they move every day a huge number of financial trades. Furthermore, many financial

contingent claims such as futures, options and options on futures use some commodity as the under-

lying asset. Given the seasonal behaviour exhibited by most commodities, this paper introduces a

new continuous-time model based on an Ornstein-Uhlenbeck process for the logarithm of the com-

modity spot price, with a reversion to a time dependent long-run level, whose time variation is

characterized by a Fourier series. The underlying idea behind this assumption is that the pricing

process is driven by market forces and dominated by a strong seasonal component. Intuitively, some

commodity prices are pulled back to a lower mean reversion level in periods of high supply or low

demand, while this reversion level tends to be higher whenever the supply is low or the demand is

high. In other cases, a given commodity may be perceived as a refuge against bad economic times,

and the cyclical behaviour in its price may reflect in part the evolution of the business cycle in some

major economy. Under this framework, we compute closed-form expressions for the prices of futures,

European options and European options on futures.1

In the academic literature we can find a significant number of papers addressing empirically and

theoretically the commodity valuation problem. A pioneer contribution can be found in Schwartz

(1997), who compares three mean-reverting models for the stochastic behaviour of a commodity

price. The first model is a simple one-factor model based on the logarithm of the commodity spot

price, constituting the starting point of our posited model. The second is the two-factor model

proposed in Gibson and Schwartz (1990), where the second factor accounts for the convenience yield

of the commodity. Finally, the third model is an extension of the Gibson and Schwartz (1990) model

that incorporates the stochastic behaviour of interest rates as in Vasicek (1977). An interesting

twist of the two-factor model is presented in Schwartz and Smith (2000), where the log-spot price

is described as the sum of two state variables referred to as the short-term deviation in prices and

the equilibrium price level, respectively. In more detail, short-run deviations are assumed to revert

toward zero and the equilibrium level is assumed to follow a Brownian motion process.

Addressing the possible seasonal behaviour of the commodity price, a simple and clever contri-

bution can be found in Lucia and Schwartz (2002). In this paper the authors use the Scandinavian

electricity market to compare a number of models based on the spot price and the logarithm of the

spot price, where the seasonal component is arbitrarily incorporated in an ad-hoc fashion to the

process for the log-spot price and modelled by a deterministic trigonometric function with annual

1In this paper we make no distinction between futures and forward agreements.
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frequency. An interesting extension of the one-factor log-spot price model presented in Lucia and

Schwartz (2002) can be found in Cartea and Figueroa (2005), where the stochastic process follows

a zero level mean-reverting jump-diffusion process for the underlying log-spot price and the expo-

nential of the trigonometric function is replaced by a Fourier series of order five. For a thorough

description of some commodity models see, for instance, Pilipović (1998).

Energy and power markets present a perfect framework to analyse the suitability of this kind of

models with a seasonal component. By its own nature, any source of energy is difficult to store or

transport. For instance, the low density of natural gas makes highly impractical its storability and

transportation, and it has a deep impact on its price, specially in those periods of high demand or

production shortages. Additionally, there is a bunch of seasonal variables driving the commodity

price, such as business activity, weather conditions, market regulations, etc. There is a rich aca-

demic literature focused on energy markets and the corresponding pricing issues. Some interesting

contributions on this area can be found in Clewlow and Strickland (2000), Eydeland and Wolyniec

(2003), Geman (2005), Burger, Graeber, and Schindlmayr (2007), Forsythe (2007), Weron (2007),

and Carmona and Coulon (2012), among many others.

In this paper, we focus our analysis on natural gas as a source of energy, taking Henry Hub

as the pricing point for natural gas futures contracts. We compare the fitting ability of our model

to market data against two alternative benchmarks. In particular, we use the one-factor models

proposed in Schwartz (1997) and Lucia and Schwartz (2002) for the logarithm of the commodity

spot price. Since the seasonal component varies among commodities and it could even be different

for the same commodity at different maturities, it will be crucial to identify those underlying periods

driving the market forces. We use spectral analysis to identify such frequencies, and in particular,

to identify the fundamental frequency of the pricing process.

This paper is organized as follows. Section 2 presents the benchmark models and their main

features. Section 3 derives the posited model and the futures pricing formula. Section 4 provides

closed-form expressions for prices of different derivatives. Section 5 presents the empirical analysis.

Finally, Section 6 summarizes the main findings and provides some concluding remarks.

2 Benchmark models

This Section introduces the benchmark models presented by Schwartz (1997) and Lucia and Schwartz

(2002), Model 1 and Model 2, respectively.
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2.1 Model 1

This model assumes that the commodity spot price St follows a stochastic process given by,

dSt = κ (µ− ln(St))Stdt+ σStdWt

where κ, µ, and σ are constant parameters, and Wt is a standard Wiener process.

Moreover, defining Xt = ln(St), assuming a constant market price of risk λ, and applying Ito’s

Lemma, the log price can be represented by the following risk-neutral process

dXt = κ (α̃−Xt) dt+ σdW̃t

where

α̃ = µ−
σ2

2κ
−

λσ

κ

where α̃, κ and σ are constant parameters and W̃t = Wt+λt is a standard Wiener process under

the risk-neutral measure P̃ . In addition, under this measure, the solution to equation (2.1) is given

as

Xs = e−κ(s−t)Xt +
(
1− e−κ(s−t)

)
α̃+ σ

∫ s

t

e−κ(s−u)dW̃u

which is normally distributed with mean and variance at time T as follows

Ẽ[XT |Ft] = e−κ(T−t)Xt +
(
1− e−κ(T−t)

)
α̃

Ṽ [XT |Ft] =
σ2

2κ

(
1− e−2κ(T−t)

)

Since the spot price of the commodity at time T is log-normally distributed, the forward price

of the commodity is given as

F (St, t, T ) = Ẽ [ST |Ft] = exp

{
Ẽ [XT |Ft] +

1

2
Ṽ [XT |Ft]

}

= exp

{
e−κ(T−t) ln(St) +

(
1− e−κ(T−t)

)
α̃+

σ2

4κ

(
1− e−2κ(T−t)

)}

Alternatively,

ln(F (St, t, T )) = e−κ(T−t) ln(St) +
(
1− e−κ(T−t)

)
α̃+

σ2

4κ

(
1− e−2κ(T−t)

)
(1)

2.2 Model 2

Lucia and Schwartz (2002) propose an alternative one-factor model for the log-spot price that incor-

porates an interesting feature capturing the seasonal nature of some commodity prices. Specifically,
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model 2 incorporates a deterministic function of time, f(t), of the form

lnSt = f(t) + Yt

f(t) = α+ ϑDt + γ cos

(
(t+ ϕ) ·

2π

365

)

where α, ϑ, γ, and ϕ are constant parameters, Dt = 1 if date t is holiday or weekend, Dt = 0

otherwise, and Yt is a zero level mean-reverting stochastic process given as

dYt = −κYtdt+ σdW

where κ and σ are positive and constant parameters. Under the risk-neutral measure, that is,

defining a constant market price of risk Λ(t) = λ , the risk-neutral process is given as

dYt = κ(α∗ − Yt)dt+ σdW̃

where α∗ = −λσ/κ is a constant parameter.

In addition, defining Xt = ln(St) and applying some basic algebra we find that the solution for

Xs under the risk-neutral measure is given as

Xs = f(s) + Yte
−κ(s−t) +

(
1− e−κ(s−t)

)
α∗ + σ

∫ s

t

e−κ(s−u)dW̃

Again, since the spot price of the commodity at time T is log-normally distributed, the forward

price of the commodity is given as

F (St, t, T ) = Ẽ [ST |Ft] = exp

{
Ẽ [XT |Ft] +

1

2
Ṽ [XT |Ft]

}
(2)

= exp

{
f(T ) + e−κ(T−t)(ln(St)− f(t)) +

(
1− e−κ(T−t)

)
α∗ +

σ2

4κ

(
1− e−2κ(T−t)

)}

with α∗ = −λσ/κ

3 A New Model for the Commodity Price

In this section we introduce a new valuation model for commodity prices, obtaining the corresponding

expression for pricing futures contracts.

3.1 The New Model

Let St denote the commodity spot price available at time t. Then, the evolution of the commodity

spot price, St, is given by the stochastic differential equation

dSt = κ (f(t)− ln(St))Stdt+ σStdWt (3)
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where κ, σ ∈ R
+ and Wt is a standard Wiener process. The main assumption made in this model

is that the mean reversion level, f(t), follows a time-dependent periodic function characterized by

the real part a Fourier series,2

f(t) =

∞∑

n=0

Re
[
Ane

inwt
]

Note that, ∀n | An ∈ C, so that there is a phase factor contained in An. In more detail, consider

An = Ax,n + iAy,n where Ax,n, Ay,n ∈ R. Hence, Ax,n and Ay,n denote the amplitude and phase of

each term in the Fourier expansion, respectively. Note that this model nests model 1 presented in

Schwartz (1997) by taking An = 0, ∀n ∈ N− {0}.

Moreover, defining Xt = ln(St), assuming a constant market price of risk, that is Λ(St, t) = λ,

and applying Ito’s Lemma, the log price can be represented by the following risk-neutral process

dXt = µtdt+ σdW̃t (4)

where

µt = κ (α̃+ g(t)−Xt) (5)

α̃ = A0 −
σ2

2κ
−

λσ

κ
(6)

g(t) =
∞∑

n=1

Re
[
Ane

inwt
]

(7)

where A0 ∈ R and W̃t = Wt + λt is a standard Wiener process under the risk-neutral measure

P̃ .

The following Proposition establishes the solution of the stochastic differential equation (4).

Proposition 1 The solution of the risk-neutral process followed by the logarithm of the commodity

spot price is given as

Xs = e−κ(s−t)Xt+
(
1− e−κ(s−t)

)
α̃+

∞∑

n=1

Re

[
κAn

κ+ inw

(
einws − e−κ(s−t)+inwt

)]
+σ

∫ s

t

e−κ(s−u)dW̃u

Figure 1 presents the evolution of the spot price time series for four different set of parameters.

In the first graph we only consider the drift process, that is σ = 0. The flexibility of the model

is reflected in the fact that any scenario can be replicated by increasing the number of terms in

the Fourier expansion. The second graph represents the aggregate of the drift and the diffusion

processes, presenting a simulated spot price walk under each parameter scenario. For illustrative

2It is only the real part of the Fourier series that makes economic sense.
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purposes, Figures 2 and 3 show how the spot price responds to different values of the parameters

α̃, κ, An,x, An,y, and ω with n = 1, σ = 0.

From Proposition 1, it is clear that the conditional distribution of the logarithm of the commodity

spot price at time T follows a normal distribution where the mean and variance under the risk-neutral

probability measure P̃ are given as

Ẽ [XT |Ft] = e−κ(s−t)Xt +
(
1− e−κ(s−t)

)
α̃+

∞∑

n=1

Re

[
κAn

κ+ inw

(
einws − e−κ(s−t)+inwt

)]
(8)

Ṽ [XT |Ft] = Ṽ

[
σ

∫ T

t

e−κ(T−u)dW̃u

]
=

(
σ

∫ T

t

e−κ(T−u)dW̃u

)2

= σ2

∫ T

t

e−2κ(T−u)du

=
σ2

2κ

(
1− e−2κ(T−t)

)
(9)

where we have applied the isometry property for stochastic integrals in the variance.

Since Xt = ln(St), the forward price of a commodity maturing at time T is a straightforward

application of the properties of the log-normal distribution under the risk-neutral measure. Hence,

the following proposition arises

Proposition 2 Assuming a constant interest rate, the forward price of a commodity maturing at

time T is given by

F (St, t, T ) = Ẽ [ST |Ft] = exp

{
Ẽ [XT |Ft] +

1

2
Ṽ [XT |Ft]

}

= exp

{
e−κ(T−t) ln(St) +

(
1− e−κ(T−t)

)
α̃+

σ2

4κ

(
1− e−2κ(T−t)

)

+
∞∑

n=1

Re

[
κAn

κ+ inw

(
einws − e−κ(s−t)+inwt

)]}

Alternatively,

ln(F (St, t, T )) = e−κ(T−t) ln(St) +
(
1− e−κ(T−t)

)
α̃+

σ2

4κ

(
1− e−2κ(T−t)

)

+
∞∑

n=1

Re

[
κAn

κ+ inw

(
einws − e−κ(s−t)+inwt

)]
(10)

4 Option Pricing

This section focuses on option pricing under our proposed model, and provides closed-form expres-

sions for the prices of European options whose underlying asset is a certain commodity or a forward

on this commodity.
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• European option on the commodity

Consider a call option maturing at time T with strike K, written on a commodity. Let

ct(St; t;T ;K) denote the price at time t of this call option. Then, the terminal condition

to this call option is given by

cT (ST ;T ;T ;K) = max{F (ST ;T ;T )−K; 0}

Hence, under the risk-neutral measure P̃ , the price at time t of this option will be given by

ct(St; t;T ;K) = Ẽ
[
e−r(T−t)(F (St; t;T )−K)+|Ft

]

The call option price is given by the following Proposition.

Proposition 3 The price at time t of a European call option with maturity T written on a

commodity is given by

ct(St; t;T ;K) = Ẽ
[
e−r(T−t)(ST −K)+|Ft

]

= e−r(T−t)

∫
∞

−∞

(ST −K)+ρ(µ,Σ)dXT

= e−r(T−t)
[
eµ+

1

2
Σ2

Φ(d1)−KΦ(d2)
]

where ρ(µ,Σ) defines the normal density function and

µ = Ẽ[XT |Ft]

Σ = Ṽ [XT |Ft]

d1 =
µ+Σ2 − ln(K)

Σ
d2 = d1 − Σ

with Ẽ[XT |Ft] and Ṽ [XT |Ft] given by equation (8) and (9), respectively.

• European option on the commodity forward

Consider a European forward call option that matures at time T with strike K. If this option

is exercised, the call-holder pays K and receives a forward maturing at time s on a commodity.

Let ct(St; t;T ; s;K) denote the price at time t of this option. The terminal condition of this

option is given as

cT (ST ;T ;T ; s;K) = max{F (ST ;T ; s)−K, 0}
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Under the risk-neutral measure P̃ , the price at time t of this option is given as

ct(St; t;T ; s;K) = Ẽ
[
e−r(T−t)(F (ST ;T ; s)−K)+|Ft

]

Hence, the following proposition arises.

Proposition 4 The price at time t of a European forward call option with maturity T on a

forward contract expiring at time s written on a commodity is given by

ct(St; t;T ; s;K) = Ẽ
[
e−r(T−t)(F (ST , T, s)−K)+|Ft

]

= e−r(T−t)

∫
∞

−∞

(F (ST , T, s)−K)+ρ(µ,Σ)dXT

= e−r(T−t)

[
exp

{
Ω+ µe−κ(s−T ) +

1

2
Σ2e−2κ(s−T )

}
Φ(d1)−KΦ(d2)

]

where ρ(µ,Σ) denotes the normal density function and

µ = Ẽ [XT |Ft]

Σ2 = Ṽ [XT |Ft]

Ω =
(
1− e−κ(s−T )

)
α̃+

(
1− e−2κ(s−T )

) σ2

4κ
+

∞∑

n=1

Re

[
κAn

κ+ inw

(
einws − e−κ(s−T )+inwT

)]

ν = (ln(K)− Ω) eκ(s−T )

d1 =
µ+Σ2e−κ(s−T ) − ν

Σ

d2 =
µ− ν

Σ

with Ẽ[XT |Ft] and Ṽ [XT |Ft] given by equation (8) and (9), respectively.

5 Empirical Analysis

5.1 Data

The data set used for the empirical study consist of daily observations of futures contracts written on

natural gas. In more detail, we take Henry Hub as the pricing point for natural gas futures contracts,

which is traded on the New York Mercantile Exchange (NYMEX). We have complete data for the

spot prices and the twelve contracts closest to maturity from 02/02/1998 to 07/03/2011. In this

analysis we take into consideration the Ng-5, Ng-8 and Ng-12, where Ng-5 is the fifth contract closest

to maturity, and so on.
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Since the models for the forward price have the form given as in the previous Sections, we

estimate the structural parameters by minimizing the fitting error of each model as:

Yt =

6∑

i=1

βizit + ut

where ut can be interpreted either as a measurement or as an approximation error in the pricing

formula. For every model we follow a non-weighted least-squares approach to obtain the parameter

estimates.

Model 1

We hope to identify the values of the structural parameters: θ = (α̃, κ, σ).

Yt = ln(F (St, t, T )) − e−κ(T−t) ln(St)

z1t = 1− e−κ(T−t)

z2t =
(
1− e−2κ(T−t)

)
/4κ

β1 = α̃; β2 = σ2; β3 = β4 = β5 = β6 = 0

Model 2

Neglecting ϑ, considering trading days and with some basic algebra we reorganized model 2. In

this case, we hope to identify the values of the structural parameters: θ = (α̃, κ, σ, γ, ϕ).

Yt = ln(F (St, t, T ))− e−κ(T−t) ln(St)

z1t = 1− e−κ(T−t)

z2t =
(
1− e−2κ(T−t)

)
/4κ

β1 = α̃ = α+ α∗; β2 = σ2; β3 = γ; β4 = 0

f1(t, T ) = cos ((T + ϕ) · 2π)− e−κ(T−t) cos ((t+ ϕ) · 2π)

Model 3

This model assumes only one term in the Fourier expansion, hence we hope to identify the values

of the structural parameters θ =
(
α̃, κ, σ,A(x,n1), A(y,n1), ω

)
.

Yt = ln(F (St, t, T ))− e−κ(T−t) ln(St)

z1t = 1− e−κ(T−t)

z2t =
(
1− e−2κ(T−t)

)
/4κ

β1 = α̃; β2 = σ2

and Re

[
(A(x,n1) + iA(y,n1))

κ

κ+ inw

(
einws − e−κ(s−t)+inwt

)]
derives in β3z3t + β4z4t.
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Model 4

In this case we assume two terms in the Fourier expansion, which leads us to identify the values

of the structural parameters θ =
(
α̃, κ, σ,A(x,n1), A(y,n1), A(x,n2), A(y,n2), ω

)
.

Yt = ln(F (St, t, T ))− e−κ(T−t) ln(St)

z1t = 1− e−κ(T−t)

z2t =
(
1− e−2κ(T−t)

)
/4κ

β1 = α̃; β2 = σ2

where
∑

n=n1,n2
Re

[
(A(x,n) + iA(y,n))

κ

κ+ inw

(
einws − e−κ(s−t)+inwt

)]
derives in

∑6
i=3 βizit.

5.2 In-Sample Analysis

The key assumption in this paper is that there is a seasonal pattern in futures prices, besides being

non-stationary. Table 1 presents the Augmented Dickey-Fuller (ADF) test for the time series for

the log-spot price as well as for the log-price of each of the futures contracts considered, and for the

first differences of each of these series. Clearly, the unit root hypothesis cannot be rejected in any

case, meaning that both, the spot and futures price series are non-stationary. On the other hand,

the presence of a unit root is rejected when considering the first difference of each price. Figures 4

to 7 present the autocorrelation and partial autocorrelation function for each time series.

Table 2 shows the estimation results for the long-run relationship between the futures and the

spot price:

lnFt(τ) = α+ β lnSt + at

where τ corresponds to each futures tenor, Ng-5, Ng-8, and Ng-12, respectively. Table 3 presents

the Augmented Dickey-Fuller test for each residual time series and its first difference. In every case

we reject the existence of a unit root. Figures 8 to 10 present the residual and its first difference

time series corresponding to the estimation of Ng-5, Ng-8, and Ng-12. Figures 11 to 13 present

the autocorrelation and partial autocorrelation function for each residual time series and its first

difference time series. Hence, the logarithm of each futures price is cointegrated with the logarithm

of the spot price, as it is usually the case in most liquid futures markets.

The expected seasonal pattern suggests that it is reasonable to study the spectral density of

futures prices, bearing in mind that for any such time series the spectral density should be expected

to have a maximum at the zero frequency, due to the presence of a unit root. Figures 14 to 16

present the logarithm of the price of natural gas for Ng-5, Ng-8 and Ng-12 futures contracts and the

associate spectral density, where f(Hz) = ω
2π . As expected, these figures confirm the existence of
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a maximum in the spectral density at the zero frequency. However, an additional interesting result

arises in these spectra: aside from the zero frequency, the three time series of futures prices reach

a maximum in their spectral density at rather low frequency, which should be interpreted as the

fundamental frequency. This frequency indicates that there is an underlying long-run period driving

the behaviour of futures prices, of about 15 to 16 years.

This result is quite interesting for our purposes. However, since the three models we consider are

driven by the commodity spot price, we are specifically interested in the spectral component which

is not explained by the spot price. The reason is that we are interested in the seasonal period that is

specific to futures prices and hence, on the seasonal component that it is not inherited through the

dependence of futures prices from the spot price. This is a not trivial endeavour because, according to

our model, the relationship between spot and futures prices is not straightforward. In fact, it depends

on the speed of mean reversion parameter κ, which should be estimated for each model. In addition,

we should remember that our proposed model has been developed under the assumption that the

mean reversion level follows over time an evolution characterized by a Fourier series. Alternatively,

the model posited by Lucia and Schwartz (2002) assumes a zero level mean-reverting process and

arbitrarily adds a trigonometric function with an annual frequency. Therefore, relaxing the annual

frequency assumption will not collapse the Lucia and Schwartz model into our model.

The estimated spectra are precisely very important to conduct the specification of our model for

estimation purposes. We need to truncate the infinite Fourier series, and it is important to have

some idea about how many terms may be needed to fit the futures price data, and which frequencies

should be incorporated into the chosen terms of the Fourier expansion. At this point, we already

know that to appropriately capture the dynamics in natural gas futures prices it is necessary to

include in the model the estimated fundamental frequency.

To detect the frequencies that are relevant to explain the dynamics in futures prices, we create

a grid of frequencies and fit our model to the observed time series for each value of ω in the grid.

These estimations will provide us with a measure of the fitting errors for each frequency, thereby

exposing the cyclical component not captured by the spot price. Figure 17 shows the residual sum

of squares of estimating our model for a fixed value of ω in (0, 2π). The results are quite conclusive:

there is a well defined minimum fitting error at a point very close to the fundamental frequency

obtained in estimated spectrum, indicating an underlying long run period of 15 to 16 years. This

analysis reveals another interesting feature: the second relevant term in the Fourier series for the

Ng-5 and Ng-8 is the annual frequency, which is, of course, a multiple of the fundamental frequency

(n · ω = 2πn · f(Hz)). However, the importance of the annual frequency decreases with maturity,

completely disappearing beyond the futures expiring in one year, Ng-12. This may be reasonable:

since the Ng-12 expiration date is exactly one wavelength of the annual frequency, then it makes
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sense that the annual frequency has a negligible effect on the Ng-12 time series. Since the analysis

considers the relation between the spot and futures prices, it is fair to say that this frequency is

indicating a cyclical behaviour in the futures price which is not captured by the spot price.

To obtain the spectrum of the component of futures prices which is not explained by spot prices,

we use the estimated parameters associated with this fundamental frequency to compute the function

ŝ(Ft, St), given as

ŝ(Ft, St) = ln(F (St, t, T ))− e−κ̂(T−t) ln(St)− ˆ̃α
(
1− e−κ̂(T−t)

)
−

σ̂2

4κ̂

(
1− e−2κ̂(T−t)

)

The spectrum of this function will expose the underlying component that is not fully explained

by the spot price or by any trend. Figures 18 to 20 present the spectrum of the ŝ-function for each

futures price, suggesting that at most three terms in the Fourier expansion should be enough to

attain a good fit of the ŝ-function. As expected, the frequencies identified in each spectrum match

exactly the frequencies detected in the graphs of the residual sum of squares for fixed values of ω,

confirming that we certainly have spotted the frequencies we need to obtain accurate estimates.

Tables 4 to 6 present the estimated parameters and the corresponding standard deviation for

each chosen futures price and for the whole sample, as well as goodness of fit measures for each

model. For the whole period we present the minimized value of the function
∑

i,tmin SR(θ̂i,t) and∑
i,t |ûi,t|, the sum of the absolute value of pricing errors for the whole period, to represent how well

each model fits the observed futures prices. In addition, Figures 21 to 23 present the Ng-5, Ng-8 and

Ng-12 adjustment error time series for Models 2, 3, and 4. To keep the graphs as clear as possible

we have intentionally excluded Model 1. On February 25, 2003 every model shows a particularly

poor fit. That day, United States, United Kingdom and Spain presented to the UN Security Council

a resolution stating that Iraq “has failed to take the final opportunity” to disarm. Rumors of an

imminent war plunged stock markets all over the world, while many commodities prices raised till

historical maximums. Henry Hub spot price has closed at 19.38$, when average spot price oscillated

at 5$.

Regarding the goodness of fit the results are conclusive. Compared with the benchmark models,

both representations of our model dramatically improve the in-sample fit of every observed futures

time series. Model 3, the model with just one term in the Fourier expansion, reduces the aggre-

gate sum of squares of Model 2 by 28%, 54% and 79%, for Ng-5, Ng-8 and Ng-12, respectively.

Comparing Model 3 with Model 1, the improvement is of 48%, 61% and 79% for Ng-5, Ng-8 and

Ng-12, respectively. It is encouraging to know that we do not need to go farther away in the Fourier

expansion to achieve a good fitting, even though increasing the number of terms in the Fourier ex-

pansion would eventually allow for fitting arbitrarily well the observed time series. On this regard,

it is interesting to point out that the annual frequency proposed by the Schwartz and Lucia model
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has little impact by itself. In fact, for the futures contract expiring in one year, Model 2 provides

no further improvement from the model with no seasonal component. In fact, there is an annual

frequency in the process driving the futures price, but that annual fluctuation is mostly explained

by the spot price. On the other hand, the long run frequency, between 15 and 16 years, explains

the seasonality in futures prices that is not captured by the spot price. This frequency might well

be related to the business cycle.

Although the main improvement comes with the incorporation of the fundamental frequency,

adding a second term in the model still provides further improvements. Comparing Model 4 against

Model 3, i.e., the models with two and one term in the Fourier expansion, the relative improvement

is given as 45%, 40% and 27% for Ng-5, Ng-8 and Ng-12, respectively. For contracts Ng-5 and Ng-8,

the second term incorporates the annual frequency, while the second term for the Ng-12 futures

contract suggests a period of 4 years.

Figures 24 to 26 show the spectral density of fitting errors obtained with Models 3 and 4 for

each futures contract. As expected, the fundamental frequency has been completely removed from

the spectrum. Model 3 fitting error of futures series Ng-5 and Ng-8 is dominated by the annual

frequency, and it is completely eliminated from the model 4 fitting error spectra. Model 4 fitting

error spectra reveals no dominating frequency, although we can spot some frequencies standing from

the noise which could be incorporated in further term of the Fourier expansion. On this respect,

adding a third term in the Fourier expansion provides a relative improvement over the two-terms

model of 11.5%, 20.5% and 20% for the estimation of Ng-5, Ng-8, and Ng-12, respectively.

6 Conclusions

This paper has introduced a continuous-time model for the logarithm of the commodity spot price,

assuming that it reverts to a mean level that follows a cyclical behaviour over time that is charac-

terized by a Fourier series. Under this assumption, our model nests the original one-factor model

presented in Schwartz (1997), while allowing for a more flexible evolution of the commodity spot

price and preserving the analytical tractability of the Schwartz model. Under this framework, we

have obtained analytical expressions for the prices of futures, European option on the commodity

and European options on commodity futures.

Considering Natural gas as the underlying asset of the futures contract, we have also analysed

the empirical performance of two versions of our model against two different one-factor benchmarks,

those proposed in Schwartz (1997) and Lucia and Schwartz (2002). In order to identify the funda-

mental frequency and the underlying period driving the futures contract price, we have conducted

a spectral analysis of three futures with different tenors, in particular Ng-5, Ng-8 and Ng-12. The

14



spectrum revealed that there is a short frequency driving the futures price behaviour of about 15 to

16 years. Although the annual frequency has some relevance in Ng-5 and Ng-8, its importance tends

to decrease with maturity. Considering the effect of the fundamental frequency, even in its simplest

representation based on a single term of the Fourier expansion, our model outperforms both bench-

mark models, providing a better and more reliable in-sample fitting of the commodity futures price.

Adding a second term in the Fourier expansion provides an improvement relative to the one term

representation, although the improvement tends to be lower for longer maturities. On that count, it

is worth pointing out that increasing the number of terms in the Fourier expansion would eventually

allow for fitting the observed time series arbitrarily well. These results are very relevant, suggesting

that our proposed Fourier model provides a simple and powerful tool for portfolio management, risk

management and derivative pricing on commodities.
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7 Appendix of Tables

Table 1: Augmented Dickey-Fuller test

ADF (Level) ADF (First Difference)

Lags t-stat (p-value) Lags t-stat (p-value)

Spot 26 -2.2492(0.189) 25 -13.0611(3.833e-29)

Ng-5 25 -2.0527(0.264) 24 -10.5281(6.566e-21)

Ng-8 23 -1.9750(0.298) 22 -9.7038(2.933e-18)

Ng-12 19 -1.6753(0.444) 25 -12.3007(1.096e-26)

Note: Augmented Dickey-Fuller test for the log spot and futures price, and the first differences of each of

these series.

Table 2: Estimation results

Ng-5 Ng-8 Ng-12

α 0.2311(0.0089) 0.2703(0.0101) 0.3046(0.0109)

β 0.9095(0.0056) 0.8945(0.0063) 0.8721(0.0068)

Log-likelihood function 1422.346 1024.496 775.8086

R2 0.890935 0.860997 0.834877

Note: Estimation results for the long-run relationship between the futures and the spot price given by

process 5.2. Standard errors in parentheses
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Table 3: Augmented Dickey-Fuller test

ADF (Level) ADF (First Difference)

Lags t-stat (p-value) Lags t-stat (p-value)

at(Ng-5) 30 -4.6453(1.025e-4) 29 -11.2560(2.803e-23)

at(Ng-8) 30 -3.8854(2.156e-3) 26 -13.6307(5.906e-31)

at(Ng-12) 27 -3.1480(2.323e-2) 26 -14.3477(3.446e-33)

Note: Augmented Dickey-Fuller test for each residual time series and its first difference.

Table 4: Parameters estimates. In-Sample Estimation Ng-5

Parameter Model 1 Model 2 Model 3 Model 4

β̂1 -14.7756(7.0527) 2.4228(0.0337) 0.4320(0.3487) 1.4190(0.2193)

β̂2 9.2165(10.2398) 0.1134(0.0271) 3.8248(1.0256) 0.8830(0.5870)

κ̂ 0.2539(0.1846) 0.2309(0.0079) 1.2085(0.0210) 1.1148(0.0129)

β̂3 - 0.0661(0.0085) - -

ϕ̂ - 0.0607(0.0032) - -

Â(x,n1=1) - - -0.2224(0.0279) -0.1561(0.0107)

Â(y,n1=1) - - 0.4984(0.0228) 0.5529(0.0087)

Â(x,n2=15) - - - -0.3117(0.0109)

Â(x,n2=15) - - - -0.3839(0.0092)

ω̂0 - 2π 0.4152(0.0032) 0.4175(0.0003)
∑

i,tmin SR(θ̂i,t) 80.0594 57.9226 41.7740 22.9802
∑

i,t |ûi,t| 346.6403 309.4022 291.4021 205.9710

Note:
∑

i,t min SR(θ̂i,t) represents the least squares pricing error,
∑

i,t |ûi,t| shows the pricing errors in

absolute value.
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Table 5: Parameters estimates. In-Sample Estimation Ng-8

Parameter Model 1 Model 2 Model 3 Model 4

β̂1 -7.1126(6.5074) 2.5991(0.1140) 0.9698(0.4022) 1.6985(0.0039)

β̂2 3.6508(2.7470) 0.0000(0.0000) 1.7696(0.9716) 0.0000(0.0000)

κ̂ 0.1787(0.0219) 0.1721(0.0209) 0.9308(0.0152) 0.9223(0.0132)

β̂3 - -0.0557(0.0284) - -

ϕ̂ - 0.5826(0.0827) - -

Â(x,n1=1) - - -0.0928(0.0313) -0.1979(0.0116)

Â(y,n1=1) - - 0.6017(0.0250) 0.5228(0.0101)

Â(x,n2=16) - - - -0.4101(0.0124)

Â(x,n2=16) - - - -0.3657(0.0130)

ω̂0 - 2π 0.4020(0.0027) 0.3901(0.0003)
∑

i,tminSR(θ̂i,t) 102.1405 86.6176 39.8256 23.9565
∑

i,t |ûi,t| 406.3963 390.8210 285.4515 205.1990

Note:
∑

i,t min SR(θ̂i,t) represents the least squares pricing error,
∑

i,t |ûi,t| shows the pricing errors in

absolute value.
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Table 6: Parameters estimates. In-Sample Estimation Ng-12

Parameter Model 1 Model 2 Model 3 Model 4

β̂1 2.3811(0.8887) 1.8400(0.0839) 1.3963(0.5728) 1.1713(0.2376)

β̂2 0.0000(0.0000) 0.1640(0.0179) 0.5359(1.2134) 1.1805(0.5932)

κ̂ 0.1431(0.4613) 0.1464(0.0051) 0.7846(0.0120) 0.8904(0.0085)

β̂3 - 0.0858(0.0101) - -

ϕ̂ - 0.3240(0.0179) - -

Â(x,n1=1) - - -0.1175(0.0299) -0.1913(0.0224)

Â(y,n1=1) - - 0.5820(0.0253) 0.5116(0.0178)

Â(x,n2=3) - - - -0.4965(0.0206)

Â(x,n2=3) - - - -0.4196(0.0206)

ω̂0 - 2π 0.3758(0.0031) 0.3723(0.0021)
∑

i,tmin SR(θ̂i,t) 118.9080 117.6984 24.4762 17.7831
∑

i,t |ûi,t| 490.5892 480.9532 217.4176 188.5439

Note:
∑

i,t min SR(θ̂i,t) represents the least squares pricing error,
∑

i,t |ûi,t| shows the pricing errors in

absolute value.
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8 Appendix of Figures
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Figure 1: Spot price time series simulation for an arbitrary set of parameters. The first graph represents

the drift process, that is setting σ = 0 in equation (3). The second graph represents the whole process with

σ = 0.2 in equation (3). We consider the following parameters:

Red line: α̃ = 1, κ = 0.5, An=1,x = 0.4, An=1,y = 0, An=3,x = 0, An=3,y = 0, ω = 1.5.

Black line: α̃ = 2, κ = 0.5, An=1,x = 1, An=1,y = π
2
, An=3,x = 0, An=3,y = 0, ω = 0.4.

Lightblue line: α̃ = 2, κ = 0.5, An=1,x = 0.8, An=1,y = 0, An=3,x = 0.4, An=3,y = 0, ω = 0.5.

Blue line: α̃ = 1.5, κ = 0.5, An=1,x = 0.6, An=1,y = 0, An=3,x = 0.5, An=3,y = 0, ω = 2.
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Figure 2: Spot price time series simulation for an arbitrary set of parameters and no diffusion process, σ = 0

in equation (3). For both graphs: An=1,x = 0.8, An=1,y = 0, n = 1, ω = 0.5.

The first graph represents the spot price time series for κ = 0.5 and different values of α̃:

Red line: α̃ = 0.5, Violet line: α̃ = 1, Black line: α̃ = 1.5, Lightblue line: α̃ = 2, Blue line: α̃ = 2.5.

The second graph represents the spot price time series for α̃ = 2 and different values of κ:

Red line: κ = 0.1, Violet line: κ = 0.3, Black line: κ = 0.5, Lightblue line: κ = 0.7, Blue line: κ = 1.
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Figure 3: Spot price time series simulation for an arbitrary set of parameters and no diffusion process,

σ = 0 in equation (3). For the three graphs: α̃ = 2, κ = 0.5, n = 1.

The first graph represents the spot price time series for An=1,y = 0, ω = 0.5 and different values of An=1,x:

Red line: An=1,x = 0.1, Violet line: An=1,x = 0.5, Black line: An=1,x = 0.8, Lightblue line: An=1,x = 1.2,

Blue line: An=1,x = 2.

The second graph represents the spot price time series for An=1,x = 0.8, ω = 0.5 and different values of

An=1,y:

Red line: An=1,y = −0.5, Violet line: An=1,y = −0.1, Black line: An=1,y = 0, Lightblue line: An=1,y = 0.1,

Blue line: An=1,y = 0.5.

The third graph represents the spot price time series for An=1,x = 0.8, An=1,y = 0 and different values of ω:

Red line: ω = 0.1, Violet line: ω = 0.5, Black line: ω = 1, Lightblue line: ω = 2, Blue line: ω = π.
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Figure 4: Autocorrelation and Partial autocorrelation function for the logarithm of the spot price series and

its first difference series.
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Figure 5: Autocorrelation and Partial autocorrelation function for the logarithm of the Ng-5 futures price

series and its first difference series.
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Figure 6: Autocorrelation and Partial autocorrelation function for the logarithm of the Ng-8 futures price

series and its first difference series.
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Figure 7: Autocorrelation and Partial autocorrelation function for the logarithm of the Ng-12 futures price

series and its first difference series.

28



0 500 1000 1500 2000 2500 3000 3500
−1.5

−1

−0.5

0

0.5

1

a
t
(Ng 5) time series 

0 500 1000 1500 2000 2500 3000 3500
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

a
t
(Ng 5) first difference time series 

Figure 8: at(Ng-5) time series and its first difference series.
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Figure 9: at(Ng-8) time series and its first difference series.
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Figure 10: at(Ng-12) time series and its first difference series.
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Figure 11: Autocorrelation and Partial autocorrelation function for the at(Ng-5) time series and its first

difference series.
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Figure 12: Autocorrelation and Partial autocorrelation function for the at(Ng-8) time series and its first

difference series.
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Figure 13: Autocorrelation and Partial autocorrelation function for the at(Ng-12) time series and its first

difference series.
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Figure 14: Log(Ng-5) Spectral Density.
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Figure 15: Log(Ng-8) Spectral Density.
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Figure 16: Log(Ng-12) Spectral Density.
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Figure 17: Residual sum of squares for log futures prices estimating model 3 for a fixed frequency, indicated

in the horizontal axis.
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Figure 18: Spectral density for the ŝ-function corresponding to Ng-5 futures contract. The green line in the

first graph shows how one term in Fourier expansion fits the s-function. Similarly, the red line in the first

graph shows how two term in Fourier expansion fits the s-function.

39



0 2 4 6 8 10 12 14
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Time

s function time series (Ng 8)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

6

7

8

9

Frequency (Hz)

Power spectral density

Figure 19: Spectral density for the ŝ-function corresponding to Ng-8 futures contract. The green line in the

first graph shows how one term in Fourier expansion fits the s-function. Similarly, the red line in the first

graph shows how two term in Fourier expansion fits the s-function.
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Figure 20: Spectral density for the ŝ-function corresponding to Ng-12 futures contract. The green line in

the first graph shows how one term in Fourier expansion fits the s-function. Similarly, the red line in the first

graph shows how two term in Fourier expansion fits the s-function.
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Figure 21: Fitting errors from Models 2, 3 and 4 for Ng-5 futures prices.
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Figure 22: Fitting errors from Models 2, 3 and 4 for Ng-8 futures prices.
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Figure 23: Fitting errors from Models 2, 3 and 4 for Ng-12 futures prices.
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Figure 24: Spectral density for fitting errors for the Ng-5 futures prices from models 3 and 4.
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Figure 25: Spectral density for fitting errors for the Ng-8 futures prices from models 3 and 4.
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Figure 26: Spectral density for fitting errors for the Ng-12 futures prices from models 3 and 4.
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