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Abstract

We provide a summarized presentation of solution methods for rational expectations
models, based on eigenvalue/eigenvector decompositions. These methods solve systems of
stochastic linear difference equations by relying on the use of stability conditions derived
from the eigenvectors associated to unstable eigenvalues of the coefficient matrices in the
system. For nonlinear models, a linear approximation must be obtained, and the stability
conditions are approximate. This is however, the only source of approximation error, since
the nonlinear structure of the original model is used to produce the numerical solution. After
applying the method to a baseline stochastic growth model, we explain how it can be used:
i) to solve some identification problems that may arise in standard growth models, and ii) to
solve endogenous growth models.
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1 Introduction

We discuss in this chapter the main issues involved in practical applications of solution meth-
ods that have been proposed for rational expectations models, based on eigenvalue /eigenvector
decompositions. Methods to solve linear stochastic difference equations under rationality of
expectations go back to at least Blanchard and Kahn (1980) and have been studied by
many authors ever since [for general surveys, see Whiteman (1983), the special issue of the
Journal of Business and Economic Statistics (1990), Marcet (1993) or Danthine and Donald-
son (1995)]. Our presentation relies heavily on Sims (1998), who has extended the existing
practice in important directions that are discussed in this chapter. Although, strictly speak-
ing, the methods apply exactly to systems of linear equations, the extension to compute an
approximate solution to nonlinear rational expectations models is straightforward.

In this solution approach, each conditional expectation and the associated expectation
error are treated as additional endogenous variables and an equation is added to the model,
defining the expectation error. The numerical solution is in the form of a set of time series
for all variables in the model economy, including all the conditional expectations and the
associated expectations errors. Besides, as a by—product, an approximate characterization
of the analytical dependence between expectations errors and structural shocks is obtained.
Since it produces time series for the expectations errors, it allows for the possibility of multiple
tests of the rationality hypothesis in the form of: 1) lack of serial correlation in one—step ahead
expectations errors, ii) a specific moving average structure for expectations errors of a given
function at different horizons, iii) orthogonality between errors of expectations made at time
t and variables in the information set available at that time, in the form of the accuracy
test in den Haan and Marcet (1994). Numerical solutions to rational expectations errors are
hardly ever tested along these directions. Precisely because so much emphasis has been paid
on rationality as the benchmark when dealing with uncertainty in economic environments
where agents solve optimization problems, it is quite surprising that so little attention has
been paid to testing for the nature of the computed solution.

Since the solution method applies to any given set of (possibly nonlinear) stochastic
difference equations, the method is not restricted to dealing with the planning problems we
concentrate on in this chapter. It can equally well handle situations in which distortionary
taxation, externalities, indivisibilities, public goods, etc., lead to decentralized allocation of
resources which are inefficient [for applications of a very different nature, see Sims (1994)
and (1998)].

Economic models usually place bounds on the rates of growth of specific variables or linear
combinations of variables. Well-known cases are standard planner’s problems, in which state
variables and their shadow prices cannot grow too fast in order for transversality conditions
to hold and objective functions to be bounded. Methods based on eigenvalue/eigenvector
decompositions rest on the use of stability conditions guaranteeing that the resulting solution
satisfies the upper bounds on growth rates implied by underlying economic theory. In the
simple applications we discuss, the stability conditions are obtained by imposing orthogonal-
ity between each eigenvector associated to an unstable eigenvalue in the decomposition of the
linear system and the vector of variables in it. However in more complex models, stability
conditions will adopt a different form [for a more general version of stability conditions, see



Sims(1998)]. The stability conditions link decisions to state variables and exogenous shocks.
They can sometimes be written to represent some decision variables as functions of states
and exogenous variables. Together with other relations in the system they characterize how
optimal decisions are made and can therefore be interpreted as decision rules. In some other
cases, they will represent relationships between prices and states and exogenous variables,
having therefore the interpretation of pricing rules.

Different solution methods for nonlinear models differ in i) the way they characterize
the stable solution manifold, ii) the computation of the expectations in the model, and
the amount of information they provide on them, and iii) the amount of nonlinearity that
they preserve when computing the numerical solution. In our case, the application of the
eigenvalue/eigenvector decomposition method to nonlinear models requires constructing a
linear approximation to the model around steady state, from which to derive the stability
conditions. They are then added to the original nonlinear model to compute a numerical
solution. Even though the actual nonlinear structure of the model is used to produce the
numerical solution, the set of stability conditions is obtained from a linear approximation,
which introduces some numerical error. The approximation error that is introduced by
the specific computational details of a particular solution approach will always end up being
absorbed by the expectations errors, which is why testing for rationality should be considered
a crucial component of a reported numerical solution.

The details we provide should be enough to design the application of the solution method
to simple environments. As more interesting and complex models start being considered,
rather more technical considerations are bound to arise. These more technical aspects emerge
because stochastic non—linear quadratic dynamic control problems under the assumption of
rationality are hard to solve: rationality of expectations imposes very tight restrictions,
which can either lead to nonexistence of solutions, or to a difficult computation process of
the solutions, if they exist. In addition, the existence of state variables that accumulate over
time will generally tend to produce unstable paths, that would violate the transversality
conditions of the problem or the more general restrictions on growth rates that may exist.
That motivates the consideration of stability conditions in this approach as a crucial part of
solving a model. The need to guarantee stability is also present in deterministic problems,
as we review in Section 2, but it gets more complex in stochastic models. Solution methods
will have to increasingly be able to accommodate these issues.

In Section 2 we review how a numerical solution can be derived for the standard deter-
ministic Cass—Koopmans, Brock—Mirman economy, pointing out the relevance of stability
conditions. In Section 3 we summarize the general structure used to solve linear rational ex-
pectations models and its extension to nonlinear models. In Section 4 we apply the solution
method to Hansen’s (1985) model of indivisible labor, which is also used as an illustration
in other chapters of this book. Comparisons with other solution approaches are discussed
in Section 5. In Section 6 we show how the eigenvalue—eigenvector decomposition can help
to separately identify variables of a similar nature, as it is the case when physical capital
and inventories are inputs in an aggregate production technology. Section 7 shows how the
solution method can be adapted to deal with endogenous growth models. The chapter closes
with a summary.



2 Stability conditions and the initial choice of con-
trol variables in deterministic growth models

This Section is a reminder to the reader that: i) stability conditions are also needed in
standard deterministic models to guarantee that transversality conditions will hold, and ii)
as it is the case in stochastic applications, the stability conditions in deterministic models
are given by the left eigenvectors corresponding to the unstable eigenvalues of the linear
approximation to the model economy.

Let us consider the deterministic version of the standard Cass—Koopmans, Brock—Mirman
planner’s problem in an economy with decreasing returns to scale in physical capital and
labour, but constant returns in the aggregate. In this economy, the only sustainable steady
state is with zero growth for all per—capita variables. It is well known that the model has
a saddle point structure, so that in the consumption/capital stock plane there is a single
trajectory taking the economy towards its steady state. Given an initial stock of capital
kg, an initial choice of consumption other than the one corresponding to kg on the stable
manifold will lead the economy to diverge from its steady state. Besides, optimality requires
staying on the stable manifold forever, so stability and optimality are in this simple model
two sides of the same coin.

The model is usually formulated in continuous time, in which the specific issues dealing
with time series generation do not arise. Let us suppose a constant relative risk aversion

utility of consumption for the representative agent U(c¢,) = 0117#7 o > 0. Labor is supplied
inelastically, since leisure is not an argument in the utility function. Physical capital is subject
to a depreciation rate of §. Population growth could be easily incorporated into the model.
The planner’s problem in the Cass—Koopmans, Brock—Mirman economy is characterized
by the intertemporal first order condition that links the marginal rate of substitution of
consumption over time to the marginal product of capital, the law of motion of the capital
stock, and the transversality condition:

2= B +(1-0). 0
ke = (1 —=08)ke—1+ f(kio1) — cr (2)
lim "¢ ks = 0.

T—00

The two first equations can be approximated around steady state values of consumption
and capital, cgs and kg, :

ke — kgs _ ail; ai2 ki1 — kes (3)
Ct — Cgs a1 Qa2 Ct—1 — Css

Using the standard decomposition of the A matrix of coefficients in the linear system (3):
A =TAI""', [ where A has the eigenvalues of A along the diagonal and zeroes elsewhere, and
" has as columns the right—eigenvectors of A, and I'"! has as rows the left—eigenvectors of



A], we can represent the dynamics of the solution from starting values kg, c as':

ke — ks _ 1 Y1 Ao 0 Uy U1 ki1 — kes
Ct — Css T2 Y2 0 Ao Uy vy Ct—1 — Css
_ 1 /\Ii 0 Uy M ko — kgs (4)
T2 Yo 0 A ug V9 Co — Ces

That the model has a saddle point structure is reflected in the fact that one of the
eigenvalues, \;, say, is greater than 1 in absolute value, while \y is smaller? than 1.
The matrix product in the previous expression is:

ke — kss _ 1 AN} (w1 (ko — kss) +v1(co — css)) + 1N (ua(ko — kss) +v2(co — css))
Ct — Css 2o (u1 (ko — kss) +v1(co — css)) + yaMb(ua(ko — kss) + va(co — css))

and the transversality condition on the capital stock will hold only if the coefficient on the
unstable eigenvalue, A1, is set equal to zero. But z; depends on the values of the structural
parameters, and cannot be chosen to be zero. So, it is the bracketed term accompanying
/\t1 which will be zero. That condition is the same for the capital stock and consumplion
equations: uy(ko — kss) +v1(co — css) = 0, so that stability requires that initial consumption
be chosen by:

U Ao —a
Co — Cgg = _<k0 - kss)_l = (kO - kss)2 = (kO - kss)u
V1 i 12
which implies that, from then on:
ki —kgs = yl/\g<u2(k0 - kss) + U2(CO - Css))7
Ag —a
ct —css = yaNy(ua(ko — kss) +v2(co — css)) = 5—2(1% — kss) = %(kt — kss),
1 12

so that the same condition between the deviations from steady state of the capital stock
and consumption will hold at each point in time as time 0. This is the approximate linear

'The right eigenvectors are: (21, x2) = (1, AJ;—IZU-) and (y1, y2) = (1, Aﬁ”—), and the inverse matrix:

-1
Uy U1 _ 1 _ 1 Y2 —1
U2 U2 T2 Y2 T1Y2 — TsY1 —ZI2 I

2As we will see later on, the critical rate of growth below which the solution is stable is model-specific. The
requirement for a well-defined solution to exist is that the objective function remains bounded, which will require
upper bounds on its variable arguments. Those bounds will depend on the functional form of the objective function.
Sometimes, transversality conditions take care of that. In other cases, transversality conditions may be needed for
feasibility or optimality even when the objective function is bounded, so that extra upper bounds on growth rates
will then need to be added, to guarantee that transversality conditions hold.



representation of the stable manifold for this problem. Precisely because the condition will
actually hold for every ¢, the model can be solved using this condition and just one of the first
order conditions (1), (2). The condition which is not used will hold each period. The stability
condition above can be written as the inner product: (yo, —y1) (ko — kss, co — ¢ss)’ = 0, where
(y2, —y1), is the left eigenvector of A associated to the unstable root, \;.

Therefore, in deterministic models, the stability conditions can be seen as picking the
stable initial values of the decision variables, as functions of the given initial values of the
states. If we have less stability conditions than decision variables in the system?®, we will
just be able to solve the model as a function of a given (arbitrary) starting value for one (or
more) decision variables. In that case, given a vector of state variables, a whole continuum
of initial decisions will take us to the steady state, and the solution is indeterminate, in the
sense of Benhabib and Perli (1994) and Xie (1994). On the other hand, the system does not
have a solution when there are more independent stability conditions than control variables
to be chosen. The stable subspace will then reduce to the steady state, if it exists, and the
economy will be globally unstable, getting into divergent paths as soon as it experiences even
minimum deviations from its steady state. Finally, the solution will be unigue when the set
of stability conditions can be used to represent all the control variables as functions of the
state and exogenous variables, the system of equations having a unique solution.

The single stability condition we have described for the Cass—Koopmans, Brock—Mirman
economy is very similar to the stability conditions we will compute in stochastic models in
the next Sections to guarantee that the conditional expectations version of the transversality
conditions will hold.

3 An overview of the solution strategy

Recently, Sims (1998) has generalized the work of Blanchard and Kahn (1980) in several
directions, proposing a general discussion of the problem of solving stochastic, linear rational
expectations models:

Loy = Diye—1 + C + ¥z + Ly, (5)

where (' is a vector of constants, y, is the vector of variables determined in the model
(other than expectations errors), z; is a vector of innovations in exogenous variables, and 7,
is a vector of rational expectations errors, satisfying Fy(n,,,) = 0.

Models with more lags can be accommodated by adding as new variables first order lags
of already included variables as it is standard in dynamic representations. On the other
hand, additional expectations variables can be introduced so that the resulting expectations
errors are all one—period ahead. Models with more lags, lagged expectations, or expectations
of more distant future values can be accommodated by defining variables at intermediate
steps, and enlarging the y—vector.

3 After using equations that involve only contemporaneous values of control variables to eliminate some control
variables from the problem.



The core of the procedure consists of defining each conditional expectation as a new
variable and adding to the model the associated expectations error and the equation defining
the error. Taking arbitrary initial conditions gy and using (5) to generate a set of time
series for the variables in 4, conditional on sample realizations for z will generally lead to
unstable paths, which will violate the transversality conditions unless stability conditions
are added to the system. These conditions are defined by the eigenvectors associated with
unstable eigenvalues of the matrices in (5), although the structure of the stability conditions
are generally model-specific. When I’y is invertible, we compute the eigenvalues of I'; vy,
while when Iy is singular, we need to compute the generalized eigenvalues of the pair (I'g, I'y).

The vector g includes the variables in the model with the more advanced subindices,
as well as the conditional expectations in the model, which are redefined as new variables.
All of them are determined in the system. They may be decision variables for an economic
agent, e. g. consumption, the stock of capital, real balances, real debt, leisure, hours of
work, etc., or variables which are determined as a function of them, such as prices or interest
rates. Also included in y; are variables which are exogenous to the agents but follow laws
of motion which have been added to the system, as may happen with some policy variables
or exogenous random shocks. The vector z; contains variables which are determined outside
the system, like policy variables which we have not endogeneized and do not show any
serial correlation, or the innovations in policy variables or in the exogenous random shocks®.
These can be either demand shocks, sucg as those affecting the individual’s preferences or
Government expenditures, supply shocks, affecting the ability to produce commodities, or
errors in controlling Government policy variables. When they are not white noise, the
exogenous shocks themselves are included in y;. For instance, the standard autoregression
for a productivity shock: log(6;) = p log(6y—1) + &, will lead to a component of y; being
log(6;), while ¢, will be a component of z;. The vector 7, contains the rational expectations
errors, which will be solved for endogenously, together with the state and decision variables
in the model.

The solution method can also be applied to obtain approximate solutions to a set of
stochastic, nonlinear difference equations, as in the applications we present in this chapter.
To do so, we start by computing the linear approximation around steady the state of the
set of nonlinear equations so that, without loss of generality, we can consider the vector of
constants C' to be zero®. After appropriately redefining variables, the matrices Iy and I'y
in the linear approximation to a nonlinear model contain: i) the partial derivatives of each
equation of the system with respect to each of the variables in g, evaluated at the steady
state, and ii) rows of ones and zeroes, corresponding to intermediate variables which have
been added to the system to make it a first—order autoregression in the presence of higher
order lags, or higher order expectations. In this case, (5) will approximate the set of decision
rules, budget constraints, policy rules and laws of motion for the exogenous variables, and all
variables will be in deviations to their steady state values. The stability conditions are then

4Variables in 2 are independent: if two exogenous shocks are related, the linear approximation to their rela-
tionship will be added to the system; one of them will be in 2; while the other one will be included in y;.

°In a later Section we will also consider the case when the levels of the variables are not constant in steady
state, as it is the case in endogenous growth models.



obtained in this linear approximation, but the original, nonlinear model is used to generate
the solution, in the form of a set of time series realization for all the variables in the economy,
including the expectations that appear in the original system and the associated expectations
€ITOors.

In this chapter we describe how to apply this method to relatively simple problems,
and explain how to use it to simulate nonlinear rational expectations models emerging from
optimizing behavior on the part of economic agents. The reader interested in a complete
discussion of the technical and practical aspects of the solution method for linear models
should read Sims (1998), which gives detailed account of the arguments that apply to a more
general class of problems than those we consider here. Sims’ paper also contains a detailed
explanation of a variety of unproven claims that we make in this chapter. When possible,
we keep the same notation as in his paper to facilitate references to it.

The methods to characterize the stability conditions differ depending on whether or not
the g in (5) matrix is invertible. In general, however, a singular I'y matrix might be obtained,
and a slightly more general procedure will then be needed. We will examine both cases in
the next sections.

4  Solving a standard stochastic growth model

We start by describing some practical details of the implementation of the solution method
to Hansen’s (1985), (1997) model with indivisible labor which is considered in other chapters
of this volume [see, for instance, Uhlig (1998)]. In the linear approximation to this model the
['g matrix is invertible. Numerical solutions to the more straightforward growth model with
productivity shocks but no labor/leisure decisions, the other benchmark used in this volume
can easily be derived as a special case of the discussion in this Section.

Given an initial value of the capital stock, kg, let us assume that the representative
household chooses sequences of consumption, employment and capital stock that solve the

problem:
o0 6170' _ 1
max FEy Zﬁtfl L ANN (6)
t=1

{kt,ct,Nt}?i1 1 — 0

subject to

—cp — ke + (1= 8 k1 + Ok (N}~
—log(04) + plog(0r-1) + e =
given kg, fg

where NN; denotes the number of hours devoted to the production of the consumption
commodity, Ay measures the relative disutility of working hours and the innovation ¢; in the
productivity process is assumed to be N(0,0,). After forming the Lagrangean and eliminat-
ing the Lagrange multipliers we get the equilibrium characterized by the set of equations:



Ct

AN

and

= Oky (N — k(1 — 8k (7)
= BB e,y (1= 8) + a1k N )] (8)
= ¢ 70k’ (1 — )N, © (9)

log(0) = plog(0i-1) + e (10)

e ~ N(0, O'z)

plus the transversality condition lim,_, ., F {c{ Cokiyr 57} = 0, and the initial conditions

ko, Bo.

We now define a new variable W; as equal to the conditional expectation in (8), and
introduce the corresponding expectation error, n,.:

Wi+ Ey {0;31 ((1 —6) + a0t+1k?71NtlJ:1a)} (11)
—c, 7+ Wy (12)
Wi 46 ° {(1 —68) + a@tkf‘jlthl’o‘} — Ny (13)
By = 0.

Treating the conditional expectations in the model as additional variables is distinctive of
this method. It comes together with also adding as new variables the associated expectations
errors, which will be solved for endogenously together with the rest of the variables, including

the expectation.

The conditions characterizing the steady state are:

Cos = OsshgsNgg @ = ks + (1 — 6)kss
W = oo ((1—6)+ ol "N )
Av = 70,51 — a) N

0 = .7 +0We

where the steady state for technology is #ss = 1. Then, we can solve for the steady state

of all the variables of the

economy,

e ()
NSS N e} /6

o ()7 ()
s l1—a Ny

9




-1

a—1
kss = css (( Fas ) - 6)
N

1
WSS = Ecssg

k -1
Nss = kss <NLSSS>

The system to be linearized is the one formed by the optimality conditions (7), (9), and
(12), the definition of the expectation error (13), and the process for the exogenous shock
(10). State variables are k1, W;_ 1 and log(0;), and decision variables are ¢, by and N;. To
linearize, we view each equation as a function: f (¢, Ny, Wy, k¢, log(6y), n,, €¢) = 0 and then,
defining the vector y, = (¢; — css, Ny — Ngs, Wy — Wi, ki — ks, log(6y))’, the vector n,, which
contains the single expectation error denoted by the same letter, and the 1 x 1 vector z,
containing the single exogenous innovation ¢, the first order approximation around steady

6.
g_i’ssyt + %’ssytl + g_;i’ssnt + %’sset =0

where steady state values of 7, and ¢; are equal to zero. Stacking these approximations,
we can write the linearized system as:

state is

Loyt = l'1ye—1 + W2 + Ln, (14)
where:
1 —k2(1 —a)N ™ 0 1 —kE N«
e T hG (1 — a)Ng® G hG(1—a)aN*t 0 0 —e 7k (1 — a)Ng®
Iy = —oc, g1 0 -3 0 0 ,
O-Csisgil (ak?silelsia + 1 - 6) _Csisgak?sil(l - a)N;sa 0 0 _acgsgk?silelsia
0 0 0 0 1
00 0 akyINTe+1-6 0 0 0
00 0 clakdt(1—a)N® 0 0 0
=00 0 0 0], v=]o0 |, u=|o
0 0 —1 a(l—a)e,Zk%2NL> 0 0 1
00 0 0 0 1 0

4.1 Characterizing the stability conditions

The constant term in (14) is zero, since variables in y; are experessed as deviations around
their steady state values. As we already mentioned, for any sensible set of parameter values,
['g is invertible in this model. Pre-multiplying by the inverse of 'y, we get a transformed

8Obtaining the derivatives of the function f for the approximation is not necessarily hard work since one can
use numerical or analytical differenciation with MATLAB, for example.
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system with an identity matrix of coeflicients in y; and, after appropriate redefinition of
matrices (I'y = Ty 'Ty; ¥ = Ty W 11 = Ty '):

yr = FalFlyt,l + Fal\llzt + Falﬂnt = f’lyt,l + W+ f[nt (15)

Matrix I'; has a Jordan decomposition”™ T’y = PAP~! where P is the matrix of right—
eigenvectors of ['y, P~ ! is the matrix of left-eigenvectors, and A has the eigenvalues of ' in
the diagonal, and zeroes elsewhere®. Multiplying the system by P~ ! and defining w;, = P~ ly;,
we get:

Wy = Awtfl + Pil (\ijzt + ﬁnt) s (16)

which is a system in linear combinations of the variables in the original vector ;. We
will have a corresponding equation for each eigenvalue \; of I'y:

wjr = Ajjwj—1 + P’ (@Zt + ﬁm) 7 (17)

where P7* denotes the j—th row of P~1.

Economic models usually impose upper bounds on the rate of growth of some functions.
A special case is the standard planner’s problems that we are considering in which the
product of state variables and their shadow prices cannot grow at a rate faster than g !
for the transversality conditions to hold. Even though it is not necessary, this condition
is usually imposed through the requirement that both state variables and shadow prices,
grow at a rate lower than ﬁfl/ 2. Besides, the quadratic approximation to the objective
functions in an optimization problem will be bounded only if its variable arguments grow
at a rate lower than ﬁfl/ 2 More general restrictions can be approximated by an upper
bound ¢ on the rate of growth of a linear combination ¢y; of the variables in the model.
Using the relationship between y; and wy, a condition of the form: lims o Ft [dys1sp *] =0
amounts to: @Plimg o Iy [wepsp™ %] = (@P)limg o (ASwip~®) = 0, where we have set
to zero current expectations of future z's and n,’s. Therefore, each of the w; variables
corresponding to a |\;;| > ¢ and to a ¢ P product different from zero, must be equal to its
steady state value of zero for all ¢

wye = Py =0, Vit (18)

producing a stability condition in the form of an orthogonality condition between an
unstable left—eigenvector of the matrix product ['; = Iy IT; and the vector of variables y;,
in deviations around steady state.

The resulting condition will be a linear relationship between decision variables, current
and past states and exogenous variables, which could be interpreted either as a decision rule,
if it is used to write one decision variable as a function of the other variables, or as a pricing
function, if it is used to represent a mapping from states and decisions to prices.

"The MATLAB function for doing this is: eig(I', I';)
8We just consider the simpler case when all eigenvalues are different from each other. For cases with multiplicity
of eigenvalues see Sims (1998).

11



In the special case when ¢ P turns out to be zero, the upper bound on the growth rate of
oy does not impose any obvious constraint, and the precise form of the associated stability
condition needs to be worked out specifically.

4.2 (Generating time series for a specific parameterization

For parameter values: ¢ = 1.5,6 = 0.025, « = 0.36, 3 = 0.99, p = 0.95, and an Ay value such
that N, = %, we have the numerical estimates:

1 —2.3706 0 1 —1.2347 0 0 0 1.0001 0
4.4026  2.9103 0 0 —2.6947 0 0 0 0.0766 0
['o=| —1.8572 0 —-0.99 0 0 , =100 0 0 0
1.8759 —0.0766 0 0 —0.0399 0 0 —1 -0.0020 O
0 0 0 0 1 0 0 0 0 0.95

and the matrix fl = FOFII has a Jordan decomposition f‘l = PAP~ !, with

1 0 0.0302 0.0317 0 00 0 0 0
0 1 —0.0178 —0.0158 —0.0245 00 0 0 0
P=]|0 0 —0.0566 —0.0595 0 ., A=] 0 0 09418 0 0 7
0 0 09978 0.9976 —0.9997 00 0 09 0
0 0 0 0.0049 0 00 0 0 1.0725
and
1 0 05331 0 0
0 1 —0.7464 —0.0245 —0.8417
Pl=]10 0 —17.6576 0 —213.9769
0 0 0 0 203.6377
0 0 —17.6237 —1.0003 —10.3588

where the eigenvalues have been ordered increasingly along the diagonal of A, and the
right—eigenvectors, the columns of P, have been ordered accordingly.

The stability condition is given by the last row of P~!, which corresponds to the only
eigenvalue above 0.99~ /2, We denote that row by P**, P*® = (0,0, —17.6237, —1.0003, —10.3588),
so the stability condition turns out to be:

wse = PPy = 0 Yt = Wy — Wes + 0.0568(k; — kss) + 0.58781og(0;) =0 (19)

which happens not to involve consumption or labor.

A single stability condition is what should be expected from the point of view of the
discussion of the deterministic model in Section 2, since, even though there are two control
variables, consumption and labor, whose initial values need to be chosen, there is also a

12



contemporaneous relationship (9) between them, so that we just need to figure out how to
choose one of them to obtain a stable equilibrium. Besides, since there is a single expectations
error in the model, a single stability condition is, in general, all that is needed to identify it.

The difference with the deterministic case is that the stability condition does not guaran-
tee that the stochastic Fuler equation (8) will hold in every period, since it incorporates the
expectation error. The role of this equation, once it is written as (13), is precisely to provide
us with the realization of the expectation error ?, which shows that the stability condition
can also be seen as imposing an exact relationship between the rational expectation error
and the innovation in the productivity shock, as should be expected. Estimating the stability
conditions allows us to also characterize numerically the relationships between expectations
errors and innovations in structural processes, as we are about to see.

Stable solutions can be computed by adding the estimated stability condition (19) to the
original nonlinear model to have an enlarged system that can be solved for all the endogenous
variables in the model, plus the expectations errors. Conditional on kg and 0, (7), (9) and
(12) form a system in ¢y, k1, N1, and Wy which can be used to write the three latter variables
as functions of ¢;. Plugging those expressions into the stability condition (19), we obtain
c1. The optimal value for labor, Ny, is then obtained from (9), while from the budget
constraint (7) we obtain physical capital, and the realization of the conditional expectation
W is obtained from (12). Then, the expectation error, 7; can be obtained from (13). The
process can be repeated every period.

It is clear from (16) that, as we said, setting up wj; to be zero each period when |\;;] > ¢
and ¢ P ~0 amounts to imposing an exact relationship between the vector of innovations in
the structural shocks and the vector of expectations errors:

Pi* (b2 4 Tin,) = 0 vt (20)

implying that expectations errors must fluctuate as functions of the structural innovations,
in such a way that prevents any deviation of (20) from its steady state value of zero.
In this specific model, setting w,; to zero each period in (17) implies:

P (U2 4 1,) =0 vt = —1.6163¢,+n, =0 Vit (21)

which is an exact relationship between the expectations error in the model and the in-
novation in the single structural shock. However, the expectations error we have computed
from (13) depends in a nonlinear fashion from state and decision variables and hence, from
exogenous shocks. It will not satisfy (21) exactly, which is a different approximation to the
true, nonlinear relationship between expectation error and the innovation in the structural
shock in productivity.

Problems related to the existence of a solution will tend to arise when there are more
linearly independent stability conditions than conditional expectations in the model. The set
of expectations errors cannot possibly adjust, in this case, so as to fully offset the fluctuations
in the exogenous processes, in such a way that (20) holds, and there will not be a well defined

®The resulting expectations error is an approximation to the true expectations error, since it also incorporates
the numerical error of the approximation to the stable manifold.
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relationship between expectations errors and structural innovations. If (20) cannot hold the
stability conditions cannot all hold simultaneously. Hence, a stable solution will generally not
exist. Unfortunately, an absolute result on existence cannot be produced out of a counting
rule of unstable eigenvalues and expectations: it is conceivable that some stability conditions
are redundant with the rest of the system in such a way that (20) can hold, even if the
number of rows in P7® exceeds the dimension of the vector 7.

If there are as many stability conditions as expectations in the model none of them
being redundant with the rest of the system, a unique solution will generally exist. In the
simple models we present in this chapter, as well as in some more complex applications we
have developed, this has always been the case'’. Then, stable solutions may be obtained
by combining the stability conditions with the rest of the (nonlinear) model. That system
will provide us with a set of time series for all the variables in the original system, plus
the variables we have defined as expectations, and the expectations errors. If there are less
stability conditions than expectations in the model, we will generally have sunspot equilibria,
since we could arbitrarily fix some expectation, and still solve for the rest in such a way that
all the equations in the model hold. In this case we will have a continuum of equilibria.

5 Comparison to other solution methods

Since there is a broad variety of methods to solve nonlinear rational expectations models, it
is important to clearly understand their differences and similarities. In a specific situation,
a method may be more accurate than another but also computationally more demanding,
and the researcher should choose one or the other in terms of this trade-off. Given the
characteristics of rational expectations models, differences among solution methods may fall
into: 1) how much of the nonlinearity in the original model is preserved, ii) how do they deal
with expectations: whether they are treated as an essential part of the model and numerical
values are obtained for them endogenously, as part of the solution, and finally, iii) the way to
handle the associated expectations errors and, in particular, whether numerical values can
be easily obtained for them. Precision in computing these errors should be considered as an
important component of a solution, since rational expectations models impose a quite tight
structure on their probability distribution.

These characteristics are not independent from each other: departing from the original
nonlinearity will make computation easier, but the functional form approximation error will
be mostly captured by the expectations errors, which are generally computed residually if at
all, once the solution has been obtained for the rest of the variables. This numerical error will
tend to show up as deviations from rationality, in the form of autocorrelated expectations
errors, or as correlations between them and variables in the information set available to the
agents when they made their decisions. That is why conducting thorough tests of rationality
is so important.

n linear models, a rank condition for uniqueness can be found [see Sims(1998)] but it is not applicable to
the nonlinear case. The condition has to do with the possibility that the model can be solved without having to
condition on any endogenous expectation error.
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Regarding nonlinearity, in the method based on the eigenvalue/eigenvector decomposition
of the linear approximation to the standard, stochastic nonlinear growth model in Section
4, a single linear stability condition, with the variables either in levels or in logs'!, was
added to the model. That is the degree of artificial linearity introduced in the solution since,
other than that, the full structure of the original, nonlinear model, is used to generate the
numerical solution. As a result, a nonlinear system of equations has to be solved each period
to compute the solution.

Relative to this approach, the method of undetermined coefficients proposed by Uh-
lig [(1998), this volume] suggests taking a log—linear approximation to the set formed by the
optimality conditions, the budget constraint, and the autoregressive process for the produc-
tivity shock. State and decision variables are then supposed to be linear functions of the
initial states: I;t,l, ét, where tilde denote now log—deviations from steady state:

Ky Uik Vks i 0.9418  0.1382 ;
G |l =1 v ves l gl ] = | 0.3930 0.3989 l gl ] (22)
N, UNE VN2 ¢ —0.6376 1.1155 ¢

and the v;; parameters are obtained by plugging this linear representation into the set of
optimality conditions, to identify the undetermined coefficients. For the parameter values in
the previous Section, numerical values of the undetermined coefficients are as shown above.
In consistency with the log-linearization proposed in that method as a starting step, approx-
imations to the conditional expectations of nonlinear functions can be obtained using the
representation above. Expectations errors could then be computed, which will incorporate
some numerical error, derived from the linear approximation.

Another popular solution approach [see Diaz (1998) in this volume] which is useful to
solve stochastic, dynamic optimization problems, consists of building a linear quadratic ap-
proximation to the original model and applying the techniques of dynamic programming.
The goal is to derive the value function, generally after eliminating some decision and state
variables from the objective function by repeated substitutions of the available optimality
conditions and constraints in their deterministic form. Then the linear solution to the prob-
lem of maximizing the resulting value function for the linear—quadratic approximation is
obtained. In the analysis of Hansen’s model, the budget constraint can be used to eliminate
consumption from the objective function, and a linear—quadratic approximation to the return
function r(log(6¢), k¢—1, k¢, N¢) can be obtained, showing that the solution to this model is
in the form of a set of two decision rules, for physical capital and labor, as linear functions
of the beginning—of—period capital stock and the productivity shock, the two state variables.
For the parameter values used in the previous Section, they are:

ke = 0.7368 + 1.7499log(0;) + 0.9418k;_,

Ny = 0.5459 + 0.371810og(8;) — 0.0168%k, 1 (23)

Once we have the optimal values of labor and the capital stock for time ¢, we obtain
output from the production function, and consumption from the budget constraint. Relative

'Even though we obtain linear approximations around steady state, log-linear approximations could alterna-
tively be used.
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to the two previous methods, we are in this case adding two linear relationships to the
original model when computing the numerical solution, while the method of undetermined
coefficients imposes linear dependence of the logs of all current state and decision variables
on the logs of the state variables.

The method of parameterized expectations of den Haan and Marcet (1990) and Marcet
and Lorenzoni (1998) computes time series for the conditional expectations using a proposed
polynomial function. This function must be estimated, to minimize the size of the average
error between each conditional expectation and the value of the nonlinear function of state
and decision variables which is being forecasted. It fully preserves the nonlinearity in the
original model, so that if the polynomial expectation function can be precisely estimated and
the implied set of time series is stable, this is a convincing solution approach.

Summarizing, different solution methods preserve a different amount of the nonlinearity
in the original model. The more nonlinearity is preserved, the more accurate the obtained
solution will be, although to the cost of having to solve each period a nonlinear system of
equations to obtain the realization of the time t-vector of variables, which is computationally
demanding. The alternative of using some degree of linear approximation to the model to get
around this difficulty will produce expectations errors with some deviations from rationality.

Regarding the treatment of conditional expectations, since it is not based on any linear
approximation, the method of parameterizing expectations might provide the more accurate
realization for the conditional expectations in the model. However, reaching convergence in
the algorithm that estimates the expectation function might take some effort: even when the
algorithm works, thousands of artificial data are needed for convergence. As in any other
method, the trade—off between computational simplicity and accuracy is quite evident but, in
principle, parameterizing expectations may be the better suited method to produce acceptable
expectations errors, so long as a careful for a good specification of the polynomial function
used to represent expectations is conducted.

On this issue, we have seen in the previous Section how methods based on eigenvalue—
etgenvector decompositions produce realizations for the conditional expectations and the
associated errores at the same time as for any other variable in the model, while preserving
most of the nonlinearity in the model. In this sense, deviations from rationality due to
numerical approximation errors should be generally expected not to be substantial. We have
also seen how the solution method provides additional evidence in terms of the relationship
between rational expectations errors and the innovations in the structural shocks, which
is an interesting characteristic of the model. With other solution methods, including the
parameterized expectations approach, this type of relationships can be estimated through
linear projections, although there is no guarantee that such a projection will be a well-
specified model. For instance, one might find evidence of expectations errors responding not
only to contemporaneous but to past endogenous innovations as well, which would obviously
be a contradiction of rationality.

Finally, dealing with conditional expectations under rationality brings up additional issues
under which solution methods will have to be increasingly scrutinized in the future. One of
them is how to impose the restrictions among expectations of a given function at different
horizons, which are standard in theoretical rational expectations models. Another issue is
how to impose in the solution strategy the restrictions that theoretical models sometimes
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impose among expectations under rationality, as it is the case in the model in the next
Section. Not all the solution methods are similarly equipped to deal with these questions
and we should expect to see increasing discussion on specific subjects like these, concerning
the modelling of expectations under rationality.

Having discussed the implementation of the solution method in a simple baseline real
growth model and having established some comparisons with alternative solution strategies,
we now proceed to discuss its implementation in a more general setup.

6 Solving some identification issues: capital stock
and inventories in the production function

Singular ['g matrices appear often. Sometimes, singularity can be avoided by solving for some
variables as functions of others and reducing system size, but that is not always feasible. A
typical cause of singularity is that a subset of r variables appear in just q equations, r > ¢,
being then impossible to solve for all of them and reflecting that identification of those
variables is weak.

An interesting case in which this situation arises is Kydland and Prescott (1982) where
physical capital, k¢, and inventories, ¢;, play a very similar role: both accumulate and both
are production inputs. In that paper, the technology shock, which is the only source of
randomness in the economy, is assumed to have a complex stochastic structure that allows
for identification of fixed investment and inventory investment apart from each other. The
redundancy between physical capital and inventories shows up in that their contemporaneous
values appear just in the budget constraint. We will see that, as a consequence, 'y will be
singular, producing an eigenvalue equal to infinity, and the associated eigenvector will allow
for solving one variable apart from the other.

Let us consider the production technology:

Fy(Og, ke—1,90-1) = 04 {(1 — )k, +vi Y B (24)

where 8, is an exogenous technology shock, as in previous sections. The marginal products
of ky_1 and i,_1 are, at time ¢:

FF = a1l —¢)k e, {(1 — )k + W;Vl} E (25)

24

Flo= i [ — )k +vi ] (26)
Maintaining the assumption of a continuum of identical consumers, each endowed with

1—0o
a utility function with constant relative risk aversion: U(c) = %7 o > 0, the optimality
conditions are:

ot + ke — (1 — 6)]%,1 + 2 — 1 — F(Qt, ktfl,itfl) =0 (27)
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7 = BB (1 =6+ Fiy)e] = 0 (28)

¢ 7= BE (14 Fieh| = 0 (29)
log(0;) — plog(0r—1) —ee = 0 (30)
e ~ 1id N(0,0?)

where we have assumed that physical capital depreciates at a rate §, 0 < § < 1. Since they
involve the realization of the productivity shock at time ¢ + 1, 8,1, the marginal products
Ft’fH, F} .1 are random variables when period ¢ decisions, k; and i;, are made.

Additionally, two stability conditions must hold:

Tim By [e k87T = 0
lim By [e g8 = 0

Conditions (28) and (29) imply that the two conditional expectations of the cross—
products of each marginal productivity by the marginal utility of future consumption are
equal to each other at every point in time. However, it is convenient to maintain both of
them in the model, and define new variables Wy, , W;, equal to each expectation,

Wi, = B[l =6+ Ff)e ] (31)
Wi, = Ef(1+Fq)e ] (32)
as well as the associated one-step—ahead, serially uncorrelated, rational expectations

errors i and 7} :

(1 =6+ Ff)e;” = Wiy, —nf = 0 (33)
1+ ey ” = Wi, = = 0 (34)

With this, equations (28) and (29) become:

The conditions characterizing steady state are:

Wi, = ( 6+F’“)
Wi, Wi, ; Css
W, = (1+FZ) o
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Csg — (0557 k557 iss) - 6k55

Fly = a(l =)k 105 F (05, kosyiss) "
Fsis = Oﬂﬁ 5o 10 F(stvkssvlss) !
055 =1

from which we get the dependence of steady state values from structural parameters:

ko _
Fss_

T
Fss_

lss

Kas [ i 1—5(1—6)}#

lgs =

k
kss = <ﬁ> iss
lss

F(Ossskasring) = Ou [(1 o (3) +w] e

lss

Cgg = —6k55 + F(0557 kssv iSS)

We can now compute the linear approximation to the system (27), (35), (36), (33), (34)
and (30) around steady state:

Loyt = liye—1 + Wz + 1n, (37)
where vectors y;, z;, 1, are:
e = [ct — Cass, kt - k557 it - i557 Wkt - Wks§7 W Wlss? 10g<0t)]/ (38)
Zt = €
_ LAY
ne = (im0

The matrices in the linear approximation are:

1 11 0 0 a ¥ kS,
—oc, g1 00 -3 0 0
—oc; 2! 00 0 -p 0
7nv+1/ nv+1/
Lo = —oc,l 1 <1 —8+a(l —v)a ay " k§‘51> 00 O 0 a1 —w)a2 vokST 1 Cod
_odw _aty
—oc, 71 <1—|—o¢¢a2 ¥ all’lk?;l) 00 0 0 ava, ¥ a;” 1ko‘ le,g
0 00 O 0 1
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0 1=8—al—v)a, * k51 1+aa, ” af* k%t 0 0 0
0 0 0 0 0 0
o 0 0 00 0
O _Ffskcgso- _Ffslcgso- 1 O O 7
0 _Fégcgsg _Fslécgsg 010
0 0 0 00 p
0 0 0
0 0 0
0 0 0
V= 01’ = 1 0\
0 0 1
1 0 0
with:
_ ¥ 1-8(1-9)
a1 =
-y 1-p
@ = (1—9)+va;”
oty
az = ao(l—v)ay,
1 _ oty
B = s n- v —v-1]alt - v, o g
i L — 9,02
Fss = (Oé‘l‘l/)wa_Qal —v—1 Oﬂﬁ% a kss ’
. _ oty .
Fyg = a(l—¢)(a+v)ya, ¥ o kG = F

6.1 Characterizing stability conditions

Each row of T'y in (37) contains the partial derivatives of each equation in the system with
respect to the components of the vector y;. Since k; and 7, just appear in (27), only the first
element in the second and third columns of T'g is nonzero. As a consequence, I'g is singular and
it is necessary to compute a Z-decomposition'? to obtain generalized eigenvalues: for any
pair of square matrices like (g, ['1), there exist orthonormal matrices @, Z (QQ' = Z7Z' = 1)
and upper triangular matrices A and Q such that!?:

To=QAZ, I'1=Q07.

12The MATLAB command to perform a QZ-decomposition is ¢z(I'g, I';)

BQ, Z, A and  could be complex, in which case, the transposition above has to be changed to transposition and
complex conjugation. On the other hand, upper triangularity of A and €2 has to do with the possibility of repeated
eigenvalues. When all eigenvalues are different from each other, both matrices are diagonal.
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Besides, ) and Z can be chosen so that all possible zeroes of A occur in the lower right
corner and such that the remaining ratios ‘3:; of diagonal elements in €} and A, are non—
decreasing in absolute value as we move down the diagonal. These ratios are the generalized
eigenvalues of the pair (I'g, I'q).

Premultiplying the system by () and replacing Z'y; with wy, we get:

Awg = Quy 1+ Q (V2 + In,) (39)

If we partition the set of generalized eigenvalues into those below and above the upper
bound which is used as stability criterion (it could be ﬁfl/ 2), and order them decreasingly
along the diagonal of A, we will have:

A1 A Wig Qi Qo Wi t-1 Q1e
o A ) o )= (0% ) (o ) (8 e o
where the second block of equations corresponds to the unstable eigenvalues. Some diag-
onal elements in Agg, but not in Ay, may be zero.

A zero element in the diagonal of A implies some lack of identification in the system, and
an infinite generalized eigenvalue will arise. If 2 does not have a zero in the same position,
the associated eigenvector will generally allow us to solve the identification problem, as we
will see below. 'y is then singular, but all the equations in the system are in this case linearly
independent. If €2 has a zero in the same position, then there is an equation which is linear
combination of the others so that, even though the system has as many equations as variables
it is, in fact, incomplete.

In (40), let us denote the vector

) | Qe Wz +1y,) \ _ (=
xr=Q Yz + IIn,) = ( Q2 (\IJZE‘FHUZ) ) B ( mz )

Since the lower block of (40) corresponds to unstable eigenvalues, it must be solved to-
wards the future, which makes wy; depend on the whole future path of xg;. Sims (1998) shows
how the discounted sum of future values of linear combinations in z9; that defines wy; must
be equal to its conditional expectation, which yields as many stability conditions as vari-
ables there are in wy:. Imposing those conditions we again get a set of relationships between
the vector of rational expectations errors and the vector of innovations in the exogenous
stochastic processes, similar to (20).

In the applications we discuss here, the vector z; contains linear combinations of the
innovations in the stochastic processes for the structural shocks and the expectations errors.
Structural shocks, themselves, are included in the vector 4, and it is just their innovations
which are in x;. Hence, Ey(z9¢15) = 0 for all s > 0, and the stability conditions we have just
described become:

Watr = Zéoyt =0,vt (41)
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where 7}, is the appropriate submatrix of Z. This set of conditions, taken to (40), amounts

to having the relationships between rational expectations errors and structural innovations:

Q2e (P2 +11;) =0 = Q20 W2z = —Qaelln, (42)

For reasonable parameterizations, there are two generalized eigenvalues in (39) with ab-
/2 One of them is common to the version of the model without
inventories (not analyzed in this chapter) so that it is associated with a standard stability
condition, of the kind we saw in Hansen’s model in Section 4. The other eigenvalue is equal
to infinity.

The partition described in (40) leads in this model to an unstable block:

air  ap 24 Yt bi1 bio 2 Yi—1 G5e
= Wz + 11 43
( 0 0 ) ( ZGe Yt ) ( 0 b Z6eYi—1 G6e (92 ) (43)

where 2, 2Ge, 50, gee denote the fifth and sixth rows of 7’ and @), i.e., 2f, and z;, form
the submatrix Zj, in (41), while gse, gge form @9, in (42). The zero in the lower end of the
diagonal in the first matrix shows the existence of a generalized eigenvalue equal to infinity,
due to the weak identification of k; and 4;. The other generalized eigenvalue is equal to
bii/a:.

Written at time ¢, the last equation states: bogzgeyr = —gee (P2t 11 + I,y ;). Taking ex-
pectations and noticing the lack of autocorrelation in ¢, as well as in the two one—step—ahead

solute size greater than 5~

forecast errors in n,, this equation leads to: 2§,y = 0, which is a linear restriction among
contemporaneous values of the conditional expectations and decision and state variables.
Taken to the previous equation, we get:

a1125e Yt = b1125et—1 + Gse (W2t + 1In,) (44)

which is an explosive autoregression in z[,y:, since the generalized eigenvalue: 211—‘1 >

ﬁfl/ 2. and the resulting trajectories for the variables in y; will not satisfy the transversality
conditions. Besides, the triangular structure of the system will transmit the explosiveness of
(44) to the rest of the equations of the system. These explosive trajectories can be eliminated
only if we impose z[,y; = 0. Together with the budget constraint and the remaining equations
in the system, these two conditions will provide us with the time ¢ values of decision variables,
state variables and conditional expectations, ¢, k¢, ¢, Wg,, and W;,.

6.2 Identifying capital stock and inventories apart from each
other

With the parameterization: ¢ = 1.5, = 0.36, 3 = 0.99,6 = 0.025,p = 0.95, v = 4.0,y =
2.81076, [the two last parameters as in Kydland and Prescott (1982)], steady state values

“However, we will impose (41), but not (42) when solving, since we will actually use the original, nonlinear
model to compute an equilibrium realization, which will satisfy (42) only as an approximation. If we used the
linear approximation (37) to the model to compute the solution, (42) would hold exactly.
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are: cgg = 2.7261, kg = 36.2007, 15, = 3.6009, Wy, = 0.2244, W;
numerical estimates of the I'y, ['; matrices become:

= 0.2244,0,, = 1, and the

ss

1.0000  1.0000 1.0000 0 0 —3.6313
—0.1222 0 0 —0.9900 0 0
ro_ | —01222 0 0 0 —0.9900 0
7 —0.1235 0 0 0 0 0.0078 |’
—0.1235 0 0 0 0 0.0022
0 0 0 0 0 1.0000
0 1.0101  1.0101 0 0 0
0 0 0 0 0 0
r_ |0 0 0 0 0 0
=1 0 00002 —0.0003 1.0000 0 0 :
0 —0.0003 0.0030 0  1.0000 0
0 0 0 0 0 0.9500

while A, €2, ordered so that generalized eigenvalues increase in absolute size as we move
down the diagonal of A are:

—1.0297 —-0.0002 —-1.3716 —3.5179 0.3177 —0.0112

0 0.0023  —0.1487 —-0.2742 0.6340 —0.7892
A 0 0 —0.3106 —0.7072 0.5853  0.3701
0 0 0 0.9945 —0.0835 0.0478 ’
0 0 0 0 —0.6118 —0.4668
0 0 0 0 0 0
0 0 —1.3887 0.0219  0.1540  0.0020
0 0 —-0.1431 0.0023  0.0159  0.0002
Q- 0 0 —03027 —0.1069 —0.7527 0.0004
0 0 0 0.9447 —-0.0744 -0.0004 |’
0 0 0 0 —0.6342 0
0 0 0 0 0 —1.0000

with a generalized eigenvalue equal to infinity. The finite eigenvalues are: 1.0366, 0.9500, 0.9745,
and there are two eigenvalues equal to zero. The @), Z matrices of the ()Z—decomposition
are:

09711 -0.1187 —-0.1187 —0.1199 —-0.1199 0

—0.1001  0.1410 —0.9848 0.0124  0.0124 0
Q= 0.2166  0.6112  0.0790  0.5354  0.5354 0
| —0.0004 —0.0722 —0.0093 0.0391 0.0446 —0.9956 |’

—0.0039 0.7663  0.0990 —0.4442 —-0.4437 —-0.0939
0.0000  0.0000  0.0000 —0.7071 0.7071  0.0039
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1.0000 0 0 0 0 0

0 0.7071  0.7071  0.0009 0.0061 0.0003

0 —0.7071 0.7071  0.0012 0.0081 —0.0023

0 —0.0003 —0.0061 0.0968 0.7004 0.7071

0 0.0023 —0.0082 0.1020 0.6997 —-0.7071

0 0 0 —0.9901 0.1406 —0.0037

Since there are two generalized eigenvalues above ﬁfl/ 2 there are also two stability

conditions needed for transversality conditions to hold, given by the two last columns of Z
(two last rows of Z):

0.0061k; + 0.00817; + 0.7004W4, 4 0.6997W;, 4+ 0.14061og(0;) = 0 (45)
0.0003k; — 0.00237; — 0.0037log(0;) = 0 (46)

where the first relationship happens not to involve consumption and the expectations
Wkt and W, . have dropped out of the second, since they are equal to each other. The second
equation allowing us to identify k; and i; apart from each other. These two stability condi-
tions, obtained from the unstable eigenvalues, impose a relationship between the structural
innovation and the expectation errors, as in (42), 7, = —(Q2¢11) Q2 ¥2;, which, under our
parameterization, becomes:

nf = —0.1029¢;, ni = —0.1085¢;,

which very clearly illustrates that the two expectations errors are an exact function of
each other.

The actual mechanism to generate the set of time series that solve the model from initial
values kg, 29, is as follows: first, a sample realization for the productivity shock 6; is generated
using (30). Then, initial values for Wy, W;,, cp come from (35), (36) and (45). Then, using
the value of 01, (35), (36), (45), (46) and (27) form a complete system in Wy, , Wy, , 1, k1, 41.
This procedure can be iterated for each period. Having time series for all the variables, we
can compute the expectations errors from (33) and (34) and run rationality tests on them,
if desired.

A solution to the linear system (37) exists only if representation (42) is feasible, i.e., if
the space spanned by the columns of ()9, ¥ is included in the space spanned by the columns
of (J9.11. This condition becomes necessary and sufficient for the simpler cases in which
Ey(z¢41) = 0. In the specific model in this Section, Qe ¥ is a 2 X 1 vector, while Q9,11 is a
full rank 2 x 2 matrix, so that the condition is clearly satisfied. As an alternative, Sims (1998)
suggests testing the condition for existence of a solution by regressing the columns of Qg ¥
on the columns of Q,l1, to see if the resulting residuals are all equal to zero. In our example,
the residual sum of squares turned out to be of order 10734, showing that the solution, in
fact, exists.
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6.3 Special case: zero depreciation rate

With zero depreciation on physical capital, there is no difference between the accumulation

processes followed by the two inputs, and the equality of conditional expectations in (28)
and (29) becomes:

Ey [FZHC;S] = by [Fﬁklctjfl} . (47)

On the other hand, the marginal rate of transformation between physical capital, k:, and
inventories, 74, which is in principle a random variable at time ¢, is

. Fz . —v—1
RMT, = 754 = = (1) (18)
Ft+1 L= \ky
which belongs to the information set available at time ¢. This feature of the model implies
an exact relationship between two expectations:

B K B K B
Ey [E&ZJrlctfl} = Ey {RMﬂJrlpﬁHctfl} = RMTZHEt {Fﬁrlct:l} (49)

so that, in the special case of zero depreciation, (47) and (49) imply:

RMT/ =1 or k= (%) R (50)

This particular form for the optimality condition eliminates the lack of identification be-
tween the optimal amounts of the two production inputs in the special case of zero deprecia-
tion. The infinite eigenvalue disappears and, with it, the stability condition (46) that we used
to identify physical capital apart from inventories, which is no longer needed. That condition
corresponds to the case of nonzero depreciation, which explains why the productivity shock
appears in it. If we use § = 0 but ignore (50), the eigenvalue equal to infinity again arises,
and the associated stability condition analogous to (46) becomes: k; = 12.898914;, which is
exactly equal to (50). Therefore, using stability conditions associated to infinite eigenvalues
we can solve identification issues that only in special cases (here with zero depreciation) can
also be solved analytically.

7 Solving endogenous growth models

Numerical solution methods must be applied with great care to endogenous growth models,
since we need to distinguish between the lack of stability that can and should be eliminated
through conditions like those in the previous Sections, and the lack of stationarity which is
intrinsic to these models, even in steady state. In our particular approach, it looks as if the
stability conditions could not possibly be obtained in endogenous growth models. Since they
are derived from an approximation around the steady state, and the steady state levels of
the variables change over time, it would seem necessary to compute the linear approximation
for each single period, which would be clearly hopeless.
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Luckily, the method described in the previous Sections can, in fact, be easily adapted to
solve endogenous growth models. As an illustration, we will consider a planner’s problem
in an economy with aggregate constant returns to scale in physical and human capital, as
in Uzawa (1965). Once the optimality conditions (including resources and technological
constraints, as well as laws of motion for exogenous variables) have been obtained:

1. We transform the set of optimality conditions in ratios of the relevant variables, and
compute the steady state values for the ratios, which will be uniquely defined.

2. Obtain the appropriate stability conditions for this transformed system. The stability
conditions depend upon the approximation around the steady state for the model in
ratios, which does not change over time. Hence, the conditions do not need to be
revalued each period. Save these stability conditions.

3. Rewrite again the optimality conditions to make growth explicit for all those variables
that experience nonzero growth in steady state, by multiplying and dividing each ob-
servation by the corresponding power of its growth rate.

4. Use the optimality conditions from 3.), together with the stability conditions from
2.), initial conditions for the state variables and sample realizations for the exogenous
shocks, to generate time series for the variables in the economy in levels, excluding the
deterministic growth components. These can be obtained separately.

Summarizing, the set of time series that solve the model are generated from the version
of the model in levels in which deterministic growth has been made explicit. That way, we
can characterize whether the potential instability of the wltimately obtained time series for
the original variables is purely due to their deterministic growth rate, or it rather reflects a
more fundamental instability of the solution, which might be unacceptable. The procedure we
have just outlined guarantees that the nonstationarity of the solution can be fully represented
by a single unit root, as it should be the case in any endogenous growth model, due to the
presence of a unit eigenvalue in the coeflicient matrix of its linear approximation.

We consider an economy with two sectors: in the first, output is produced from physical
and human capital. In the second, human capital is produced from itself, without need of
using physical capital. The unit of time which is available each period is split into both
production activities. Output is obtained from a Cobb—Douglas technology in physical cap-
ital, k¢, and effective working hours, ushs, the product of hours devoted to production, uy,
by human capital, h¢,. In the second sector, human capital is accumulated through a linear
technology, as a function of the amount of time devoted to this sector, 1 — us. There are
random productivity shocks ¢, &, in both sectors, following first order autoregressive struc-
tures. Physical and human capital depreciate at constant rates ¢, and 6; each period. The
representative consumer has a constant relative risk aversion utility function in its single ar-
gument, consumption, and discounts utility over time at a rate of 3,0 < 5 < 1. Population
grows at a rate n, and the planner maximizes aggregate utility:

0 ~1—0o
max  Fpy (Bn)"! lu]
t=1

{et,ut kot he }52 4 1=o

subject to

26



nkt = Al%fil(utﬁtfl)liaet + (1 - 6k)]%t71 - 62& (51)

ht - B(l - ut)ﬁt,lﬁt + (1 — 6h)ﬂt71 (52)

log(0;) = ¢glog(0y—1) +¢f (53)
¢} ~ N(0,03)

log(&) = delog(§ 1) +e (54)

e ~ N(0,0%)
given ko, ho, 0o, &

ug € (0,1) (55)
G, kg, hy > 0
where variables with ~ present non—zero steady state growth, and we have the optimality
conditions:
~ — ]AC a—1
0 = —1+E |3 (th—:l> (aA (h—t> ul f0py + 1 — 5k) (56)
t

ke 1 o0 e O (k)T . Ori1
0 = - (m) w et Ly lﬁ <6_t> (ﬁj) g (B +1- 5h)] (57)

together with (51) to (55).

Endogenous growth shows in the fact that this system can be solved for the steady state
levels of the variables with zero steady state growth but only for ratios of variables with
nonzero steady state growth. All ratios are referred in this case to human capital. Their
steady state values can be obtained, but not those of the individual variables with steady
state growth. On the other hand, we can also compute the steady state growth rate which
is common, in this economy, to all variables with nonzero growth. Precisely because we can
compute this growth rate, we cannot possibly solve for the steady state values of all variables,
since we have the same number of equations than we would have in an exogenous growth
model.

Denoting by w{" and wf" the ratios h—f— and , defining each expectation as a new
t—1

variable, and introducing the associated expectatlons errors we have the system:

0 = —nw"(BL—w)&+1—68,)+A (wt 1) T 4 (1 — 8wt — ot (58)
0 = —(=") " +ow (59)
0 = _Wt 1+[( Ch)UX

(B(I —ue1)§1 +1—6n)" <aA (wt 1)0671 ug *0p+1— 5k>} - (60)
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<B<1_ut)ft 1‘|‘1—5h <(wt 1)aut 1£t> (B& +1—6n) —77? (62)

together with the stochastic processes (
variables (", @i, g, 01, &, WL W2,y mi
lem produces two unstable eigenvalues!®.

With parameter values: ¢ = 1.5,8 = 0.99,4 = 1,a = 0.36, B = 0.0201,1 — &, =
0.975,1 — 65, = 0.992,n = 1.0035, ¢y = 0.95, ¢ = 0.95, we obtain as stability conditions:

53) and (54). These are seven equations in nine
), but the associated generalized eigenvalue prob-

k N
—1.4126 < hct — wgf;> — 0.0806 <h—t — wf;;‘) + 0.0205%; — 1.6923W,}!
t—1 t
+0.2811W2 — 0.882310g(6;) = 0  (63)
ke
—5.2034 ( < h) +0.0493 (h — P ) — 0.1193; + 0.4284W}
t—1 t

+1.0355W2 +0.38011og(6;) = 0  (64)

which amount to the following relationships between expectations errors and structural
innovations:

= 0.5924¢? — 0.1938¢
n? = 0.1490¢7 + 0.4184¢
Once we have the two stability conditions, we turn to the original model, to rewrite it

in a slightly different way. The steady state rate of growth in this model is: v = C'“ =

[Bn(B+1— 6h)]1? We now rewrite the optimality conditions (51), (52), (56) and (57)
making explicit this growth rate (z; = 2y *, with zy = (cg, ke, he)):

-0 -0 —0 k! —o
0 = —Cy + Et lﬁ’y Cii1 (OéA <h—i> u%+1 0t+1 +1— 6k>] (65)
ktl) ot - <6t+1>0 <kt> —a Ot
0 = — < “— LB By | — — ) w G B +1-6 66
htfl t é—t t /6 ’7 Ct ht t+1 £t+1 ( £t+1 h) ( )
0 = —n’ykt + Aktoil (uthtfl)lia 0 + (1 — 6k)kt71 — ¢ (67)
0 = —vhe+ B(l — ut)htflgt + (1 — 6h)ht,1 (68)

It is not hard to show that the two conditional expectations in (65) and (66) are, precisely,
W and W2 in (59) and (61). Therefore, their associated errors are the same 5 and 7? as
n (60) and (62).

15 The transformation in ratios eliminates the unit eigenvalue that arises in all endogenous growth models as a
consequence of the steady state being a one—dimensional manifold.
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Together with the stochastic processes for the exogenous shocks, the definitions of the
expectations errors (60) and (62), and the stability conditions from the model in ratios'® (63),
(64), this system has ten equations in as many variables (cg, k¢, by, ug, 04, &, W, W2, nk, n?).
Besides, the system has an structure that allows for a solution to the original, endogenous
growth model in the levels of the variables, to be obtained, starting from a sample realization
for the structural innovations, along the following lines. The global constraint of resources
(67), the law of accumulation of human capital (68), the expectations equations (59), (61) and
the two stability conditions (63), (64) form a nonlinear system in ki, h1, c1, uy, Wi and W2,
as functions of kg, ho, 01 and &,. By repeated substitutions, the stability conditions can be
transformed into a system of two nonlinear equations in ¢, uq as functions of state variables
and exogenous shocks. Then, we would obtain h; and k; from (67) and (68), and Wi and
W2 from (59), (61), and the same procedure would be implemented to obtain optimal values
for subsequent periods. Once we have produced time series for these variables, realizations
for the expectations errors would be obtained from (60) and (62), and we could proceed to
test for rationality, if desired.

The transformation of the model in ratios to human capital is time—invariant in steady
state, because in this model all variables that grow in steady state experience the same
growth rate. Hence, their ratio stays constant. However, even if the rates of growth were
different, an appropriately defined ratio would still be constant in steady state, and the same
procedure we have described above would lead to a stable solution.

Endogenous growth models can also be solved by parameterizing expectations or following
Uhlig’s approach, among other possible methods. They differ from our approach on the way
to recover time series for the levels of the variables that experience nonzero steady state
growth. Most methods would compute time series for ratios like ¢,/ fzt,l or IAct / ﬁt so that, to
get time series for ¢, hy and kg, one would have to:

1. use the law of motion of physical capital: h; = B(1 — ut)gtﬁt,l + (1 — 6h)ﬁt,1 and
normalize variables to make growth explicit: h; = hyy?, to have:

ht 1
= 1B — )+ (1= o) - (69)

2. then, given an initial condition hg for human capital, we would compute:

B(1 - 1-96
hy = [Hgl< (1= )8 ")ﬂ ho, t=1,2,..,T (70)
Y
3. and once we have the h;—path, we get time series for physical capital and consumption
from:
K kit
kt:wt ht: h_ hu t:1727...7T
t

16 Note that the ratios of consumption and physical capital to human capital are the same with and without the
deterministic trend, which is why we can also use for the detrended variables the previously calculated stability
conditions.
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ch
Ct = wt ht*l = <h
t—1

However, the numerical precision error involved in generating the ustime series, which
in a single period may be arbitrarily small, will become sizeable when it is compounded over
time as in (69). As a result, there will be some increasing error in the h;—series for long
horizons, which will translate through (70) into errors for some other endogenous variables.
In our experience, these errors are not negligeable: for instance, in the situation known as the
exogenous growth case in Caballé and Santos (1993) (with the exogenous shock fixed at their
expected value of one), the numerical errors are large enough for the resulting time series
not to return to the same steady state point where the economy was before undergoing an
instantaneous shock, even though it is known theoretically that the economy should converge
to that same initial state.

On the contrary, the approach we have proposed computes the values for the variables in
the economy each time £ by solving a nonlinear system of equations. As a result, precision
errors do not accumulate over time, and remain small every single period. After experiencing
an instantaneous perturbation, the resulting time series converge to exactly the same steady
state point where the economy was before the shock.

Mendoza (1991) and Correia et al. (1995) propose stochastic, general equilibrium models
of small and open economies in which some endogenous variables are integrated of order
1, 1(1), although with some cointegrating relationships among them. In that situation,
whenever the model can be written in terms of the ratios of those variables with unit roots
in such a way that the ratios are stationary, we will generally be able to find approximate
stability conditions around a time invariant steady state. Using those stability conditions
together with the optimality conditions as it has been described in this Section should allow
us to obtain more accurate solutions for the integrated variables.

In particular, to be able to solve the model using the alternative approach of accumulating
growth from an initial condition as in (69), it is necessary that ratios to state variables can
be found that are stationary. That will not be possible if the only I (1) variables are decision
variables, as it is the case in Correia et al. (1995), where consumption foreign debt, the balance
of trade and the level of net foreign asset holdings are I (1), the first two being cointegrated,
while the stock of physical capital, the only state variable, is stationary. These authors worry
about the numerical accuracy of their solution [see footnote 3|, computed through a linear
approximation as in King et al. (1988), which amounts to linearizing the Euler equations
and solving numerically the resulting system of stochastic difference equations.

8 Conclusions

We have summarized in this chapter some of the practical details involved in the implementa-
tion of a solution strategy to produce stable solutions to rational expectations models, which
is based on eigenvalue/eigenvector decompositions. We have taken as a base recent work by
Sims (1998), who has produced a quite general discussion of the characterization of stable
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manifolds in linear models. He has extended the initial proposal of Blanchard and Kahn
(1980), to accomodate a number of interesting generalizations. Even though the method is
exact for linear models, it can also be applied to nonlinear models, starting from a linear
approximation to the model around steady state, and we have discussed applications to some
standard business cycle economies.

A distinctive feature of the method is the consideration of each conditional expectation,
as well as the associated expectations error, as additional variables in the model. The ad-
dition of stability conditions, derived from the eigenvalue/eigenvector decomposition of the
coefficient matrices in the linear system of stochastic difference equations, allows for gener-
ating a numerical solution, in the form of a set of time series for all the relevant variables,
including the conditional expectations and the rational expectations errors.

The approach is similar in spirit to any other method based on linear—quadratic ap-
proximation, even though it fully exploits the nonlinear structure of the original model to
produce a numerical solution. The stability conditions can be written as relationships be-
tween conditional expectations of (generally) nonlinear functions of future state and decision
variables, and state variables known at the time the expectations were made. These func-
tions could be compared to those emerging from the parameterized expectations method of
den Haan and Marcet (1990) and Marcet and Lorenzoni [(1998) this volume], which does
not explicitly consider stability conditions. On the other hand, the method based on the
eigenvalue/eigenvector decomposition is quite close to the undetermined coefficients method
proposed by Uhlig [(1998) this volume], to which it would look even more similar if we started
from a log-linear, rather than from a linear approximation. A more developed set of rules to
characterize the stable manifold in Uhlig (1998) would also approximate his proposal to the
method we have described in this chapter.

After applying the method to a standard growth model, we have shown that it performs
well in situations where identification is weak, as it is the case with physical capital and
inventories as production inputs. We have also explained, in that same context, how the
method will produce information on analytical restrictions among expectations in the model,
that the researcher might not have perceived from the outset.

Finally, we have described how the method can easily be adapted to deal with endogenous
growth models. In them, the steady state is not constant over time in the levels of the relevant
variables, so that the standard linear approximation to the model cannot be obtained, and
the method would not directly apply. However, extracting the deterministic trend from the
variables and transforming the model in ratios of the relevant variables, allows for a stable
solution to be obtained. The reason is that the stability conditions for the model in ratios,
whose steady state is constant over time, can be used to solve for the variables in levels, once
they have been normalized by their deterministic trend.
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