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Abstract

We characterize the balanced growth path of the basic neoclassical growth economy using
standard numerical solution methods which solve a linear or log-linear approximation to the
economic model, as well as methods which preserve the nonlinearity in the original model. We
also apply the same methods adding indivisible labor to the basic model, and to a monetary
version of that economy, subject to a cash-in-advance constraint. In a unified framework, we
show that log-linear approximations should generally be preferred to linear approximations.
We also provide evidence that preserving the original nonlinear structure of the model when
computing the numerical solution generally yields minor gains in accuracy. Methods that use
either a linear or a log-linear approximation to the model can produce solutions as accurate
as the parameterized expectations method. However, in extreme parametric cases, the solu-
tion may be rather sensible to small numerical errors, and even a log-linear approximation
may then be inappropriate. Methods using the nonlinear structure of the original model can
then perform significantly better.
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1 Introduction

The interaction between economic theory and computational research is a central aspect
of modern economics and the suggestion in Lucas (1980) of constructing fully articulated
artificial economies has led to using rational-expectations dynamic stochastic modelling in
almost all fields of economics [see Kydland and Prescott (1996) or Cooley and Prescott (1995)
for illustrative reviews]. This generally implies solving a system of stochastic difference
equations involving conditional expectations of highly nonlinear functions, or making use of
dynamic programming tools when dealing with problems with a recursive structure. The aim
is to find the equilibrium solution for all the variables in the economy as well as to characterize
the structure of the decision rules that relate state to decision variables. However, the
non-linear stochastic structure embedded in these systems makes generally impossible to
obtain analytical solutions, which has stimulated the design of a variety of numerical solution
methods1. Unfortunately, a researcher often does not know how to choose among them,
because there is not much systematic evidence concerning the properties of each particular
approach.

Focusing on the basic version of the neoclassical growth model, Taylor and Uhlig (1990)
considered fourteen different solution methods. Their analysis was quite rich in terms of
the variety of methods compared and the comparison measures used, the general conclusion
being that differences among methods turned out to be quite substantial for certain aspects
of the model. Nonetheless, their study lacked some homogeneity and robustness given the
way it was conducted: for each method they used a single solution realization, together
with the estimated decision rules. In addition, the probability distribution of the technology
shock, the single source of dynamics of the artificial economy, was not the same for all the
methods considered.

Other papers analyzing the same model are Christiano (1990), who compared a lin-
ear quadratic and a log-linear quadratic method with the solution generated by a discrete-
grid value-function iteration procedure, closer to the “true” solution, and Christiano and
Fisher (2000), who compared a set of weighted residuals and finite element methods, again
with the same type of discrete-grid solution. Barañano, Iza and Vazquez (2002) compared the
performance of the solution to an endogenous growth model obtained from the Parameter-
ized Expectations approach with the one obtained from its log-linear approximation. When
proposing their accuracy test, den Haan and Marcet (1994) compared the Parameterized Ex-
pectations approach with linear quadratic methods when solving the one sector neoclassical
growth model as well as the cash-in-advance monetary model of Cooley and Hansen (1989),
in which the decentralized solution is not Pareto optimal. Again in a non-optimal environ-
ment, Dotsey and Mao (1992) compared different linear and log-linear approximations in a
modified version of the basic growth model with taxes on production following a five-state
Markov chain and no technology shock, using as a criterion for comparison a discrete state
space solution to the Euler equations of the model. İmrohoroğlu (1994) proposed a forward

1It is not an objective of this paper to describe the state of the art in this area. For general surveys of existing
solution methods see Marimon and Scott (1999), the Winter 1990 issue of the Journal of Business and Economic
Statistic, Cooley and Prescott (1995), Danthine and Donaldson (1995) or Judd (1998).
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solution method and used the den Haan-Marcet (1994) test to compare its performance
with the solutions obtained by backsolving [Sims (1990)] as well as from a standard linear
quadratic approximation to the model.

In spite of being quite extensive, the picture that emerges from the literature is mixed
and scattered. Regarding the basic neoclassical growth model, linear and log-linear quadratic
approximation methods are very similar and perform well, except for the den Haan-Marcet
test, where linear models usually fail. In non-optimal settings things change. Weighted
residuals-finite element methods seem to behave very similarly, although the Parameterized
Expectations approach turns out to be the nonlinear solution algorithm most often used,
since it seems to be quite convenient when there is a large number of state variables.

In our view two questions arising from this literature have not been sufficiently discussed.
First, linear approximation methods are very popular because they are relatively simple to
implement, but there is a perceived loss of accuracy due to the approximation, as compared
to more elaborate methods. A second question refers to the extended use of the basic
neoclassical growth model as a background for comparing solution methods when, most
often, they are applied to more complex structures. Hence, a performance analysis of the
different methods when departing from the more basic growth model is needed.

To tackle the first issue, we consider two refinements to linear approximation methods: i)
using logged, rather than level variables, to compute an approximation from which to produce
the numerical solution, and ii) using a linear approximation to derive specific aspects, like sta-
bility conditions or decision rules, while using the original nonlinear structure to compute the
numerical solution to the model. We want to discuss first, whether each of these refinements
to linear approximations increases the accuracy of the numerical solution and, second, the
extent to which a refined linear solution performs similarly to nonlinear solutions2. Hence, as
alternative solution approaches we consider: i) the standard linear-quadratic approximation
in levels of the variables [Hansen (1985), Dı́az-Giménez (1999)] using the original non-linear
structure of the problem plus the obtained linear decision rule/s to compute the solution, ii)
the undetermined coefficients approach applied to the log-linear approximation to the model
as proposed by Uhlig (1999), computing the solution from the log-linearized system in state
space form, iii) a Blanchard and Kahn (1980) and Sims (2002) approach, applied either in
levels or in logs of the variables, as described in Novales et al. (1999), which uses the original
non-linear model together with stability conditions estimated for the linearized/log-linearized
system.

These methods are all very similar in spirit, searching for the stable manifold of a lin-
ear or log-linear approximation to the original non-linear problem, and imposing stability
by selecting the saddle path equilibrium. They differ in that they use either the log-linear
approximation or the original nonlinear structure to compute the numerical solution. In all
cases, either stability conditions or decision rules derived from the linearized or from the log-
linearized version of the system are added to the model to compute the solution. We have
also solved the models with a nonlinear approximation method, Parameterized Expectations,

2A third alternative would be to use second order, as opposed to first order approximation techniques [Judd
(1998), Sims (2001), Collard and Juillard (2001), Schmitt-Grohé and Uribe (2002)], which we leave for future
research.
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which approximates each conditional expectation in the model by a flexible polynomial func-
tion, the numerical solution changing with the order of the polynomial. The trade-off then
arises between the higher accuracy provided by higher order polynomials, versus the loss of
precision in estimation due to collinearity among the parameters. Theoretically, at least,
one can approximate arbitrarily well the true solution while maintaining all the non-linear
structure in the original problem.

Regarding the models considered, we start by analyzing the standard baseline one-sector
stochastic growth model, subject to an autoregressive shock to technology leading the dy-
namics of the economy. Then, we increase the complexity of the model including indivisible
labor as in the real business cycle model of Hansen (1985). In a final step, we add money
to the previous model via a cash-in-advance constraint on the consumption commodity, as
in Cooley and Hansen (1989). This is a non-Pareto optimal setting with an additional ex-
ogenous stochastic process, money growth. With this sequence of models, we try to cover a
wide range of standard applications.

Finally, we depart from previous work in using a continuous probability distribution
function for the technology shock as well as for the money growth shock in the third model,
which turns out to be important when characterizing the statistical properties of a given
economy.

We do not attempt to rank different methods or to conclude which one is best, which
explains why we do not use a computationally expensive, very accurate algorithm, against
which to compare the alternative solution methods considered. As a by-product, we evaluate
two widely used proposals in the literature to solve non-linear rational expectations models,
Uhlig (1999) and Sims (2002), and provide a user guide to choose among an important set
of methods described in Marimón and Scott (1999). To validate a solution we examine a
wide set of criteria in a unified and consistent framework. We place a special emphasis
on rationality, since fulfilling rationality should be the first requirement for any solution to
a rational expectations model. Monte Carlo simulation allows us to extensively check the
rationality properties of residuals from stochastic Euler equations: zero mean, lack of serial
correlation, zero correlation with variables in the information set, as incorporated in den
Haan-Marcet tests. A last test refers to differences with the Parameterized Expectations
solution, which can be made to approximate arbitrarily well the “exact” solution.

The main properties of the estimated decision rules implied by each method are also
characterized through simulation. For the three model economies considered, the methods
proposed in Sims (2002)-Novales et al. (1999) and Uhlig (1999) produce solutions which
are indistinguishable from those obtained from the Parameterized Expectations approach
in all dimensions when the log-linear approximation is used for either computing stability
conditions [Sims (2002), Novales et al. (1999)] or for computing the full numerical solution
[Uhlig (1999)]. Whether the log-linear approximation or the original nonlinear model are
used to compute the solution, is relevant just for extreme parametric cases. However, when
a linear, rather than log-linear, approximation in the variables is used, methods that use
the original nonlinear structure of the model to compute the solution perform significantly
better than those that use the linear approximation to compute the solution.

The rest of the paper is organized as follows. Section 2 presents the versions of the
neoclassical growth model we consider. Section 3 briefly describes the four solution methods
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we use, while Section 4 sets the basis for the evaluation. In Section 5 we show the results
and in Section 6 some concluding remarks. The paper is closed with an Appendix where the
decision rules for all methods are shown and some guidance on solving the models is given. A
Technical Appendix containing a detailed discussion of the implementation of each method
to the three models is available from the authors upon request.

2 Description of models

We focus on several standard versions of the neoclassical, exogenous growth model. The
sequence begins with a version of the basic one-sector stochastic growth model. Private
agents are assumed to choose capital and consumption sequences to maximize

max
{kt,ct}∞t=1

E0

∞∑

t=1

βt−1

[
c1−η
t − 1
1− η

]
(1)

subject to technological and resource constraints,

yt = ct + xt

yt = ztk
α
t−1

kt = (1− δ)kt−1 + xt

log(zt) = (1− ρ) log(zss) + ρ log(zt−1) + εt

εt ∼ i.i.d.N(0, σ2
ε ), kt ≥ 0, ct ≥ 0

given k0 and z0, where ct is consumption at time t, kt−1 the beginning of period t capital
stock, xt investment, yt output, and zt an exogenous technology shock to output. 0 < β < 1
is the subjective discount factor, η > 0 is the coefficient of relative risk aversion, 0 < α < 1
the capital share in production, 0 < δ < 1 the depreciation rate and 0 < ρ < 1 controls
for the persistence of the shock. Along the paper the ss subscript affecting a given variable
denotes its deterministic steady state value. The optimality conditions of this problem are

c−η
t = βEt

[
c−η
t+1Rt+1

]
(2)

together with the previous constraints, where Rt+1 = αzt+1k
α−1
t + 1 − δ. To perform

rationality tests, we are concerned with the properties of the prediction error/s. The one-
step ahead rational expectation error associated with (2) is,

ξt+1 =
[
c−η
t+1Rt+1

]
− Et

[
c−η
t+1Rt+1

]
(3)

with a theoretical white noise structure: Et (ξt+1) = 0 so that it bears no correlation with
any variable contained in the information set available at time t. These are implications of
rationality, and we are interested in testing for preservation of these properties as a central
issue when evaluating solution methods. Using the time series for consumption and capital
that we obtain with each solution method, we will generate time series for the approximate
prediction error, ξt, as in (3), to test whether it violates rationality.
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The second model is proposed in Hansen (1985). It is slightly more non-linear than the
previous one in that it includes a non-convexity, indivisible labor. Here the representative
household faces the problem,

max
{kt,ct,Nt}∞t=1

E0

∞∑

t=1

βt−1

[
c1−η
t − 1
1− η

−ANNt

]
(4)

subject to

yt = ct + xt

yt = ztk
α
t−1N

1−α
t

kt = (1− δ)kt−1 + xt

log(zt) = (1− ρ) log(zss) + ρ log(zt−1) + εt

εt ∼ i.i.d.N(0, σ2
ε ), kt ≥ 0, ct ≥ 0

given k0 and z0. Nt denotes labor and AN is a parameter that measures the relative weight
of labor in the utility function. The remaining parameters are as in the previous model.
Again (2) is the single equation involving expectations terms, from the first order condition
for capital and consumption, where now Rt+1 = αzt+1k

α−1
t N1−α

t + 1 − δ, and the rational
expectations error is defined as in (3). In addition to (2) and the constraints there is now
another optimality condition from maximizing with respect to labor which, using the first
order condition for consumption, can be written,

AN = (1− α)c−η
t ztk

α
t−1N

−α
t (5)

The last economy considered, Cooley and Hansen (1989), is a version of Hansen (1985),
with money introduced via a cash-in-advance constraint in consumption. The competitive
equilibrium is non-Pareto-optimal in this case, and the second welfare theorem does not apply.
The representative firm solves a standard profit maximization problem, while households seek
to maximize their time preferences subject to their holdings of money balances and a set of
standard budget constraints. There are two sources of uncertainty in this economy: the
autoregressive shock to technology, zt, and an autoregressive logged money growth rate,
log(gt+1) = (1 − ρg) log(gss)+ ρg log(gt)+ εgt+1 . In equilibrium, we have two first order
conditions involving expectations terms,

λt = βEt [λt+1Rt+1] (6)

λtct = βEt
1

gt+1
(7)

where Rt+1 = αzt+1k
α−1
t N1−α

t+1 + 1− δ and λt is the Lagrange multiplier associated with the
household’s budget constraint. The first equation is the optimization condition for capital,
with an expectation error

ξt+1 = [λt+1Rt+1]− Et [λt+1Rt+1] , (8)

The second expectation arises from the first order conditions for real money balances and
consumption, and the budget constraint. Assuming normality of the innovation εgt , this
expectation has an easy to derive analytical form, linear in the logs of the variables.
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3 Solution Methods

We evaluate two sets of methods. On the one hand, we use three “almost” linear methods3

preserving different degrees of the non-linear structure in the original problem that are easy
to implement and computationally fast: i) the standard linear-quadratic approximation in
levels of the variables (LQA henceforth), ii) the approach proposed in Uhlig (1999) (UHL)
and iii) the method proposed by Sims (2002)-Blanchard and Kahn (1980) as described in
Novales et al. (1999) either in levels or in logs of the variables (SIM / SIL, respectively). The
first one is a Value-Function-based method while the other two are Euler-equation-based
methods. It is important to notice that we evaluate the different methods as they are usually
implemented in practice. It is because of specific details of their implementation that makes
them different. More fundamentally, they all search for the same stable subspace, and can be
adapted to become essentially indistinguishable from each other. On the other hand, we also
use a nonlinear type method, Parameterized Expectations (PEA), an Euler-equation-based
method.

We do not provide in the paper computing times because they depend on the programming
language and specific code used. However, the PEA method was clearly the most time
consuming.

3.1 “Almost” Linear Methods

LQA uses the non-linear structure of the model, adding linear decision rules for consumption,
investment or labor. SIM, also implemented in levels of the variables, only adds linear
stability conditions to the original, non-linear model. These conditions guarantee that the
numerical solution to the non-linear system of equations is stable. For each of the three
models in the paper, just a single stability condition is needed. A comparison between these
two solutions will allow us to discuss whether the higher complexity produced by preserving
more non-linear structure in the SIM method pays in terms of increased accuracy. We also
apply the SIM method to a log-linear approximation to the model around steady-state,
which we will denote by SIL. This produces a stability condition linear in logged variables,
instead of one such condition linear in the variables. Comparing SIM with SIL we can test
whether performing the approximation in logs implies any accuracy gain. Finally, since UHL
solves the log-linearized system while SIL uses the original nonlinear model plus the stability
condition obtained from the log-linear approximation, we can again evaluate the benefits of
preserving non-linearity.

Relative to the discussion in the Introduction to this paper, SIL is the most refined of
the “almost” linear methods, and LQA, as implemented here, the less refined.

3.1.1 Standard Linear Quadratic Approximation (LQA)

The LQA approach consists in approximating a non-linear problem by one with a linear-
quadratic structure, for which the solution is always known [for a detailed description see for

3We call them “almost” linear, in the Marimon and Scott (1999) terminology, because they combine the stable
manifold of the linear/log-linear approximation with the original non-linear problem.
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example Hansen and Prescott (1995)]. This method deals with solving a dynamic program-
ming problem4 of the form:

V n+1(zt, st) = max
dt

{r(zt, st, dt) + βE [V n(zt+1, st+1|zt)]} (9)

subject to [
zt+1

st+1

]
= Aεt+1 + B(zt, st, dt)

where V n(zt, st) is the nth-iteration on the optimal value function, β the discount factor, zt

a vector of exogenous state variables, st a vector of endogenous state variables, dt a vector of
decision variables, r(zt, st, dt) the return function for the problem, εt a vector of exogenous
i.i.d. stochastic processes, and the constraints describe the evolution of the state variables.
We will maintain this notation across methods. What LQA does is to compute a linear
quadratic approximation to the original economy (9) around steady-state, and then search
for the solution to this approximate linear quadratic economy.

The solution to the linear-quadratic problem produces a linear function that maps states
into decisions, dt = H[1, zt, st]T , with H being a matrix with as many rows as decision
variables in dt. To generate artificial time series we use the original non-linear problem
(production function, resource constraint, law of motion of capital) plus the linear decision
rule/s. This is the procedure we followed to solve the basic stochastic growth model and the
Hansen (1985) model. In the first model, the outcome of the algorithm is a linear decision
rule for investment as a function of technology and lagged capital. For the Hansen (1985)
economy we obtain linear decision rules for investment and labor as functions of technology
and lagged capital. For the cash-in-advance model, important changes are needed, due to the
distortion introduced by the cash-in-advance constraint. In addition to taking a quadratic
approximation to the return function, it is necessary to assume that the perceived law of
motion for the inverse of real money balances is linear in the state variables. These changes
are described in detail in Kydland (1989) and Cooley and Hansen (1989). To solve this
monetary model, we simply take the decision rules provided by Cooley and Hansen (1989) and
restrict ourselves to parametric cases considered in that paper, to make our work comparable
to the analysis in den Haan and Marcet (1994), who use the same parameters.

3.1.2 Undetermined Coefficients (UHL)

This method consists of log-linearizing the equations characterizing the equilibrium and
solving for the recursive laws of motion with the method of undetermined coefficients. We
use the approach in Uhlig (1999). Let the recursive equilibrium law of motion of the economy
be those matrices Ξ1, Ξ2, Ξ3 and Ξ4 that make stable the system

[
st

vt

]
=

[
Ξ1 Ξ2

Ξ3 Ξ4

] [
st−1

zt

]
(10)

where, again, st is a vector with the endogenous states, zt contains the exogenous states
and vt is a vector of other endogenous variables of the system. To find estimates for matrices

4In many applications, this is a social-planning problem for the economy.
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Ξ1, Ξ2, Ξ3 and Ξ4 it is necessary to equate the coefficients of (10) to the corresponding ones
in the system formed by the log-linearized version of the equations characterizing the equi-
librium. To do so, the well-known method of undetermined coefficients is applied, choosing
among possible parameter values those that make (10) stable.

One can easily generate time series of size T for all the elements of st and vt using the
state-space representation (10) and the law of motion for zt, given s0 and z0.

3.1.3 Eigenvalue/Eigenvector Decompositions (SIM, SIL)

This approach rests heavily on Blanchard and Kahn (1980) and, specially, on Sims (2002), and
it is explained in detail and applied to different nonlinear systems in Novales et al. (1999).
A related contribution is Klein (1998). Its specific characteristic is that each conditional
expectation is considered as an additional variable to solve for (say Wt), being defined as
the realized value of the function inside the expectation, plus a forecast error5. Stability
conditions associated with the linear approximation to the model are added to the original
non-linear problem.

Let the linearized (SIM) version of the set of equations around steady-state (or log-
linearized in the case of the SIL method) be:

Γ0ut+1 = Γ1ut + Ψεt+1 + Πζt+1 (11)

where ut is a subset of the vector {st, vt, zt,Wt}, εt contains the innovations in the laws
of motion of the exogenous states, and ζt is the vector of expectations errors. Let matrix
Γ−1

0 Γ1 have a Jordan decomposition PΛP−1, where Λ is a diagonal matrix containing the
eigenvalues of Γ−1

0 Γ1, P−1 is the matrix which has as rows the left eigenvectors, and let P s

be the rows of P−1 associated with an unstable eigenvalue. A stationary solution to model
(11) requires the time paths of the variables to lie on the stable manifold of the solution
space, which can be achieved by imposing every period the condition,

P sut = 0, ∀t (12)

This condition can be written to relate the conditional expectation, Wt, to the other
variables in ut in a linear (SIM case) or an exponential way (SIL case). To simulate the
approximate economy, take the original non-linear problem (Euler equations, production
function, resource constraint, law of motion of capital) and solve for the expectation through
the stability condition. Combining the original non-linear structure with the stability condi-
tion implies solving a non-linear system of equations in each step of the simulation process,
and so the solution method tends to be computationally more demanding than other methods
based on linear approximations.

3.2 Parameterized expectations (PEA)

This approach consists in parameterizing the conditional expectation in the stochastic Euler
equation. The conditional expectation is specified as a function of the state of the system,

5As an example, to solve the basic growth model, define Wt = Et[c
−η
t+1Rt+1]. Then, to implement this method

substitute equation (2) for c−η
t = βWt, and rewrite (3) as ξt = [c−η

t Rt]−Wt−1.
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and the parameters of that function are estimated before solving the model. For a detailed
explanation see den Haan and Marcet (1990) or Marcet and Lorenzoni (1999). We refine our
PEA approximation until the prediction error from the stochastic Euler equation passes the
den Haan and Marcet (1994) test. The steps to follow are:

1. Substitute each conditional expectation, Wt, by a parameterized polynomial function
ψ(q; st, zt), where q is a vector of parameters. Define the residual Ŵt−ψt, where Ŵt is
the realized value of Wt. In principle ψt should approximate the conditional expectation
arbitrarily well by increasing the order of the polynomial.

2. Choose an initial value for q. Use the first order conditions and constraints of the
problem (with the conditional expectation substituted by ψ(q; st(q), zt)) to generate
time series paths for the variables of the economy.

3. Define S : <m → <m, where m is the dimension of q, and

S(q) = argminq Et

[
Ŵt(q)− ψt(q; st(q), zt)

]2
.

4. Iterate until q = S(q). This guarantees that if agents use ψt as their expectation
function, then q is the best parameter vector they could use, in the sense that it
minimizes the mean squared error to the true expectation. To find each qi+1 starting
from a previous qi, take the residual sum of squares from a nonlinear regression of
Ŵt(qi) on ψt(qi; st(qi), zt) as an approximation to S(qi) and update q according to the
rule qi+1 = qi + λqS(qi), where λq controls the degree of updating in each iteration6.

4 The evaluation exercise

In this section we describe the parametric cases considered in each of the three models, as
well as the tools used in the comparative evaluation of the different solution methods.

In the first two models we analyze the robustness of the results to changes in the relative
risk aversion parameter and the variance of the technology shock, suggested in the literature
as being the most influential parameters. An increase in risk aversion implies more concavity
in the utility function and a more non-linear problem. The technology shock is the main
source of dynamics, so a larger variance will produce bigger deviations around steady-state
for all the variables, which should be expected to deteriorate the performance of methods

6PEA is substantially more complex than alternative linear methods, due to some practical difficulties. One
relates to selecting initial values for the q vector: this generally requires hard computational work, and if one starts
to search for the fixed point in q from arbitrary initial conditions, convergence is hard to achieve. Instead of using
standard homothopy techniques to determine initial conditions, as suggested in den Haan and Marcet (1990), we
estimated them from a log-linear solution method [see Pérez (2001)]. This proved to be faster and computationally
efficient, since stationarity and ergodicity of the time paths obtained under the initial parameterization is guaran-
teed. In addition, it is very important for the solution to be accurate to select an adequate order for the polynomial,
which requires going repeatedly over the steps outlined above. This mixed approach of using the numerical solution
obtained from a log-linear approximation to compute robust initial conditions for the parameterized expectations
method seems to be a promising approach when solving more complex models.
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that use linear approximations around steady-state. For sensitivity analysis, we consider
three values of σε: 0.01, which is close to a usual choice in the literature (0.00721), 0.02 and
0.06. Concerning risk aversion, we moved between a lower bound of 0.5 and a highest value
of 3.0. The remaining parameter values are standard: β = 0.99, ρ = 0.95, α = 0.36, and
δ = 0.025, and remained constant in all the experiments. For the Hansen model AN = 2.86.
Hence, we have nine parametric cases - see table 1.

Insert table 1

In the Cooley-Hansen economy we focus on the variance of the technology perturbation,
as well as on the steady-state money growth rate, analyzing the same cases as in Cooley
and Hansen (1989). Parameter values are now β = 0.99, α = 0.36, δ = 0.025, AN = 2.86.
To control for persistence of the exogenous shocks, we chose as coefficients of the first-order
autoregressive processes for technology and money growth: ρz = 0.95 and ρg = 0.48, and as
standard deviation for the innovation in the money growth process: σεg = 0.009. We then
changed the money growth rate and the variance of the technology shock, to consider six
parametric cases [see table 1].

We solved each model for each parametric case with all the methods. For the sake of
robustness, we computed 250 simulations of length T = 150, and 250 simulations of length
T = 3000. Size 150 is representative of a standard quarterly sample length, while a size of
3000 is a more reliable sample length for statistical purposes.

In the basic growth model, results for cases 8 and 9 when T = 3000 when solving with
SIM are not shown, due to some negative value of kt arising for every draw of zt. For the
Hansen model, in the high variance cases 7, 8 and 9 with T = 3000, it was not possible to
find a solution with the LQA and SIM methods for the same reason. For the Cooley-Hansen
model, the same problem occurred with the SIM method in the high variance cases 5 and 6,
with T = 3000. When T = 150 this method generated negative values for the capital stock
for about 30% of the realizations of the shocks in those parametric cases, and we repeated
the simulation process until we had 250 valid simulations. We had to go through the same
exercise when solving this model with LQA, because it generated negative values of the capital
stock for about 70% of realizations of the shocks under the mentioned parameterizations. In
contrast to SIM, it was always feasible to achieve a solution using SIL.

For each simulation we calculated two sets of measures, described in the following subsec-
tions. The first set has to do with the numerical accuracy of the solution, which we discuss
by testing whether the stochastic Euler equation residual ξt, defined by (3) for the first two
models and (8) for the Cooley-Hansen economy, satisfies the properties implied by rationality.
The second set of measures deals with the statistics usually examined in empirical studies
to assess the model’s responses to meaningful economic questions. It is crucial to analyze
whether the answer to these questions depends on the solution method being implemented.
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4.1 Expectations error properties

4.1.1 Correlations of ξt with the available information set: the den Haan
and Marcet accuracy test

The idea of the test proposed in den Haan and Marcet (1994) is to check whether there
exists any function of variables dated t or earlier that helps predict ξt+1. That would be a
strong deviation from rationality. To implement the test, the steps to follow are: i) obtain a
large number of observations by simulating the model for a long realization of the exogenous
processes; ii) run a regression of ξt+1 over It, a list of instruments selected from the set of
variables in the time t information set; iii) define â = (

∑
IT
t It)−1(

∑
IT
t ξt+1) and form the

statistic:
M = âT (

∑
IT
t It)(

∑
IT
t Itξ

2
t+1)

−1(
∑

IT
t It)â ∼ χ2

m1m2
,

where m2 is the number of instruments chosen and m1 is the number of Euler equation errors,
which is equal to one in our three models. The statistic M provides a test for the rational
expectations hypothesis: Et (ξt+1) = 0. It is worth noting that the alternative hypothesis is
that the error is not a martingale; so if the value of the statistic belongs to the upper critical
region of the χ2

m1,m2
distribution, there is evidence against the accuracy of the solution.

The number of observations used can be interpreted as a measure of how stringent the
criterion is: that the solution passes the test even for a very large number of data points
should be taken as evidence that the solution is very accurate. We have chosen as set of
instruments It = [1, kt, kt−1, kt−2, log(zt), log(zt−1), log(zt−2)], so that the test statistic has
a χ2

7 distribution. This is the same set of instruments used by den Haan and Marcet (1994)
for the basic model and a standard deviation for the technology shock of 0.02 or 0.06. Even
though they could only use a constant as instrument in the low variance case, σε = 0.01,
we were able to use the full set of instruments It in all our parametric cases. The better
behavior of our PEA solution seems to arise from using as initial conditions for vector q in
the expectations polynomial the numerical estimates obtained from the log-linear version of
the model. We also used It as instruments when testing accuracy of the solutions to the
Hansen (1985) and Cooley and Hansen (1989) models.

4.1.2 Time series dependence properties of ξt

We also checked for autocorrelation in the conditional expectation residual, ξt obtained from
each model. We first fitted an AR(1) process with constant to the generated residual ξt,

ξt = µ + ρξt−1 + εξt , (13)

and tested the two null hypothesis H0 : µ = 0 (zero-mean) and H0 : ρ = 0 (no serial
correlation) using conventional t-tests. Under rationality, the conditional expectation resid-
ual should have no significant mean and no autocorrelation, since it is a one-period-ahead,
rational expectations prediction error. The resulting information on these two issues is com-
plementary to that provided by the den Haan-Marcet test.
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4.2 Other characteristics of the implied solutions

4.2.1 Decision Rules

For each solution method and model, we tabulated the values of the decision variables at
alternative points in the space of state variables. After building a grid of values for the
state variables, we used the decision rules to obtain the implied values for the decision
variables. The LQA decision rules arise, as already mentioned, from the linear function
dt = H[1, zt, st]T . For UHL they are obtained from the log-linear relation st = Ξ1st−1 +Ξ2zt

in (10), while SIM/SIL’s decision rules correspond to the stability conditions P sut = 0.
Concerning PEA, a system of equations of the kind F (dt, ψt(q; st, zt)) = 0 is used. The
reader can see for each model and method the exact definition of the vectors dt, st and zt,
as well as those of H, Ξ1, Ξ2, P s and ψt(q; st, zt) in the Appendix.

Concerning the capital stock, for each of the three models we selected 25 equally spaced
values in a ten percent interval around kss. In relation to the technology shock, for the basic
growth model we got again 25 equally spaced values, between 0.4 and 1.6. For Hansen’s
model the range of variation for the technology shock was narrower, between 0.8 and 1.2,
due to numerical problems with the LQA and SIM decision rules. As for the Cooley-Hansen
model, we performed two similar exercises: on the one hand, we fixed zt at its steady state
value of 1.0, and selected 25 equally spaced observations for g in a ten percent interval around
gss. On the other hand, we fixed gt at its steady state, and chose 25 equally spaced data in
a 20% interval around zss.

4.2.2 Sample cross correlations, standard deviations and means

We compute the autocorrelation function for output, ρ(yt, yt−j), in each simulation. For
a given variable Xt, we also obtain its cross-correlation with output, ρ(yt, Xt+j), j ≷ 0,
standard deviation, σX , and sample mean, X̄. This way, we produce random samples of size
250 for each statistic.

Since most papers report average values across simulations for some of these statistics, we
check whether they differ among solution methods7. Dispersion in the sample of N values
of a given statistic obtained from a solution method is usually very small for reasonable
values of N . This is the main reason why sample means may turn out to be significantly
different for different methods, since no method produces a systematic bias in any variable.
In other cases, a method may have some difficulty in fully capturing the serial correlation
in a variable or the correlation between two variables, this test again showing statistically
significant differences between average values of the relevant statistics across the set of N

7Let us denote by γk
i a particular statistic obtained from the i−th simulation, 1 ≤ i ≤ N, with method k . Let

µγkdenote the population mean for γk
i and aγk , sγk the sample mean and standard deviation calculated from the

sample of N simulations. To test H0 : µγk1 = µγk2 for any two different methods k1, k2, we can use the large sample
approximation,

‖ aγk1 − aγk2√
s2

γk1
+s2

γk2

N

‖ ∼ N(0, 1)
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simulations. Even though we performed the calculations for a wide set of variables, we
only show the results for those variables we deem more representative. In the basic growth
model we only look at consumption, Xt = [ct]. As regards Hansen’s model we considered
employment, given the emphasis placed on the labor market, Xt = [Nt]. Finally, for the
Cooley-Hansen model, we present statistics for labor and inflation, Xt = [Nt, πt] 8.

5 Results

To compute empirical distributions for each statistic, we repeated the following steps for each
of the 250 simulations run with each model, parameter vector, and sample size: i) generate
a realization of the exogenous shock {zt}T

t=1, ii) use it to implement each method (LQA,
UHL, SIM, SIL, PEA) to generate time series for all the variables, iii) compute the set of
statistics. We show here a sample of results, selected according to their relevance for the aim
of the paper. The whole set of results can be obtained from the authors upon request, and
is partially available in the working paper version of this article, Novales and Pérez (2002).

5.1 Basic Neoclassical Growth Model

5.1.1 Expectations error properties

Tables 2 and 3, and figures 1 and 2, summarize the main results for the basic growth model
using the five solution approaches.

Insert table 2, table 3, figure 1 and figure 2

In figure 1, we show the results of the den Haan-Marcet test for the linear/log-linear
approximation-based methods: LQA, SIM, SIL and UHL. The performance of the LQA and
SIM solutions deteriorates for a large standard deviation of the technology shock, for any
sample size, rejecting the null hypothesis of zero correlation between the expectations error
and variables in the information set much more often than in 5% of the simulations. This
result is intuitive, since a larger deviation from steady-state makes local approximations in
levels to be less accurate. When T=150, SIM tends to behave slightly better than LQA,
although both solutions fail to pass the test when T=3000, in the sense that the percentage
of rejections of the null hypothesis is well above 5%. As already mentioned, the SIM solution
could not be obtained for T=3000 and σε=0.06. The SIL and UHL solutions, based on
the log-linear approximation to the model, are fairly accurate for the nine parametric cases
analyzed and both sample sizes, passing the den Haan-Marcet test in about 95% of the
realizations. This is the most salient feature in figure 1: when working with logged variables,

8We also implemented non-parametric Kolmogoroff-Smirnov tests, to see whether the empirical distribution of
a given statistic was the same across the different solution methods. The results pointed in the same direction than
those obtained with the previous test, and are not reported. Similarly, we used the set of first order conditions and
decision rules to generate the response functions of the main variables to a one standard deviation impulse in the
shocks. As differences across methods were again negligible, we do not provide the results to save space.
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as in the SIL and UHL methods, an increase in the variance of the technology shock does not
deteriorate the statistical properties of the solution, possibly because of the homoskedasticity
effect induced by the log-transformation. As regards the effect of the relative risk aversion
parameter (still in figure 1), the performance of the SIM and LQA solutions in terms of the
den Haan-Marcet test deteriorates for low values of η, i.e. for high values of the elasticity
of intertemporal substitution of consumption, while the SIL and UHL solutions are again
barely affected9.

Table 2 shows the results of testing for a significant mean as well as for significant auto-
correlation structure fitting an estimated AR(1) model for the expectations error. There is
no evidence of a significant mean in any parametric case and sample size, but there is evi-
dence of a significant autoregressive coefficient under some parameterizations for the LQA
and SIM solutions. Serial correlation arises more often than suggested by the 5% significance
level for simulations with high elasticity of intertemporal substitution of consumption and
high innovation variance. Rejection becomes much more frequent when T=3000, most likely
because higher precision in estimation increases the power of the test. Autocorrelation in ξt

for high values of the elasticity of substitution may explain the more important failure of the
den Haan-Marcet test in those cases. The representative agent then does little smoothing,
adjusting consumption to income fluctuations, and the LQA and SIM methods fail to fully
capture the higher consumption volatility in these cases. These methods seem to impose
more inertia in the expectations mechanism than there actually is in such cases, thereby
inducing some spurious autocorrelation in the expectation error.

A similar effect is produced by an increase in the volatility of the exogenous shock. That
will again produce a more volatile decision variable, and methods that impose more inertia
in the expectations mechanism will tend to exhibit deviations from rationality. So, it is not
surprising that rejections of the den Haan-Marcet test as well as evidence of autocorrelation
are more important for high elasticity of intertemporal substitution, as well as for a high
variance of the exogenous shock.

These tests refer to possible deviations of rationality. The LQA and SIM solutions tend
to produce expectations errors that display evidence of autoregressive structure, and show
significant correlation with variables in the information set available when forming the con-
ditional expectation. These characteristics, related to each other, are very damaging for an
interpretation of the time series obtained from the described implementation of these meth-
ods as rational expectations solutions. On the other hand, there is essentially no evidence
on violation of rationality for the SIL, UHL and PEA solutions, which show no significant
evidence of autocorrelation in ξt.

5.1.2 Other measures

To evaluate the decision rules according to whether decision variables are increasing or de-
creasing in the state variables we present figure 2 for the LQA, SIM, SIL and UHL solutions.

9Regarding PEA solutions, the statistic associated to the den Haan-Marcet test was precisely the criterion used
to accept a particular parameterization for the polynomial approximation to the expectations equation in each
case. So, it is not surprising that the PEA solution passes the test at roughly the chosen 5% significance level in
all cases.
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We only show parametric cases 2, 5 and 8 (η =1.5), being the qualitative results identical in
the other cases. In them, the stock of capital takes 25 equally spaced values in a ten percent
interval around the deterministic steady-state kss,while z takes 25 values around its steady
state value of 1.0, from 0.4 to 1.6. The SIM, SIL and UHL decision rules are monotonically
increasing over the selected values of the state variables, for all parametric cases (as it is
the case with PEA, not shown in the figure). The LQA decision rule for consumption is
non-monotonic in technology, although it is always increasing in capital. According to this
decision rule, for any given level of capital, consumption falls when the value of the technol-
ogy shock moves from zero to 0.90, ten percent below its deterministic steady state value of
1.0, increasing above the 0.90 threshold. This lack of monotonicity is unlikely to reflect an
optimal consumption behavior. If it did, it would be a feature not captured by any other
solution approach, which seems unlikely. Solving the basic growth model under full depre-
ciation and a discrete three state first order Markov chain for technology, Christiano (1990)
reports the same lack of monotonicity, for a high standard deviation of the technology shock,
σε = 0.1, the anomaly not arising in his work for a low standard deviation, σε = 0.01.

No significant differences were observed among sample means, standard deviations and
cross correlations generated with different solution methods in cases 1 to 6. Only in the
high variance cases, σε = 0.06, we can appreciate some deterioration in methods that rely
on linear approximations in levels around steady-state, LQA and SIM, in that the statistics
they produce are significantly different from those of other methods. From the results of the
previous tests, we believe that these two methods are to blame for the differences. Table 3
presents the outcome for case 9: the contemporaneous and lagged correlation of consumption
with output, as well as the first two output autocorrelations do not statistically differ across
methods. However, the mean of the consumption series generated by the LQA and UHL
approximations significantly differs from those generated by the SIL and PEA methods when
T = 3000. When T = 150, the standard deviation of consumption generated with SIM is
different from those obtained with SIL, UHL and PEA. When T = 3000 the SIM solution
could not be computed, but the standard deviation of consumption from the LQA solution
is significantly different from those of the UHL, SIL and PEA methods.

To summarize: the performance of the UHL, SIL and PEA solutions is almost identical
in all the analyzed dimensions. Linear approximations in levels (LQA, SIM) are less accu-
rate when looking at properties of the prediction error, showing significant deviations from
rationality. They also tend to perform slightly worse for high technology shock variances in
terms of the mean and variance of decision variables, for which they occasionally produce
values significantly different in average from those obtained with the other solution methods.
We also observe a non-monotonic behavior in the linear LQA decision rule for consumption
that does not appear with any other solution method.

5.2 Hansen (1985) Model

5.2.1 Expectations error properties

Qualitative results emerging from the battery of tests are similar to those obtained for the
basic growth model. For the sake of saving space we only show the results for the den Haan
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and Marcet test (figure 3) and a table containing statistics to assess the equality among the
means, standard deviations and cross correlations (table 4).

Insert table 4 and figure 3

Figure 3 summarizes the results of the test for the linear approximation-based methods:
the SIM method seems now to be more sensitive than LQA to a higher technology shock
variance. Both solutions, and specially the former, deteriorate in terms of the den Haan-
Marcet test for both sample sizes when the variance of the shock increases. As in the more
basic model, the SIL and UHL solutions are fairly accurate for the nine parametric cases
analyzed and both sample sizes, passing the den Haan-Marcet test in approximately 95% of
the simulations. This consistent behavior seems to arise from performing the approximation
in logged-variables. As regards the effect of the relative risk aversion parameter, the SIM
and LQA solutions again behave worse for low values of η, reaching a very high percentage
of rejections of the null hypothesis of lack of correlation between expectations errors and
variables in the information set. The performance of SIL and UHL is uniformly good for all
values of η.

As in the basic growth model, the results of the tests on the estimated AR(1) model for
the expectations error showed no evidence of a significant mean in the expectations error.
Statistically significant autoregressive coefficients for the expectation error that emerges from
the LQA and SIM solutions tend to be again associated to a high elasticity of intertemporal
elasticity of substitution and to a high variance of the technology shock. Jointly with the
rejections to the den Haan-Marcet test, this result raises again serious questions regarding
the interpretation of the obtained time series as being the rational expectations solution to
the model. Reasons for this failure are again those described in the basic growth model.

5.2.2 Other measures

SIM, SIL, UHL and PEA decision rules showed consumption increasing with both state
variables, capital and technology, their values being essentially identical. Again, the LQA
decision rule was non-monotonic in technology, although it is increasingly monotonic in
capital. The non-monotonicity effect is less important than in the basic growth model. It
shows, for any level of capital, consumption falling when technology moves from zero to 0.90,
ten percent below its deterministic steady state value of 1.0, and increasing from that level
on.

No significant differences were appreciated among the means, standard deviations and
cross correlations generated with different methods in cases 1 to 5. But, even with not
very large volatility, SIM contemporaneous and lagged correlations of labor with output for
T = 3000 in case 6 are significantly different from those obtained with the PEA method
at the 95% level, and from those obtained with LQA, UHL and SIL at the 90% level. We
present table 4 as an example of results for high technology shock variance cases: SIM
correlations between output and labor are significantly different from those obtained from
alternative solutions at the 95% level when T = 150 (remember we could not solve with SIM
for T = 3000). The mean of labor from the UHL solution differs from that obtained from
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SIL and PEA when T = 3000.
Summing up, the performance of UHL, SIL and PEA solutions to the “indivisible labor”

model is, again, almost indistinguishable in all the dimensions analyzed, except for discrep-
ancies in the mean value of labor in extreme parametric cases among UHL on the one hand,
and SIL and PEA on the other. In those cases, using the original nonlinear structure of the
model seems to be very relevant. Concerning the den Haan-Marcet accuracy test, LQA and
SIM behave badly, showing correlation between the expectations error and variables which
were known when the conditional expectation was made. They also tend to present signif-
icant autocorrelation in the expectations error for high variance cases and low elasticity of
intertemporal substitution of consumption. As in the basic growth model, these failures are
related to each other. Again, a strict interpretation of these as being rational expectations
solutions is questionable. The non-monotonic performance of the linear LQA decision rule
for consumption relative to technology appears again, although it is now weaker.

5.3 Cooley and Hansen (1989) Model

5.3.1 Expectations error properties

The most salient results for the Cooley-Hansen model are shown in table 5, and figure 4.

Insert table 5 and figure 4

It is important to recall that the implementation of the LQA method to solve this model
is different from that used for the two previous economies, in which the competitive solution
was Pareto efficient. Therefore, comments regarding the LQA solution should not be read
as a smooth transition from those made when applied to the two non-monetary models.

Regarding the den Haan-Marcet test, the results obtained when solving the previous
models also hold for the monetary model. Figure 4 now shows the percentage of rejections
as a function of the steady state rate of money growth and the variance of the technology
shock, so they are not comparable to those in the previous models. SIL and UHL solutions
passed the test with an approximate significance level of 5%, and did not deteriorate with
an increased variance for the technology shock. The effect of an increased rate of growth of
money on the den Haan-Marcet test for these two solutions is also negligible.

On the other hand, when T = 3000, LQA and SIM solutions deteriorate for a higher
variance of the technology shock, as in the previous models. Moving from σε = 0.01 to
σε = 0.02 in the LQA solution, the percentage of rejections to the den Haan-Marcet test
jumps from 21% to 64%, and from 37% to 96% in the SIM method. Also, for a given variance
of the technology shock, the greater the growth rate of money, the worse the performance
of the LQA and SIM solutions. This is intuitive since as gt is log-normal, an increase in gss

implies an increase not only in the mean of gt, but also in its variance σεg . When T = 150,
the LQA and SIM solutions do not fail to pass the test so often as when T = 3000, due to
the lack of power of the test for low values of T .

Regarding the AR(1) structure estimation, we did not detect any evidence of a significant
mean in the expectations error, although there was some indication of serial correlation,
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specially in the higher variance cases, for the LQA and SIM solutions. For the LQA solution,
that evidence was very clear for T=3000.

5.3.2 Other measures

As regards decision rules, the LQA approach to solving non Pareto optimal problems pro-
posed by Kydland (1989) and Cooley and Hansen (1989) did not present the non-monotonicity
problem we obtained for standard social planner problems. Consumption was increasing in
both, technology and capital, and decreasing in money growth. The SIM, SIL, UHL and
PEA solutions also have these properties. What is more, the grids are in this case quite
similar among all four “almost” linear solution approaches [see Novales and Pérez (2002)].

Finally, table 5 shows the statistics to test for differences in the mean of sample averages,
standard deviations and cross correlations generated with the different solution methods
for the case with a higher variance for the technology shock and a higher money growth:
σε =0.06 and gss =1.15. We did not appreciate any significant difference in these tests for
cases 1 to 4, while the picture for case 5 was very similar to that for case 6. When T =150,
the statistics to compare LQA with the SIM, SIL, UHL and PEA solutions exceed the 5% or
the 15% [critical value 1.0364] significance level when applied to the second autocorrelation
of output as well as to the contemporaneous and lagged correlations of output with labor and
inflation. For that sample size, and at the 5% or 10% level, SIM also tends to differ from SIL,
UHL and PEA concerning the mean of labor, the contemporaneous and lagged correlation of
labor with output, and the contemporaneous correlation of inflation with output. The same
applies when T = 3000: the LQA solution seems to be significantly different from those
obtained with SIL, UHL and PEA [remember that it was not possible to implement SIM
in this case]. A last observation in table 5 is that the mean of labor that arises from UHL
solution when T = 3000 is significantly different from those obtained with SIL and PEA, a
phenomenon similar to that observed in Hansen’s model for extreme parameter values. As
in the previous model, using the original nonlinear structure of the economy to compute the
numerical solution seems to be important in these extreme cases.

Hence, the performance of UHL, SIL and PEA solutions to the Cooley-Hansen cash-in-
advance economy is again almost identical in all the analyzed dimensions, except for average
labor in the high variance cases. As in the previous non-monetary models, the LQA and
SIM solutions violate rationality, since they perform badly in terms of the den Haan-Marcet
test and tend to show some significant autoregression coefficients for the expectations error.
The non-monotonicity of the linear LQA decision rule for consumption in the non-monetary
models disappears in the version of the method designed to cope with non Pareto optimal
settings that we have applied here.

6 Concluding remarks

We have characterized numerical solutions to three different versions of the neoclassical ex-
ogenous growth economy using standard solution methods for nonlinear rational expectations
models. The methods considered are very similar in spirit, all of them searching for the sta-
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ble manifold of the analytical representation of the economy, although important differences
arise from the way they are usually implemented. Our comparison includes numerical so-
lutions obtained from linear and log-linear approximations to the economic model, as well
as solutions obtained from the original nonlinear structure of the model economy. The lat-
ter includes the Parameterized Expectations methods, with whom we compare numerical
solutions obtained from all other methods. It is a merit of this paper to present an homoge-
neous evaluation and comparison of the properties of the different solution methods, using a
common realization of the shock/s in the economy.

For the economies considered, the main difficulties with analyzed methods are: i) strange
non-monotonicity properties tend to appear with the standard linear quadratic approxima-
tion which do not arise for alternative solution methods, ii) approximations in levels, like
the standard linear quadratic approximation approach, tend to produce deviations from ra-
tionality in the expectations error, a failure that should be considered central, since we are
supposedly computing the rational expectations solution to the dynamic optimization model.
There is some evidence suggesting that linear approximations fail to fully capture the dy-
namics embedded in the conditional expectations, imposing more inertia in the conditional
expectations than there actually is in the model. That leaves some spurious autocorrelation
in the expectation error that leads to failure of the rationality tests. We have also shown that,
as pointed out in Taylor and Uhlig (1990), numerical solutions that differ in their behavior
with respect to the den Haan-Marcet rationality test may also show significant differences in
terms of other statistics: means, standard deviations or the sign of the relationships involved
in the decision rules.

On the positive side, we have found solutions computed using a log-linear approximation
to the model around steady-state to be generally undistinguishible from solutions obtained
using the original nonlinear model, for the three economies considered. Solving the log-
linear approximation to the model as in Uhlig (1999) or following Sims (2002) and Novales et
al. (1999) to compute stability conditions from that log-linear approximation are generally
as accurate as Parameterized Expectations in all the analyzed dimensions (rationality of
expectation errors, first moments of decision variables, cross correlations with output, induced
decision rules). In particular, these methods do not present any evidence on violation of
rationality. It is only under extreme parameterizations that using the original nonlinear
structure of the model as in Sims (2002) and Novales et al. (1999) or in the Parameterized
Expectations approach to compute the numerical solution differs significantly from using the
log-linear approximation.

When a version of Sims (2002) is implemented through a linear, rather than a log-linear
approximation, performance deteriorates and we fall under criticism ii) in the previous para-
graph. The fact that using log-linear approximations should always be preferred is one of
the messages of this paper. In fact, even though we have just considered the linear-quadratic
approach as it is usually implemented, a log-linear version of that method would produce es-
sentially the same numerical solution than solving the log-linear approximation to the model,
as in Uhlig (1999), or following Sims (2002) to solve the original nonlinear model together
with the stability condition obtained from the log-linear approximation.

When working in logs, an increase in the variance of exogenous shock/s does not deterio-
rate the solution, possibly due to the homoskedasticity effect induced by the log-transformation.
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Working in logs seems to be very advisable when solving non-linear rational expectations
models, specially in view of the rationality properties of the solutions obtained in both cases.
In fact, with independence of the solution approach, writing the model in logs of the variables
seems to be more important than preserving the nonlinear structure of the original model.

The performance of the alternative numerical solutions relative to the parameterized
expectations approach did not worsen when departing from the basic growth model. This may
be due to the fact that endogenous dynamics are weak in all the model economies considered,
and the shape of the time series generated by different methods inherit the pattern of the
common exogenous shocks. The result may not stand in more complex economic structures.

These results contrast with Dotsey and Mao (1992), where log-linear methods did not
dominate linear methods, and where more refined linear or log-linear methods did not dom-
inate less refined ones. Although the model they consider departs from the neoclassical
growth model in a different way than those we have analyzed, we presume that the different
results may arise from their use of a five-state Markov chain for the only source of exogenous
dynamics, a process for tax rates. Discussing solutions to the basic neoclassical growth model
in section 5.1.2, we have also seen how the UHL and SIL log-linearizations seem to perform
better than the log-linearization of the same model in Christiano (1990) where the log-linear
decision rule presents some lack of monotonicity for high variance technology shocks. These
comparisons suggest that, contrary to some conventional wisdom, the choice of using discrete
versus continuous probability distributions for exogenous shocks is fully relevant.

Several interesting questions have been left aside in this paper and are important in
the context of solution methods evaluation: considering models with more state variables,
economies in transition to steady state after having experienced some perturbation, economies
with a richer endogenous dynamics, or economies with heterogeneous agents. These are some
of the interesting extensions of this work.
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A Appendix

A.1 Basic Neoclassical Growth Model

For the LQA solution, we have st = [kt−1], zt = [log(zt)] and dt = [xt]. For all the parametric
cases considered, the coefficients in the decision rule dt = H[1, zt, st]T are,

H

CASES 1,4,7 CASES 2,5,8 CASES 3,6,9
[1.9190, 3.2243, -0.0255] [1.0512, 2.7668, -0.0027] [0.7015, 2.7244, 0.0065]

changing only for different degrees of risk aversion. From the resource constraint and the
production function, we can write consumption as a function of last period capital and the
contemporaneous technology shock, ct = ztk

α
t−1 −H[1, log(zt), kt−1]T .

To solve with the UHL method, we choose: st = [k̃t] , vt = [c̃t, R̃t, ỹt]T , zt = [z̃t], where,
along this Appendix, ˜ denotes log-deviations from steady state. Then, for the analyzed
cases, the matrices in (10) become,

CASE Ξ1 Ξ2 ΞT
3 ΞT

4

1,4,7 0.9495 0.0849 [0.8361, 0.1742, -0.0222] [0.0348, 0.3600, 1.000]
2,5,8 0.9723 0.0728 [0.5210, 0.3403, -0.0222] [0.0348, 0.3600, 1.000]
3,6,9 0.9815 0.0717 [0.3940, 0.3557, -0.0222] [0.0348, 0.3600, 1.000]

As regards SIM method, we have: ut = [ct−css, kt−kss, Wt−Wss, log(zt)]T , εt = [εt] and
ζt = [ξt], while for the SIL method: ut = [c̃t, k̃t, W̃t, z̃t]T , εt = [εt] and ζt = [ξt]. Numerical
estimates for the stability condition P s are in each case,

CASE P s - SIM method P s - SIL method

1,4,7 [0.0000, 0.0071, 1.0000, 0.0303] [0.0000, 0.4403, 1.0000, 0.0497]
2,5,8 [0.0000, 0.0047, 1.0000, 0.0999] [0.0000, 0.8037, 1.0000, 0.4519]
3,6,9 [0.0000, 0.0015, 1.0000, 0.0474] [0.0000, 1.2043, 1.0000, 0.9807]

Concerning the PEA solution to this model, in all the considered parametric cases, a
second order polynomial approximation proved to be useful:

ψt(q; kt−1, zt) = q1 exp
(
q2 log(kt−1) + q3 log(zt) + q4(log(kt−1))2

)

× exp
(
q5 log(kt−1) log(zt) + q6(log(zt))2

)
.
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The fixed point for vector q was calculated in each case using a sample size of 25000
observations and a four-digit accuracy stopping criterion. This applies to all considered
models. We set λq equal to one except for the cases when η = 0.5, that we chose λq = 0.5.
Estimated parameter values were,

CASE q1 q2 q3 q4 q5 q6

1 2.3473 -0.3253 -0.2258 -0.0126 0.0382 -0.0055
2 1.6293 -0.3156 -2.2440 -0.0642 0.4766 -0.4221
3 0.1162 -0.7187 -4.8308 -0.2635 1.0314 -0.5244
4 2.7395 -0.4170 -0.1762 -0.0008 0.0245 -0.0214
5 0.7466 0.1009 -1.0839 -0.1195 0.1561 -0.0971
6 1.6741 -0.7658 -3.5681 -0.0567 0.6828 -0.1533
7 2.4171 -0.3407 -0.2021 -0.0106 0.0315 -0.0207
8 3.1017 -0.6436 -0.9073 -0.0220 0.1080 -0.0861
9 2.8286 -1.0233 -2.3828 -0.0218 0.3569 -0.2553

A.2 Hansen (1985) Model

For the LQA solution, we have st = [kt−1], zt = [log(zt)] and dt = [xt, Nt]T . For the different
parameter vectors considered, the decision rules dt = H[1, zt, st]T are,

H

CASES 1,4,7 CASES 2,5,8 CASES 3,6,9
0.7368, 2.6129, -0.0332 0.7368, 1.7499, -0.0332 0.7368, 1.5342, -0.0332
0.3801, 0.7383, -0.0037 0.5459, 0.3718, -0.0168 0.6127, 0.2242, -0.0221

For the UHL method: st = [k̃t] , vt = [c̃t, ỹt, Ñt, R̃t, x̃t]T , zt = [z̃t]. Then, we have,

CASE Ξ1 Ξ2 ΞT
3 ΞT

4

1,4,7 0.9418 0.2063 [0.8210, 0.2702, -0.1403, -0.0254, -1.3273] [0.4052, 2.4176, 2.2150, 0.0840, 8.2537]
2,5,8 0.9418 0.1382 [0.3930, -0.0481, -0.6376, -0.0364, -1.3273] [0.3989, 1.7139, 1.1155, 0.0596, 5.5276]
3,6,9 0.9418 0.1212 [0.2206, -0.1763, -0.8380, -0.0409, -1.3273] [0.2526, 1.4304, 0.6725, 0.0497, 4.8461]

Concerning SIM, we have: ut = [ct− css, Nt−Nss, kt− kss, Wt−Wss, log(zt)]T , εt = [εt]
and ζt = [ξt]. For the SIL method: ut = [c̃t, Ñt, k̃t, W̃t, z̃t]T , εt = [εt] and ζt = [ξt]. Then,

CASE P s-SIM method P s-SIL method

1,4,7 [0.0000, 0.0000, 0.0363, 1.0000, 0.1188] [0.0000, 0.0000, 0.4359, 1.0000, 0.1127]
2,5,8 [0.0000, 0.0000, 0.0568, 1.0000, 0.5878] [0.0000, 0.0000, 0.6260, 1.0000, 0.5119]
3,6,9 [0.0000, 0.0000, 0.0724, 1.0000, 0.8781] [0.0000, 0.0000, 0.7026, 1.0000,0.6728]

For PEA in all the considered parametric cases a second order polynomial approximation
proved again to be useful. We set λq equal to one except for the cases when η = 0.5 that we
set λq = 0.5. Estimated coefficients in the parameterized expectation were,

CASE q1 q2 q3 q4 q5 q6

1 2.9009 -0.3869 -0.3265 -0.0047 0.0490 -0.0611
2 2.1570 0.0846 -0.7523 -0.1310 0.0612 -0.1099
3 2.2404 0.2335 -1.7301 -0.1757 0.3847 -0.2542
4 2.8956 -0.3866 -0.3594 -0.0046 0.0620 -0.0978
5 3.9471 -0.3810 -1.1585 -0.0415 0.2274 -0.1638
6 3.9666 -0.2217 -1.1962 -0.0848 0.1683 -0.0769
7 2.8364 -0.3693 -0.3593 -0.0082 0.0614 -0.1045
8 3.8988 -0.3776 -1.0778 -0.0405 0.1882 -0.1368
9 3.5446 -0.1183 -1.2966 -0.1065 0.2031 -0.0884
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A.3 Cooley and Hansen (1989) Model

The equilibrium conditions for the Cooley and Hansen’s problem are (6), (7) together with
(5), the resource constraint and a last condition associated with the cash-in-advance con-
straint: p̂t = 1

ct
, where p̂t denotes the inverse of real money balances.

To solve this model using the LQA approach we simply took the H matrix reported by
Cooley and Hansen in their paper. Now [p̂t, Nt]T = H [1, log(zt), log(gt), kt−1]T , where

H

CASES 1.88633 -0.58175 0.55474 -0.05898
1,3,5 0.64419 1.73073 0.30219 -0.03318

CASES 2.07319 -0.66585 0.63537 -0.07726
2,4,6 0.52716 1.51216 0.26423 -0.03318

Concerning the undetermined coefficients method, UHL, we have: st = [k̃t] , vt =
[c̃t, ỹt, Ñt, x̃t, ˜̂pt, λ̃t, R̃t]T , zt = [z̃t, g̃t]. Then, for all the analyzed cases, we have Ξ1 =
[0.9418], Ξ2 = [0.1552, 0.0271], Ξ3 = [0.5316, 0.0550,−0.4766, −1.3273,−0.5316, −0.5316,
−0.0328]T , and

Ξ4 =
[

0.4703 1.9417 1.4715 6.2091 −0.4703 −0.4703 0.0675
−0.4488 −0.5555 −0.0867 1.0850 0.4488 −0.0312 −0.0019

]T

.

To implement the SIM solution: ut = [ct−css, Nt−Nss, kt−kss, Wt−Wss, log(zt), log(gt)−
log(gss)]T , εt = [εzt , εgt ] and ζt = [ξt]. For the SIL method: ut = [c̃t, , Ñt, k̃t, W̃t, z̃t, g̃t]T ,
εt = [εzt , εgt ] and ζt = [ξt]. The single stability condition in each case is

CASE P s - SIM method P s - SIL method

1,3,5 [0.0000, 0.0000, 0.0617, 1.0000, 0.4663, 0.0194] [0.0000, 0.0000, 0.5644, 1.0000, 0.3827, 0.0159]
2,4,6 [0.0000, 0.0000, 0.0699, 1.0000, 0.4663, 0.0194] [0.0000, 0.0000, 0.5644, 1.0000, 0.3827, 0.0159]

Finally, as regards the PEA solution for this model, to have an appropriate approximation
we needed to use a third order polynomial in all the considered cases,

ψt(q; kt−1, zt) = q1 exp
(
q2 log(kt−1) + q3 log(zt) + q4 log(gt) + q5(log(kt−1)2

)

× exp
(
q6 log(kt−1) log(zt) + q7(log(zt))2 + q8(log(zt))3

)

From (6) we have λt = βψt(q; kt−1, zt), and then consumption can be obtained from (7). The
fixed point for q was calculated in each case as in the previous models. We set λq equal to
one in all the cases. Estimated coefficients for the different parameter vectors were,

CASE q1 q2 q3 q4 q5 q6 q7 q8

1 3.0710 -0.2498 -0.8460 -0.0362 -0.0569 0.1543 -0.1351 0.2371
2 3.6111 -0.4189 -0.7175 -0.0288 -0.0257 0.1111 -0.3122 -0.9004
3 3.8793 -0.4407 -0.9017 -0.0297 -0.0179 0.1790 -0.1316 0.1953
4 3.0250 -0.2686 -0.8818 -0.0223 -0.0576 0.1831 -0.1849 -0.6025
5 3.9664 -0.4567 -0.7432 -0.0582 -0.0154 0.1125 -0.1128 -0.0125
6 3.5363 -0.4038 -0.7614 -0.0191 -0.0291 0.1286 -0.1064 -0.0294
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Figure 1: den Haan and Marcet (1994) test: Basic Neoclassical Growth Model. “Almost” lin-
ear methods. Percentage of realizations of the statistic in the 5% rejection region for the null
hypothesis: H0 : Et(ξt+1) = 0. Instruments used: It = [constant, kt, kt−1, kt−2, log(zt),log(zt−1),
log(zt−2)].
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Figure 2: Decision rule for consumption. Basic Neoclassical Growth Model, cases 2, 5 and 8.
“Almost” linear methods.



Figure 3: den Haan and Marcet (1994) test: Hansen (1985) Model. “Almost” linear methods.
Percentage of realizations of the statistic in the 5% rejection region for the null hypothesis: H0 :
Et(ξt+1) = 0. Instruments used: It = [constant, kt, kt−1, kt−2, log(zt),log(zt−1), log(zt−2)].



Figure 4: den Haan and Marcet (1994) test: Cooley and Hansen (1989) Model. “Almost” lin-
ear methods. Percentage of realizations of the statistic in the 5% rejection region for the null
hypothesis: H0 : Et(ξt+1) = 0. Instruments used: It = [constant, kt, kt−1, kt−2, log(zt),log(zt−1),
log(zt−2)].



Table 1: Parametric cases considered for the evaluation exercise

CASE 1 2 3 4 5 6 7 8 9

Basic Neoclassical Growth model and Hansen (1985) model
σε 0.01 0.01 0.01 0.02 0.02 0.02 0.06 0.06 0.06
η 0.5 1.5 3.0 0.5 1.5 3.0 0.5 1.5 3.0

Cooley and Hansen (1989) model
gss 1.015 1.15 1.015 1.15 1.015 1.15
σεz 0.01 0.01 0.02 0.02 0.06 0.06

Table 2: Basic Neoclassical Growth Model. Estimates of AR(1) for the expectations error.
Percentage of realizations of the t-statistic in the 5% rejection region for the null hypothesis:
H0 : µ = 0 (upper row), and H0 : ρ = 0 (lower row).

T=150 LQA SIM SIL UHL PEA

Case 1 µ 0.0 0.0 0.0 0.0 0.0
ρ 8.8 5.2 3.2 3.2 3.2

Case 2 µ 0.0 0.0 0.0 0.0 0.0
ρ 5.2 4.4 4.8 4.8 4.8

Case 3 µ 0.0 0.0 0.0 0.0 0.0
ρ 4.8 4.0 4.4 4.4 4.4

Case 4 µ 0.0 0.0 0.0 0.0 0.0
ρ 12.4 14.8 2.4 2.4 2.4

Case 5 µ 0.0 0.0 0.0 0.0 0.0
ρ 5.6 4.8 4.8 4.8 4.4

Case 6 µ 0.0 0.0 0.0 0.0 0.0
ρ 6.0 4.0 2.8 2.0 2.0

Case 7 µ 0.0 0.0 0.0 0.0 0.0
ρ 10.0 53.6 4.4 5.2 4.8

Case 8 µ 0.0 0.0 0.0 0.0 0.0
ρ 11.6 8.8 6.8 6.4 7.6

Case 9 µ 0.0 0.0 0.0 0.0 0.0
ρ 11.2 3.2 4.4 5.2 4.8

T=3000 LQA SIM SIL UHL PEA

Case 1 µ 0.0 0.0 0.0 0.0 0.0
ρ 9.6 16.0 3.6 3.6 3.2

Case 2 µ 0.0 0.0 0.0 0.0 0.0
ρ 8.0 6.4 8.4 8.4 8.0

Case 3 µ 0.0 0.0 0.0 0.0 0.0
ρ 6.0 5.6 5.6 5.6 5.6

Case 4 µ 0.0 0.0 0.0 0.0 0.0
ρ 19.2 75.6 4.4 4.4 2.8

Case 5 µ 0.0 0.0 0.0 0.0 0.0
ρ 13.6 14.8 9.2 9.2 6.4

Case 6 µ 0.0 0.0 0.0 0.0 0.0
ρ 18.7 24.9 6.2 6.2 5.3

Case 7 µ 0.0 0.0 0.0 0.0 0.0
ρ 45.6 100 4.2 4.6 4.6

Case 8 µ 0.0 — 0.0 0.0 0.0
ρ 83.8 — 7.4 7.9 9.6

Case 9 µ 4.4 — 0.0 0.0 0.0
ρ 76.9 — 15.0 13.1 14.3



Table 3: Basic Neoclassical Growth Model, case 9. Test statistic for differences between cross
correlations, means and standard deviations. In each panel, the upper corner corresponds to
T=3000, the lower corner to T=150. Critical values at 95% and 90% significance levels are 1.6449
and 1.2816.

ρ(yt, yt−1) LQA SIM SIL UHL PEA ρ(yt, yt−2) LQA SIM SIL UHL PEA

LQA — — 0.1357 0.0376 0.2143 LQA — — 0.1877 0.0466 0.2939
SIM 0.0971 — — — — SIM 0.1329 — — — —
SIL 0.0305 0.1272 — 0.0974 0.0794 SIL 0.0396 0.1721 — 0.1403 0.1072
UHL 0.0469 0.1437 0.0163 — 0.1759 UHL 0.0663 0.1990 0.0267 — 0.2463
PEA 0.0286 0.1251 0.0018 0.0181 — PEA 0.0377 0.1702 0.0018 0.0284 —

mean(ct) LQA SIM SIL UHL PEA σct LQA SIM SIL UHL PEA

LQA — — 1.4382 0.0108 2.1787 LQA — — 2.3481 2.0376 2.9012
SIM 0.0772 — — — — SIM 1.0565 — — — —
SIL 0.1065 0.1837 — 1.4624 0.7434 SIL 0.9891 1.9992 — 0.2453 0.5521
UHL 0.5667 0.6409 0.4648 — 2.2100 UHL 0.9398 1.9478 0.0429 — 0.7808
PEA 0.1916 0.2688 0.0852 0.3829 — PEA 1.0951 2.0984 0.1077 0.1498 —

ρ(yt, ct) LQA SIM SIL UHL PEA ρ(yt, ct+1) LQA SIM SIL UHL PEA

LQA — — 0.3374 0.1749 0.9169 LQA — — 0.1705 0.0125 0.6916
SIM 0.8374 — — — — SIM 0.5649 — — — —
SIL 0.3526 0.6739 — 0.1925 0.7164 SIL 0.3835 0.2072 — 0.1962 0.5677
UHL 0.3210 0.7206 0.0438 — 0.8910 UHL 0.3752 0.2175 0.0100 — 0.7545
PEA 0.1744 0.8778 0.2281 0.1864 — PEA 0.2491 0.3615 0.1535 0.1438 —

Table 4: Hansen (1985) Model, case 8. Test statistic for differences between cross correlations,
means and standard deviations. In each panel, the upper corner corresponds to T=3000, the lower
corner to T=150. Critical values at 95% and 90% significance levels are 1.6449 and 1.2816.

ρ(yt, yt−1) LQA SIM SIL UHL PEA ρ(yt, yt−2) LQA SIM SIL UHL PEA

LQA — — — — — LQA — — — — —
SIM 0.1331 — — — — SIM 0.1534 — — — —
SIL 0.0943 0.2253 — 0.0743 0.1434 SIL 0.1438 0.2940 — 0.0936 0.1832
UHL 0.0562 0.1878 0.0380 — 0.2176 UHL 0.0970 0.2481 0.0467 — 0.2766
PEA 0.1611 0.2910 0.0664 0.1044 — PEA 0.2274 0.3762 0.0833 0.1300 —

mean(Nt) LQA SIM SIL UHL PEA σNt LQA SIM SIL UHL PEA

LQA — — — — — LQA — — — — —
SIM 1.2136 — — — — SIM 0.5834 — — — —
SIL 0.3164 0.9159 — 1.6474 0.0786 SIL 0.0978 0.4969 — 0.3882 0.1349
UHL 0.4625 1.6724 0.7857 — 1.5759 UHL 0.0388 0.5486 0.0589 — 0.2527
PEA 0.2139 1.0172 0.1039 0.6831 — PEA 0.0484 0.6241 0.1457 0.0870 —

ρ(yt, Nt) LQA SIM SIL UHL PEA ρ(yt, Nt+1) LQA SIM SIL UHL PEA

LQA — — — — — LQA — — — — —
SIM 3.2537 — — — — SIM 3.0337 — — — —
SIL 0.2161 3.0502 — 0.2296 0.7624 SIL 0.1705 2.8699 — 0.2420 0.7494
UHL 0.4761 2.8184 0.2586 — 0.9874 UHL 0.4570 2.6265 0.2836 — 0.9867
PEA 0.1757 3.3882 0.3885 0.6460 — PEA 0.2255 3.2013 0.3915 0.6747 —



Table 5: Cooley and Hansen (1989) Model, case 6. Test statistic for differences between cross
correlations, means and standard deviations. In each panel, the upper corner corresponds to
T=3000, the lower corner to T=150. Critical values at 95% and 90% significance levels are 1.6449
and 1.2816.

ρ(yt, yt−1) LQA SIM SIL UHL PEA ρ(yt, yt−2) LQA SIM SIL UHL PEA

LQA — — 0.3708 0.4047 0.4108 LQA — — 0.7159 0.7629 0.7831
SIM 1.2309 — — — — SIM 1.5889 — — — —
SIL 0.8021 0.4411 — 0.0743 0.0877 SIL 1.0430 0.5613 — 0.0878 0.1254
UHL 0.8446 0.3971 0.0439 — 0.0134 UHL 1.0924 0.5107 0.0507 — 0.0376
PEA 0.8396 0.4027 0.0385 0.0054 — PEA 1.0928 0.5109 0.0507 0.0000 —

mean(Nt) LQA SIM SIL UHL PEA σNt LQA SIM SIL UHL PEA

LQA — — 1.0810 0.6934 1.1183 LQA — — 2.1126 2.0987 2.1147
SIM 1.5367 — — — — SIM 1.1693 — — — —
SIL 0.7345 1.2395 — 2.1197 0.2086 SIL 0.5762 0.9115 — 0.3825 0.0614
UHL 0.3216 1.8793 0.6334 — 2.3468 UHL 0.5005 1.0072 0.1108 — 0.4417
PEA 0.8139 1.1240 0.1202 0.7564 — PEA 0.5704 0.9180 0.0083 0.1024 —

ρ(yt, Nt) LQA SIM SIL UHL PEA ρ(yt, Nt+1) LQA SIM SIL UHL PEA

LQA — — 2.3463 2.2124 2.2568 LQA — — 2.4838 2.3217 2.3763
SIM 4.3355 — — — — SIM 4.2143 — — — —
SIL 2.0852 2.7667 — 0.2451 0.1773 SIL 2.0822 2.7167 — 0.2882 0.2149
UHL 2.0817 2.7355 0.0181 — 0.0704 UHL 2.1199 2.6337 0.0743 — 0.0785
PEA 2.1431 2.7288 0.0546 0.0359 — PEA 2.1623 2.6615 0.0801 0.0042 —

mean(πt) LQA SIM SIL UHL PEA σπt LQA SIM SIL UHL PEA

LQA — — 0.1258 0.1201 0.1262 LQA — — 0.7278 0.7159 0.7340
SIM 0.1008 — — — — SIM 0.3894 — — — —
SIL 0.0268 0.1343 — 0.0073 0.0005 SIL 0.8684 0.5184 — 0.0793 0.0428
UHL 0.0205 0.0839 0.0496 — 0.0078 UHL 0.8446 0.4924 0.0262 — 0.1214
PEA 0.0185 0.1255 0.0087 0.0409 — PEA 0.9050 0.5589 0.0420 0.0681 —

ρ(yt, πt) LQA SIM SIL UHL PEA ρ(yt, πt+1) LQA SIM SIL UHL PEA

LQA — — 2.9119 3.0739 3.1353 LQA — — 3.6807 3.7865 3.8903
SIM 0.5384 — — — — SIM 1.1232 — — — —
SIL 1.2243 1.7588 — 0.3015 0.4137 SIL 1.8476 0.7659 — 0.1512 0.2989
UHL 1.5472 2.0784 0.3286 — 0.1118 UHL 2.0158 0.9392 0.1694 — 0.1477
PEA 1.7787 2.3061 0.5673 0.2396 — PEA 2.2728 1.2274 0.4713 0.3066 —


