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ABSTRACT  

In an endogenous growth model where the fiscal authority cannot commit to policy decisions beyond 
the current period, we explore the time-consistent optimal choice for two policy instruments: the 
income tax rate and the split of government spending between utility bearing consumption and 
productive services to firms. We show that under the time-consistent Markov policy the economy 
lacks any transitional dynamics and there is local and global determinacy of equilibrium. For 
empirically plausible parameter values we find that the Markov-perfect policy implies a higher tax 
rate and a larger proportion of government spending allocated to consumption than those chosen 
under a commitment constraint. As a result, economic growth is slightly lower under the Markov-
perfect policy than under the Ramsey policy, with growth under lump-sum taxes being highest. 

The implication of our results is that if the private sector is aware of the government's inability to 
pledge future policy decisions, then the government should impose a slightly higher tax rate and 
devote a higher share of public resources to consumption, with a relatively low cost in terms of 
growth.  
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1. Introduction 

The relevance of time consistent policies stems from the fact that the government has 

no incentive to change its policy once private agents have made their decisions conditional 

on the policy announcement. Unfortunately, the difficulty in solving the time-consistent 

Markov policy optimization problem has generally led academic research into the 

characterization of the more limited Ramsey optimal policies. The latter assume 

commitment and are hence subject to potential deviations by the government from the 

previously announced policy rule. The same technical difficulty also explains that most 

research on time-consistent optimal policies has been done in exogenous growth 

environments.  

As main examples, Ortigueira (2006) and Klein, Krusell and Rios-Rull (2008) 

consider an stylized exogenous growth model, with leisure and public consumption in the 

utility function, to characterize the optimal time-consistent tax policy under two different 

game designs. Klein, Krusell and Rios-Rull (2008) consider a game in which the 

government is a dominant player that takes the optimal reaction of private agents as given 

when deciding the optimal policy. Ortigueira (2006) compares the results obtained under the 

structure in Klein, Krusell and Rios-Rull with those from an alternative design of the game 

in which the government and private agents make their respective decisions simultaneously, 

characterizing the behavior of the economy along the transition to the optimal steady-state. 

These authors consider alternative fiscal structures, always with a single instrument: either a 

single tax levied on total income, a single tax on capital income or a single tax on labor 

income. Martin (2010) follows the same game structure as Klein, Krusell and Rios-Rull 

(2008), extending the analysis to the simultaneous consideration of different tax rates for 

capital and labor income and solving for the optimal time consistent choice for both fiscal 

instruments. A further exogenous growth analysis is done by Azzimonti et al. (2009), who 

characterize the Markovian tax rate raised on total income when used to finance public 

investment. 

However, for the analysis of optimal taxation it is essential to overcome the two 

limitations mentioned above, by describing how to characterize the optimal time consistent 

fiscal policy under endogenous growth. Endogenous growth models not only allow for a 

more plausible representation of actual economies, but also for explicitly taking into account 

the effect of fiscal policy on the rate of growth. This is crucial when analyzing the growth 

effects of productive government spending, as in the seminal papers by Barro (1990), 
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Cazzavillan (1996) or Glomm and Ravikumar (1997). Recently, Jaimovich and Rebelo 

(2013) propose an endogenous growth model with heterogeneity in entrepreneurial ability in 

support of the empirical evidence on the highly non-linear effects of taxation on growth: 

when the tax rates are low or moderate, marginal increases in the tax rate have small growth 

impact whilst, when tax rates are high, further tax hikes have large, negative impact on 

growth, due to the disincentives to investment and innovation. 

The two mentioned extensions, time-consistent policy in endogenous growth 

framework, have been considered by Malley et al. (2002), who characterize the Markov tax 

policy in an endogenous growth economy where the government raises tax revenues on total 

income, using the proceeds to finance public consumption and production services. 

However, their setup is still restrictive in two aspects: i) the split of government spending 

between consumption and production services is exogenously given, and ii)  private agents 

are supposed to have a logarithmic utility function and physical capital is supposed to fully 

depreciate each period. Under these parametric restrictions, the Ramsey policy is not subject 

to a time consistency problem and it coincides with the Markov perfect solution, a result that 

we show later on.4  

In our analysis we dispose of these two additional limitations: First, we consider an 

economic environment with a CRRA utility function defined on private and public 

consumption, with incomplete depreciation of capital. Second, we incorporate an 

endogenously time-varying split of government spending between public consumption and 

production services. We show that a time consistent optimal policy exists and it is described 

by the optimal choice of both, the income tax rate and the split of public spending between 

consumption and production activities. We prove that the dynamics of the model can be 

characterized by the ratio of productive services provided by the government over private 

capital. Under the Markov solution this ratio is always on the Balanced Growth Path. 

Additionally, we numerically show that there is not indeterminacy of equilibrium and hence, 

the Markov solution lacks any transitional dynamics. 

Under this more general economic framework, when comparing the optimal Markov-

perfect and Ramsey policies, we find that: i) the income tax rate is higher under the time 

consistent policy, since the Markov government cannot internalize the distortionary effects 

of the current tax on the level of investment undertaken in previous periods (as in Ortigueira 

(2006), in a neoclassical growth framework), ii) the proportion of public resources devoted 

                                                            
4 Azzimonti et al. (2009) also show this result for an exogenous growth economy.  
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to consumption is higher under the Markov government than under the Ramsey government, 

since the former only commits to current policies, thereby giving priority to current 

consumption, with an immediate effect on utility, rather than to production activities, whose 

effects on welfare will mainly take place in future periods, and iii) as a result, economic 

growth is slightly lower under the Markov-perfect policy than under the Ramsey policy, 

with the growth rate under lump-sum taxes being the highest. 

The implication is that a government that is aware that society knows its inability to 

pledge future policy decisions should impose a slightly higher tax rate and devote a higher 

share of public resources to consumption, with a relatively lower implied rate of growth. 

 

2. The model economy 

We assume in what follows that population does not grow, and also that the economy 

can be described by representative agents: firm, household and government. We further 

assume full employment. 

The representative firm maximizes profits subject to a technology that produces the 

single consumption commodity. The stock of private capital, tK , together with production 

services provided by the government, ,p ti , are used together with the labor force, tL , as 

production inputs in a technology: 1
,( )t t t p tY BK L i  . In line with Barro (1990) and 

Cazzavillan (1996) we assume here a flow of public services of rival nature, and hence it is 

the quantity of the public good assigned to each firm the relevant variable in the private 

production process. The representative firm pays rents t t t tr K w L  to households for the use 

of private capital and labor, solving each period the static profit optimization problem: 

 
1

,
,

( )
t t

t t t p t t t t t
K L
Max BK L i r K w L     . 

We assume that labor is inelastically supplied by the household, and we normalize it 

to 1: 1, tL t .  

Markets for production inputs are competitive. At each point in time, optimality 

conditions imply that input prices are equal to their marginal product: 

   1

,/ ,t t p tr B K i





   

  , ,(1 ) /t t p t p tw B K i i


  .  
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Apart from the production services to firms, ,p ti , the government also provides 

consumption services to households, gt. We denote by ηt  the proportion of the proceeds from 

income taxes that are used each period to finance public consumption services, gt, the 

remaining tax revenues being used to pay for production services, ,p ti . The government 

budget constraint is   ,t t t t t p tr K w g i    , where 

   ,t t t t t tg r K w   (1) 

  , (1 )p t t t t t ti r K w    . (2) 

From the government budget expenditure rules (1), (2), and the optimality conditions 

for the competitive firms we get, 

 1
,t t t t p tg BK i   , 

 1
, ,(1 )p t t t t p ti BK i     ,  

so that production services are provided according to, 

  1/

, (1 )p t t t ti B K
     (3) 

while consumption services are, 

  1 /1/ 1/( ; , ) (1 )t t t t t t t tg K B K         , (4) 

and equilibrium real interest rates and real wages become, 

  
1

1/( ; , ) (1 ) ,t t t t t tr r K B


     


    (5) 

  
1

1/( ; , ) (1 ) (1 ) .t t t t t t tw w K B K


     


     (6) 

The representative household maximizes his/her life-time discounted 

utility,
0

( , )t
t tt

U c g

 , defined over private and public consumption, ct, gt, subject to a flat 

tax rate τt on total income.5 They know the current values of τt and ηt, and expect future 

governments to follow policies 1 1( )t tK     and 1 1( )t tK   . The typical household 

solves the problem: 

  


 
1

1 1
, }

, ; ; ; ; , ( , ; ; )
t t

t t t t t t t t
c k

k K Max U c g k K   


    � �  (7) 

given 0k , and subject to the budget constraint, 

                                                            
5 We also assume that consumption services provided by the government are of rival nature, so the argument in 
the utility function is the per-capita level of the public good. 
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  1 (1 ) (1 ) ( ; , ) ( ; , ) ,t t t t t t t t t t t t tc k k w K r K k            (8) 

where kt denotes the level of capital chosen by the household and Kt the economy-wide per 

capita stock of capital. 

The solution leads to a consumption function ( ; , )t t tK    satisfying the Euler 

equation,6  

   
   

1 1 1 1 1 1

(1 )/1/
1 1 1

( ; , ), ( ; , ) ( ; , ), ( ; , )

1 1 (1 ) .

c t t t t t t c t t t t t t

t t t

U K K U K K

B
 

        

    

     


  

 

     

   
    (9) 

 With homogeneous households and firms, we have in equilibrium: ,t tK k and all the 

variables in the model can be regarded either as aggregate per capita or in individual terms.  

Using (5), (6) and (8), the stock of capital kt can be seen to evolve over time 

according to:  

  (1 )/ 1/
1 (1 ) (1 ) (1 ) ( ; , )t t t t t t t t tk k B k k

       
        .                 (10) 

 
Substituting (3) in the production function, output is given by 

 
1

1/ (1 )t t t ty B k


  


  . As a consequence, in the competitive equilibrium allocation, i) 

the ratio of production services to output, , /p t ti y  is equal to (1 )t t  , an extension of the 

framework in Barro (1990), and ii) the ratio of private capital to output, /t tk y , is a function 

of (1 )t t   and structural parameters α and B. In line with Barro (1990), the constant 

returns to scale in private capital and public production services, jointly with the fact that the 

complementary public input expands in a parallel manner to the private capital, guarantees 

the existence of endogenous growth in our model economy.  

A potential problem with optimal policy design under endogenous growth is the 

possibility of having indeterminacy of equilibria. In that situation, equilibrium trajectories 

are undetermined, being dependent on the initial value of some control variables. Policy 

recommendations emerging from economic models may then lack any real meaning. 

Since this model shares some characteristics of the AK-family of models, it may also 

lack any transitional dynamics, which would be very relevant for the characterization of 

optimal policy as well as for welfare evaluation.  

                                                            

6 Along the paper we denote partial derivatives by v

F
F

v





.  
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Along the paper we argue7 that in the Markov and Ramsey solutions t  and t , as 

well as the ratios of private and public consumption to private capital, / , /t t t tc k g k , are 

constant from the initial period. This has two implications: the model lacks any transitional 

dynamics and there is no indeterminacy of equilibria, with the economy being on the single 

balanced growth path from the initial period onwards. 

 

3. Optimal policy  

3.1 The time-consistent optimal policy 

We use the same equilibrium concept as Klein, Krusell and Ríos-Rull (2008) and the 

“government-moves-first” case in Ortigueira (2006).8 We consider a dynamic game played 

by a sequence of governments, each one of them choosing current period policies on the 

basis of the state of the economy, defined by the stock of private capital. Hence, each 

government chooses the current tax rate τt and the proportion of revenues used to purchase 

public consumption, ηt, before the household decides on consumption and savings. When 

making optimal policy choices, the government knows the household decision rule 

( ; , )t t tk    that describes the reaction of the household to policy decisions.  

Acting as a leader, the government chooses the current tax rate and the split of public 

resources taking as given the policies followed by future governments and taking into 

account that reaction of the household to the policy choices, as follows: 

  


     1
, }

; , , ; , ( )
t t

t t t t t t t tV k Max U k k V k
 

            [P1] 

where   1; ,  and t t t tk k    are given by (4) and (10).  tV k and  1tV k 
 denote the value 

function for the current government and the continuation value function, respectively. Although they 

will be treated as different functions when characterizing optimality conditions in what follows, in 

equilibrium the two functions will be the same. 

Proposition 1. The time consistent policy corresponding to the Markov equilibrium is the 

solution to the set of Generalized Euler Equations (GEE): 

                                                            
7 We have analytical proofs of these results for the case of logarithmic utility and full depreciation of capital, 
and numerical arguments for the general case.  

8 Which is also used in Krusell and Rios-Rull (1999), and Krusell, Quadrini and Rios-Rull (1996). 
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 

 

,
1 1( , ) ( , )

1

t t t t t t t t

t
t

c g c g

t t t t
t t t

t

U U U U

k k

   




    
 

 


    


   

 
 (11) 

and 

 
   

   
1 1 1 1

1 1 1 1

1

1

1 1 1 1

1 1

, ,
,

                                1 ( , )

t t t t

t t t t
t t t t

t

t

t

c g
c k g kc g

t t t t

t t t t

t t k

U U
U UU U k

k

 

 




  
  

  

   

   





   

 

 
        

          

 
   




 (12) 

where      (1 )/ 1/(1 )
, , (1 ) (1 )

(1 )
B

        
 

 
     


. 

Proof.- See Appendix 1.  

 

Equation (11) is a condition relating the optimal choice of the two policy instruments 

at a given point in time, while equation (12) characterizes the optimal intertemporal choice 

of income tax rates.  

From (10) we get the size of the reduction in time t investment from an increase in 

taxes is:    1 / ( , )
tt t t t t t tk k k             �  . Hence, the left hand side at (11) 

gives the change in utility produced by a tax increase, per unit of crowded-out investment. 

This is what Ortigueira (2006) calls today’s marginal value of taxation. By a similar 

argument, the right hand side at (11) is the change in utility from an increase in the share of 

resources devoted to public consumption, per unit of crowded-out investment. The optimal 

choices of the two policy instruments must satisfy the equality between these two marginal 

effects on utility. 

The left hand side at (12) is again the marginal change in utility per unit of crowded 

out investment implied by a decrease in the tax rate. Lower taxes at t+1 stimulate 

investment, and an additional unit of capital at t+1 has a direct effect on utility of 

1 1 1 1t t t tc k g kU U
   

  through its effect on private and public consumption and an indirect effect 

through its impact on time t+2 capital stock, 
1

2
1 1

1

1 ( , )
t

t
t t k

t

k

k
  




 




   


 , which needs to 

be appropriately discounted. The total effect is given by the square bracket at the right hand 

side of (12). It shows that the change in utility per unit of crowded-out investment at time t 

implied by a marginal change in the optimal tax rate must be equal to the discounted change 

in utility resulting at time t+1. 
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Definition.- A Markov-Perfect equilibrium is a set of functions 

( ; , ), ( ),  ( ) and ( )t t t t t tk k k V k    such that:  

i) Given government rules (3) and (4), ( ; , )t t tk    solves the Euler equation (9) subject 

to the law of motion of the stock of capital (10), 

ii) ( ),  ( )t tk k   satisfy conditions (3), (4), the law of motion of the stock of capital 

(10), as well as the Generalized Euler Equations (11) and (12); and 

iii) ( )tV k  is the value function of government obtained as a solution to [P1]: 

     1( ) ; ( ),  ( ) , ; ( ),  ( ) ( ).t t t t t t t tV k U k k k k k k V k         

3.2 The Ramsey policy 

As usual, we define the benchmark “Ramsey equilibrium” as the solution to an 

optimal-policy problem where the government can commit to future policies. The Ramsey 

optimal policy is then the solution to the problem of maximizing the time aggregate, 

discounted utility of the household, subject to the equilibrium conditions (4), (9) and (10) as 

constraints: 

                                             


 

 
 

, 1

1

, , , } 0

11

1 1

1

,

subject to :

(1 )

1 ,

(1 ) ( , ) .

t t t t t

t t

t
t t

c g k t

t t t t t t

c c t t

t t t t t t

Max U c g

g B k

U U

k k k c

 






   

    

  











 



 

     
   



 [P2] 

where    (1 )/ 1/, (1 ) (1 )t t t t t B
           . In Appendix 2 we characterize the first order 

conditions and the balanced growth path for the Ramsey problem. 

The Ramsey policy takes into account the optimal reactions of private agents. 

However, it is time inconsistent, since once private agents adjust their decisions to the 

announced economic policy it will be optimal for the government to change policy. 

 Given the complexity involved in characterizing optimal policy under lack of 

commitment, attention has often been restricted to Ramsey policies, in spite of their well-

known limitation of assuming commitment on the part of the current government on future 

periods. It is therefore important to evaluate to what extent the Markov-perfect fiscal policy 

differs from the Ramsey policy in our setup. We will perform such analysis in Section 6.  
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4. An analytical solution: logarithmic utility and full depreciation of 

private capital 

We consider in this section the special case of logarithmic preferences that are 

separable in private and public consumption,  , ln lnt t t tU c g c g  , together with full 

depreciation of private capital. The two assumptions together allow us to obtain an analytical 

characterization of the time consistent optimal fiscal policy that we can compare with the 

Ramsey solution as well as with the allocation that would be obtained under lump-sum 

taxes. 

Under this utility function, the competitive equilibrium allocation is characterized by 

the system: 

 
1

1
1 1

( , ) ,

( , )

t t t t t

t
t t

t

k k c

c

c

 

   




 

   

  

     (13) 

Proposition 2. Under full depreciation of private capital and a logarithmic utility function, 

the competitive equilibrium allocations are given by:  

 1 ( , ) ,t t t tk k      (14) 

  1 ( , ) .t t t tc k      (15) 

Proof. Plugging in the previous system (13) a guess for the functional form for the 

competitive equilibrium allocation as: 1t t tk A k   , it is easy to show that A=  .  

 

Expressions (4) and (15) for ,t tg c  allow us to compute the partial derivatives that 

enter into the Generalized Euler equations (11)-(12), to find an analytical solution to the 

time consistent optimal policy problem.  

The next set of results shows that under the Markov and Ramsey solutions the model 

lacks any transitional dynamics and there is no indeterminacy of equilibria, with the 

economy being on the single balanced growth path from the initial period onwards. 

Proposition 3. Under full depreciation of private capital and a logarithmic utility function, 

separable in private and public consumption, the optimal time-consistent fiscal policy 

satisfies: 
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1

1
M
t M

t

t




 


      (16) 

Proof.- See Appendix 3. 

Corollary 1.- Under the optimal Markov policy the ratio of productive public services to 

private capital is constant for all t. 

Proof.- Using (16) in (9), we get: , 1/ 1/(1 ) ,p t

t

i
B t

k
    .  

Proposition 4.- Under full depreciation of private capital and a logarithmic utility function, 

separable in private and public consumption, 

i) There is no local indeterminacy of equilibria, 

ii) The economy lacks transitional dynamics, 

iii) The optimal Markov policy is:  

(1 )
1 ,   

1
M M
t t

  



   


,    (17) 

(1 )
,   .

1 (1 )
M M
t t

  
  


  

  
    (18) 

Proof-. See Appendix 3.  

Notice that the optimal split of resources between public consumption and productive 

services is well defined, taking values between 0 and α, while the optimal income tax rate is 

always between 1-α and one.  

We now characterize the optimal allocation of resources in terms of the ratios of 

private and public consumption to the stock of private capital: ,t t
t t

t t

c g

k k
   . These ratios 

must remain constant along the balanced growth path.  

Proposition 5. The optimal allocation of resources under the Markov-perfect optimal policy 

is given by:  

 
2 1

1/1 (1 )
( , ) 1 ,

1

M

M M M Mt
t

t

k
B t

k




      



  

         
 

     
1

1/1 (1 )
1 ( , ) 1 ,

1

M

M M M Mt
t

t

c
B t

k




  
     



  
          
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 
1

1/( , ) 1
1

M M M
M M M Mt
t M

t

g
B t

k




     


 
         

. 

Proof. Their expressions can readily be obtained from (4), (14) and (15).  

The three following corollaries can be readily shown from (17) and (18): 

Corollary 2. When public consumption does not enter as an argument into the utility 

function (θ=0), the Markov-perfect optimal tax rate coincides with that in Barro (1990): 

1   . In that situation, public resources are fully devoted to production. 

Corollary 3. The Markov-perfect optimal tax rate converges to the Barro tax as the discount 

rate approaches 1, with public resources again being fully devoted to production. 

Corollary 4. i) The proportion of public resources devoted to public consumption increases 

with θ and α, and it decreases with ρ; ii) the optimal time consistent income tax increases 

with θ, and it decreases with α and ρ.  

As expected, the proportion of public resources devoted to consumption increases 

with the relative importance of public consumption in the utility function. It also increases 

with the output elasticity of private capital. A more productive private capital, relative to 

public production services, allows for a higher share of public resources being devoted to 

consumption. Turning the argument around, the more productive is the public input relative 

to private capital, the more interesting it is to allocate public resources to productive 

activities rather than to consumption. The share of public resources dedicated to 

consumption decreases for a larger  . We then tend to value future consumption almost as 

much as current consumption and it becomes more interesting to shift resources to the future 

by increasing productive services.  

As public consumption is more appreciated by consumers for higher values of θ and 

lower values of ρ, it is appropriate to raise higher tax revenues to finance that component of 

public spending. On the contrary, a high elasticity of private capital, α, leads the private 

sector to allocate more resources to investment, and taxes can be lower.  
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4.1 Comparing Ramsey and Markov policies under logarithmic utility and full 

depreciation of private capital 

The following proposition shows that, for this special case, the Ramsey and Markov 

policies coincide.  

Proposition 6. Under a logarithmic utility function and full depreciation, the optimal 

Ramsey policy, becomes: 

(1 )
1 ,

1
(1 )

.
1 (1 )

R

R

 


 
  


 





  

 

Proof: See Appendix 3.  

The income tax and the proportion of public resources devoted to public 

consumption under the Ramsey policy coincide with the values obtained under the time-

consistent policy, so the properties analyzed in Proposition 4 and Corollaries 2 to 4 for the 

Markov-perfect optimal policy apply to the Ramsey policy as well. The equality of solutions 

arises because under a logarithmic utility and complete depreciation of physical capital the 

Ramsey policy is time consistent, a result shown by Azzimonti et al. (2009) in a neoclassical 

growth model. 

 

5. Optimal time-consistent fiscal policy under CRRA preferences and 

incomplete depreciation of private capital 

The Generalized Euler conditions (11) and (12) should incorporate the consumption 

decision rule of private agents, which is characterized as the solution to the Euler equation 

(9) of the competitive equilibrium. Unfortunately, it is not possible to find the analytical 

solution to (9) in general, and that precludes us from obtaining an analytical characterization 

of the transition towards the balanced growth path.  

Assuming a CRRA utility: 
1 (1 ) 1

( , ) , 0
1

t t
t t

c g
U c g

  




  
 


 the Euler condition of the 

competitive equilibrium becomes,  

    
1

(1 ) (1 ) 1/
1 1 1 1 11 1 1t t t t t t tc g c g B


           


   

    

 
       

 
, 
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So that the relevant system of equations for , , , ,t t t t t     , written in ratios, becomes: 

 Euler condition of the competitive equilibrium: 

   
1

(1 ) (1 ) (1 ) 1/
1 1 1 1 11 1 1t t t t t t t t B


                  


     

    

 
       

 
 , (19) 

 law of motion of physical capital:  

 ( , ) 1t t t t          (20)

   
 the ratio of public consumption to capital, from (4): 

 1/ (1 ) / 1/(1 )t t t t B         , (21) 

 and the two Generalized Euler equations: 

 
     

1
(1 )

,, 1
1

t t

t

t

t
t t

t t t

t tt t t

t

 




    
  

     
 


 




  


 (22) 

 
 

   
1

1 1 1

1

(1 ) (1 )

(1 )
1 1

1
1 1

1 1
1 1 1 1

1

( , )

1

               (1 ) .
( , )

t

t

t

t t t

t

t t t t
t

t t
t t t

t
t t

t k k t k
t t t t

     


  







    
 

 
   

 
       
    



  



    

 
 


 

 
   

 
 

   
  

   
           
  

 (23) 

Note that to obtain (22) and (23) we have used 

; ; ;
t t t t t t t tt t t tC k C k G k G k              , and the partial derivatives: 

   

1
; ;

(1 )

,1 1
, ; ; 1,

(1 ) 1

t t

t t t

t
t t

t t t

t tt
t t

t t t

 

  

    
  

       
   


 



  
     

 

 

that emerge from (20) and (21). 

The right-hand side at (19) involves values at time t+1 of policy variables, 1 1,t t   , 

and ratios of decision variables to the stock of private capital, 1 1,t t   . Each one of these 
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must be a function of the single state variable in the economy,9 tk , so that we can think of 

the right-hand side at (19) as a function ( )tF k .  

(1 ) (1 ) ( )t t t tF k            .     (24) 

We can now characterize the optimal Markov policy in the more general set up 

considered in this Section. We start by showing that the relationship between the two policy 

instruments is the same we found under logarithmic preferences and full depreciation of 

private capital. As shown in Appendix 4, the function ( )tF k  cancels out in the Generalized 

Euler equation (11) that relates both policy choices and, as a consequence, it does not play 

any role in the characterization of the relationship between t  and t . 

Proposition 7.- The time-consistent optimal choice of the two policy instruments satisfies: 

1
,

1t
t

t




 


.     (25) 

Proof.- See Appendix 4. 

Again, optimal income tax rates will be above 1  , whereas the optimal proportion 

of public resources devoted to consumption will always be below α. 

We now argue that this economy lacks any transitional dynamics. Taking the result 

from Proposition 7 to (3) implies that the ratio /pt ti k  is constant, the output to capital ratio 

1/ (1 )/( / ) (1 )t ty k B       is also constant, and so is the real rate of interest. Under the 

Markov policy, this economy shares the same characteristics of standard AK-models. These 

results also imply that the ratios  ,t t   are not functions of kt, so that 

/ 0, / 0t t t tk k       . 

Hence, equations (20), (21) and (25) allow us to write equations (19) and (23) as a 

nonlinear dynamic system in  ,t t  : 

  (1 ) (1 ) (1 )
1 1 11t t t t t t

                   
      , (26) 

                                                            
9 They will be functions of the state kt if there is transitional dynamics. Later on, we will show that this 

economy lacks any transitional dynamics so that 1 1,t t    and 1 1,t t    end up being just functions of structural 

parameters. 
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1

1

(1 ) (1 )

(1 )
1 1

1
1

1 1
1 1

(1 )

(1 )

(1 )

(1 )
               (1 ) ,

t

t

t

t

t
t t t t

t t
t t

t
t

t t
t t

     


  







     
 

 


  
   







    

 
 




 
 

 
    

  

    
   

  

 (27) 

where  

 

 1/

1
1/

(1 ) , 1 ,
1

(1 )
(1 ) , .

1 ( )

t
t t t t

t

t t t
t t

t t

B

B






    


   
   



      


 
    

 

 

The nonlinearity of this system forces us to analyzing the potential equilibrium local 

indeterminacy in this model numerically. The dynamic properties of this system can be 

analyzed through the two eigenvalues of its linearized version. An eigenvalue below 1 

would suggest an indetermination of equilibrium since in that case, we would need an initial 

condition for either   or χ in order to compute the time series for  ,t t  . Any arbitrary 

choice would yield a valid Markov equilibrium then producing a situation of indeterminacy 

of equilibria. That would in turn generate transitional dynamics, as the trajectory followed 

by the economy would depend on the initial choice for either   or χ . On the other hand, 

having both eigenvalues greater than one would imply that the only stable solution is 

obtained with t  and χt  being constant over time: , ,t t t      , without indeterminacy 

of equilibria.  

We have numerically computed such eigenvalues for wildly different 

parameterizations, obtaining always both eigenvalues above one, even for empirically 

implausible parameter values. Lacking an analytical proof, our numerical analysis suggests 

that there is not indeterminacy of equilibria, with , ,t t t      , and hence, 

, ,t t t t         , the economy being at each point in time on its balanced growth 

path.  
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5.1 Solving for the Markov equilibrium 

Since the optimal policy instruments  ,t t   and the consumption to capital ratio 

 ( ; , )
,t t t

t

k

k

    


 are constant over time, we can compute the Markov equilibrium along 

the balanced growth path. 

Evaluating the Euler equation (19) along the balanced growth path and using (25), 

we get:  

   1/( (1 ))
1 ( , )

  
     

 
      . (28) 

Taking this expression to (20), we get:  

     1/( (1 ))
, 1 ( , ) 1 ( , )

  
          

 
         . (29) 

with partial derivatives  and    : 

 
1 (1 )

( ) ( , ) 1
(1 )

  


    
   

   
        

, (30) 

 
1 (1 )1

( , ) 1
(1 ) (1 )

  


    
     

    
        

. (31) 

 Hence, equation (27) becomes 

 

(1 ) (1 ) (1 )
(1 ) (1 )

(1 )

  
 

 

       
      

 

                
     

  

. (32) 

Finally, the Markov equilibrium  , , ,M M M M     is obtained as the solution to the 

system (25), (28), (29), and (32). The system can only be solved numerically and the 

following section is devoted to analyze its properties. Under all parameterizations 

considered, the system has been shown to have a single solution,10 suggesting that the 

equilibrium is globally determined. 

 

 

 

                                                            
10 When solving the nonlinear system of equations, we have tried very different sets of initial conditions, 
always reaching the same solution shown in the Tables. 
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6. Comparing the Ramsey and Markov solutions in the general case 

Let us now compare the Markov and Ramsey solutions between themselves, as well 

as with the allocation of resources that would be achieved by a benevolent planner using 

lump-sum taxes, which is characterized in Appendix 5. We will use ,t p tP
t

t

g i

y



  as a 

measure of the size of the public sector in the planner solution and we will use 
,

P t
t

t p t

g

g i
 


 

for the composition of public expenditures. Both of them will be used in the graphs and 

tables we present below. 

Let us now examine the values taken by the main variables in the economy along the 

balanced growth path under the three alternative fiscal policies: i) the planner’s policy under 

lump-sum taxes, ii) the Ramsey policy and iii) the time-consistent policy, all of them under 

the more general setup, with a CRRA utility function and incomplete depreciation of private 

capital. Unfortunately, our results are not readily comparable with those in the literature 

because numerical results are usually derived using a logarithmic, separable utility function, 

whereas our results correspond to general CRRA utility functions, and also because of our 

consideration of endogenous growth. 

The Markov equilibrium is obtained as explained in section 5.1. As shown in 

Appendix 2, the solution to the Ramsey problem [P2] is characterized by a system of 8 

dynamic equations in  1 2 3, , , , , , ,           that allows us to compute the balanced growth 

path for the Ramsey policy ( , )R R   as well as the implied allocation of resources, 

characterized by ( , , )R R R    and three multipliers,  1 2 3, ,     . That system is made up 

only by control variables, with no participation of any state variable. Hence, in the absence 

of local indeterminacy of equilibrium, the only possible solution is that control variables 

stay on the balanced growth path (BGP) from the initial period, with no transition.11  

Under incomplete depreciation of private capital, the choice of parameter values: 

0.4, 1 0.20, 0.99, 0.10, 0.4555,B         when generating annual data lead to 

sensible properties of the Markov solution. Parameter values are standard in the literature for 

annual data except for  , which is chosen so that the ratio of public consumption to private 

                                                            
11 For the parameterizations used in the paper we have numerically checked the absence of local indeterminacy 
of equilibria. 
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consumption for the Markov solution is in line with data for the postwar US economy 

(g/c=0.25). For instance, for 2  , we get a ratio of public to private consumption around 

0.25, an annual growth rate  =1.5%, and a gross real interest rate:  (1 )(1 )1 / 1.03     . 

The value chosen for   is consistent with a broad concept of capital that includes both 

physical and human components, as it is commonly established in endogenous growth 

models with public production services and private capital (see Cazzavillian, 1996). As to 

the elasticity of output with respect to public capital, 1-α, we set a value which is in line with 

previous literature: Azzimonti et al. (2009) takes a benchmark elasticity of 0.25, but the 

range of values varies significantly across authors between the 0.03 estimated by Eberts 

(1986), and the 0.39 estimated by Aschauer (1989).  

Figure 1 shows values for the main variables in the economy under the three 

equilibrium concepts as a function of the risk aversion parameter, σ. Over the whole range of 

values considered, the optimal income tax increases with risk aversion. It always falls 

between 20% and 30%, being higher under the Markov-perfect policy than under the time-

inconsistent Ramsey policy. The proportion of public resources devoted to consumption, 

relative to production, is also increasing in σ, staying between 6% and 32%. It is also higher 

under the Markov-perfect solution than under the Ramsey policy.  

Steady state growth is slightly higher under the Ramsey policy. Growth rates are 

large for low values of the risk aversion parameter, but they become quite realistic for values 

of σ above 1.5. As a proportion of output, private consumption is higher under the Ramsey 

policy, while public consumption is higher under the Markov policy. In terms of specific 

values, private consumption never exceeds 35% of output under either policy, while public 

consumption remains below 10% of output, both observations below the levels observed in 

actual economies. However, the ratio of public to private consumption is around 25%, as in 

observed data. For the Markov and Ramsey solutions we could obtain ratios of public and 

private consumption to output similar to those in actual data, at the expense of getting 

income tax rates implausibly high.  

A planner with access to lump-sum taxes under commitment would devote to 

consumption an even higher proportion of public resources than the Markov and Ramsey 

solutions, and the growth rate would be considerably higher than under the alternative 

solutions. 

That the income tax is higher under the Markov-perfect policy than under the 

Ramsey solution is consistent with the result obtained by Ortigueira (2006) in an exogenous 
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growth economy under inelastic labor supply.12 This result arises because the Markovian 

government cannot internalize the distortionary effects of current taxation on past 

investment, while in the Ramsey solution, the government takes fully into account the 

negative effect of the income tax on future investment. A similar argument explains that the 

Markov government devotes a higher proportion of public resources to consumption, which 

has a direct impact on current utility, to the expense of productive services, which would 

have a positive effect mainly on future utility. Together with a higher share of resources 

devoted to production, a lower income tax rate leads to a higher growth rate under the 

Ramsey than under the Markov solution.  

Figure 2 presents results for σ = 2, and values of the relative weight of public 

consumption in the utility function, θ, between 0.2 and 1.5, the remaining parameters being 

as in Figure 1. As expected, public consumption as a share of total public spending increases 

with θ. Qualitative results stay the same, with the Markov-perfect policy imposing a higher 

income tax than the Ramsey policy and devoting a higher proportion of public resources to 

consumption. The growth rate is again higher under the Ramsey than under the Markov 

policy. 

Table 1 summarizes the results by displaying a single point from Figure 1 and Figure 

2. Table 2 analyzes the effects of a change in  . The value of B has been chosen to 

guarantee positive growth rates under the Markov and Ramsey solutions. 

Since the ratio of productive services to output is the same for the three solutions 

implies that the product (1 )   and hence, the ratio of private capital to output, are also the 

same for the three solutions under any parameterization. The common value of (1 )   

turns out to be equal to the elasticity of output with respect to the public input, again an 

extension of the result obtained by Barro (1990). 

The solution under lump-sum taxes leads to the largest public sector and devotes a 

lowest share of public resources to production. Since taxes are not distortionary under the 

planner’s solution, a larger proportion of resources extracted by the public sector can be 

made compatible with a higher rate of growth. 

The comparison between the two panels in Table 1 shows what happens as public 

consumption becomes more important in the utility function: while the ratios of both types 

of capital to output remain unchanged, the optimal tax rate increases, as it does the 

                                                            
12 Even though the two results are not strictly comparable, since one of them refers to an exogenous growth 
economy and the other to an endogenous growth economy. 
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proportion of public resources devoted to consumption. These two changes lead to a lower 

rate of growth.13 

 

 
Table 1. Values for the main variables under the three solution concepts. 

Effects of a change in θ 
 

 B = 0.4555, σ = 2.00,  
θ = 0.40, α = 0.80, 
δ = 0.10, ρ = 0.99

B = 0.4555, σ = 2.00, 
θ = 1.00, α = 0.80, 
δ = 0.10, ρ = 0.99 

 Planner Markov Ramsey Planner Markov Ramsey 
η (%) 
τ (%) 
γ (%) 

c/y(%) 
g/y(%) 
ip/y(%) 

k/y 

26.7 
27.3      
3.6   

18.3  
7.3    

20.0    
4.0 

24.9    
26.6    
1.5    

27.4    
6.6  

20.0    
4.0 

20.4    
25.1    
1.6    

28.4   
5.1    

20.0    
4.0 

41.6   
34.2    
2.9    

14.3    
14.3    
20.0    
4.0 

38.7   
32.6    
0.8    

24.2    
12.6   
20.0   
4.0 

30.9   
28.9     
1.1     

26.9 
8.9     

20.0    
4.0 

 
 

Table 2. Values for the main variables under the three solution concepts. 
Effects of a change in α 

 
 B = 0.658, σ = 2.00, 

θ = 0.40, α = 0.80,  
δ = 0.10, ρ = 0.99

B =0.658, σ = 2.00, 
θ = 0.40, α = 0.70, 
δ = 0.10, ρ = 0.99 

 Planner Markov Ramsey Planner Markov Ramsey 
η (%) 
τ (%) 
γ (%) 

c/y(%) 
g/y(%) 
ip/y(%) 

k/y 

32.9   
29.8    
8.1    

24.6   
9.8    

20.0    
2.5 

32.1   
29.4   
4.5    

33.9    
9.5    

20.0    
2.5 

28.9   
28.1    
4.7    

34.8    
8.1    

20.0    
2.5 

19.2   
37.1    
4.8    

17.9    
7.1    

30.0    
3.0 

16.9   
36.1   
1.5    

28.9    
6.1     

30.0 
3.0 

13.1   
34.5     
1.6     

30.0     
4.5     

30.0     
3.0 

Note to the tables: for the planner solution ,t p tP
t

t

g i

y



  and 

,

P t
t

t p t

g

g i
 


. 

 

 

Table 2 shows that an increase in the productivity of the public input (lower  ) leads 

to higher tax rates. The government then detracts more aggregate resources from the 

economy and devotes a larger proportion of them to production. Because of the increase in 

the tax rate generated by a lower   parameter, the productivity of private capital and hence, 

the rate of growth, both decrease. 

Rates of growth under the Ramsey and Markov policies in Tables 1 and 2 are very 

similar. However, for many alternative parameterizations, they may easily differ in close to 

one percent point.14 
                                                            
13 Rates of growth under the Ramsey and Markov policies in Tables 1 and 2 are very similar. However, for 
many alternative parameterizations, they may easily differ in close to one percent point. 
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7.  Welfare   

In this section we compute the level of welfare that would arise along the balanced 

growth path under the time consistent Markov policy and compare it with the level of 

welfare that would be obtained under lump-sum taxes.15 As in Lucas (1987), what we 

compute is the consumption compensation (as a percentage of output) that would be needed 

under the Markov rule to achieve the same level of welfare than under the resource 

allocation of the planner with non-distortionary taxation. 

Under a CRRA utility, welfare can be written, 

1 (1 ) 1 1
, ,

(1 )(1 )
0

1 1 1
, ,  

1 1 1 1
t i t it i i

i
t i

c g
W i P M

    

 

 
    

   

 


  
        
 . 

Let {ct,i, gt,i}, with i=P, M, be the optimal path for private and public consumption 

for the planner’s solution (P) and the Markov solution (M), respectively, that is: 

 



0

0

, , 0
1

, , 0
1

,

, , ,

t t
t i i t i i i i i

k

t t
t i i t i i i i i

k

c k k

g k k i P M R

    

    




  

   
 

where we have indicated the normalization 0k =1.  

The consumption compensation   needed for the Markov and Ramsey solutions to 

achieve the same level of welfare as under the planner’s allocation can be obtained by 

solving the following equation: 

1 1 (1 )
, ,

0

(1 ) 1
, ,

1
t j t jt

P
t

c g
W j M R

   




  



 
 

  

that is, 
1 1 11 1

(1 )(1 ) (1 )(1 )

(1 )1 1 1 1
, ,

1 1 1 1 1 1
j jP P

P j

j M R
   

   

   
       

   

   

  
              

 and finally, 

                                                                                                                                                                                       
14 For instance, for 0.90,  2.00,  2.00,  0.85,  0.10,  0.96B           , growth rates under Markov 

and Ramsey policies become 2.76% and 3.43%. 

15 We do not consider the level of welfare under the Ramsey solution because of its time-inconsistent nature. 
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1
(1 )(1 ) 1

(1 )(1 )

1
1 , , .

1
j P P

P j j

j M R

  

 

   
   

  

 

  
          

   (33) 

 To translate this compensation into output units, we have to compute 

,

,

100 , ,t j

t j

c
j M R

y
  , which is the compensation shown in Figure 3. 

As the risk aversion parameter changes between 1 and 5, the Markov consumption 

compensation falls from 45% to 3% of output. In particular, for  =2, the compensation that 

would be necessary to achieve the planner’s welfare is around 8% of output. By and large, 

the decrease in consumption compensation is due to the decline in the value of the first 

factor in (33).16  

The consumption compensation increases with θ. For  =2, the Markov consumption 

compensation increases from 6% to 23% of output. Again, this increase in the consumption 

compensation is mainly due to the first factor in (33).17 So, the difference in growth rates is 

the main determinant of the welfare loss under the Markov solution relative to the planner’s 

solution, over and above the effects of differences in the ratios of private or public 

consumption to output. 

In both cases, the Ramsey policy, if it could be maintained over time, it would lead to 

a slightly bigger loss of welfare relative to the planner policy. Both policies are not strictly 

comparable, and the welfare comparisons could go either way. In Klein et al. (2008), the 

Ramsey policy leads to a bigger welfare loss when the economy is subject to a total income 

tax. In Ortigueira (2006) the same result arises when the only source of revenue is a tax on 

labor income.18  

 

 

 

                                                            
16 The first factor, which depends on growth rates, falls from 17.13 for σ =1.1, to 1.23 for σ =5. The second 
factor increases from 0.29 to 0.86, while the third factor initially increases from its starting value of 1.018 to 
1.054, and it decreases after that to essentially its same initial level. 

17 The first factor increases from 1.72 to 3.02 as θ changes from 0.2 to 1.5. The second factor gradually 
decreases from 0.70 to 0.54, and the third factor shows a moderate increase, from 1.13 to 1.23. 

18 These authors do not report welfare levels. We have used the steady-state values they provide to compute 
steady-state welfare levels. Our statements above are valid under the assumption that the policy rules in both 
papers would position the economies on their balanced growth paths from the starting period. 
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8. Conclusions 

We have characterized the optimal Markov-perfect fiscal policy in an endogenous 

growth economy where the fiscal authority cannot commit to policy choices beyond the 

current period. Tax revenues are used to finance public consumption and public production 

services, and we have considered two policy variables: a single tax on total income and the 

split of public resources between consumption and productive services.  

Under logarithmic preferences and full depreciation of private capital, we can 

analytically characterize the optimal values of the two policy variables. With that particular 

specification, we show that the Markov-perfect policy coincides with the optimal Ramsey 

policy that would arise by imposing commitment.  

For the more general case of a CRRA utility function and less than perfect 

depreciation of capital, we show the economy to be on its balanced growth path from the 

initial period onwards. In this case there is no closed form solution, but we compute 

numerical values for the Markov-perfect and the Ramsey optimal policies under parameter 

values calibrated to the US economy. We also explore the sensitivity of the numerical 

solutions to the values of three parameters: the intertemporal elasticity of substitution of 

consumption, the relative weight of public consumption in agents’ utility function and the 

elasticity of output with respect to private capital. For empirically plausible parameter 

values, the income tax is higher under the Markov policy than under the Ramsey solution, 

and a higher proportion of public resources are devoted to consumption. Consequently, the 

growth rate is lower under the Markov policy than under the Ramsey solution. 

The welfare loss of the Markov solution relative to the planner’s allocation is mainly 

determined by the differences in growth rates, more than by differences in the ratios of 

private or public consumption to output. 

The implication of our results is that if the private sector is aware of the government's 

inability to pledge future policy decisions, then the government should impose a slightly 

higher tax rate and devote a higher share of public resources to consumption, with a 

relatively low cost in terms of growth.  

Considering a more complex tax structure, as well as non-trivial transitional 

dynamics in an endogenous growth model with public debt, are left as future extensions of 

this work. 
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Appendix 1: Proof of Proposition 1 

First order optimality conditions for the government’s problem are: 

 with respect to τ: 

1

( , )
0

t t t t t t

t t
c g k t

t

U U V k  
 

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     

   , 

where: 
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t t t
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so that: 
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 with respect to η: 
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The envelope condition is: 
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which, after using the first order conditions derived above, it can be written as 
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From the optimality conditions above we get, 
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which leads to condition (11). 

Plugging the first equation into the envelope condition we get, 
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and, finally, we get equation (12): 
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Appendix 2: Optimal Ramsey policy under a CRRA utility function and incomplete 

depreciation of private capital 

The Ramsey optimal policy is the solution to the utility maximization problem, 

subject to the equilibrium conditions as constraints. Under the CRRA utility function, the 

Lagrangian for the Ramsey problem becomes: 

 

 

 

1 (1 )

1 1
0

1
1/ 1/

2

(1 ) (1 )
3 1 1 1 1

1
1 ( , )

1

            1

            1 ( , ) .

t tt t
t t t t t t

t

t
t t t t t t

t
t t t t t t t

c g
L k c k

B k g

c g c g

  


 

     

     


    

      

 






   
   


        

     
     



 

Taking the derivatives with respect to 1, , , ,t t t t tc g k    to be equal to zero, we obtain 

the optimality conditions for the Ramsey problem: 
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,  
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  (1 )
1 2 3 1

1
1 1 0

1 t

t t
t t t t t t

t

k k c g       
  

 


          
.  

Transforming the multipliers by: (1 ) (1 ) 3
1 1 2 2 3, , ,t
t t t t t

t

k k
k

                  and 

defining the rate of growth 1
1

t
t

t

k

k
 

  , and the ratios of private and public consumption to 

capital t
t

t

c

k
  , t

t
t

g

k
  , we can get a system of equations in stationary ratios. First, from 

the global constraint of resources, we get an expression for the growth rate: 

1 1 ( , )t t t t         . 

Whereas from the government budget constraint, we can write the ratio of public to 

private capital: 

1
1/ 1/ (1 )t t t tB


     



  . 

From the Euler equation for the competitive equilibrium: 

 
1

(1 ) (1 ) (1 )
1 1 1 11 ( , )

t tt t t t tx x               


     
         , 

and from the set of optimality conditions above, we finally get the system of equations 

characterizing the optimal Ramsey policy represented in stationary ratios: 

  (1 ) 1 (1 )
1 3 3 1

1
1 ( , ) ,

t tt t t t t t t
t

x x              


    


 
        

 
    

  1 (1 ) 1 (1 ) 1
2 3 3 1

1
(1 ) 1 ( , ) ,

t tt t t t t t t
t

x x                


     


 
         

 
     

  
1

(1 ) 1/ 1/
1 1 1 1 1 1 2 1 1 11 ( , ) (1 ) ,t t t t t t t tB


             


 

      

 
     

 
     

 (1 )
1 2 3 1

1 11 1 1 1
1 1 0,

t

t t
t t t t t

t t t

x          
     

 


     
       

   
     

  (1 )
1 2 3 1

1 1
1 1 0.

1 t

t t
t t t t

t t

        
   

 


          
     

Along the balanced growth path, the system of equations for the Ramsey equilibrium 

becomes: 

  (1 ) 1 ( , ) ,               

 1 ( , ) ,          
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1

1/ 1/ (1 ) ,B


     


    

  (1 )
1 3

1 1
1 1 ( , ) 1 ,x         

 
   

      
 

   

  1 1 (1 )
2 3

1 1 1
1 1 ( , ) 1 ,tx         

  
    

      
 

    

  
1

(1 ) (1 ) 1/ 1/
1 21 1 ( , ) (1 ) ,B


                 


             

 (1 )
2 3

1 1 1 1 1 1
1 1 0,x          

     
              

   
    

  (1 )
1 2 3

1 1
1 1 0

1
         

   
           

   .  

Denoting by: 

 1
1 ( , ) 1   


      , 1 ( , )F      , and 

(1 )

(1 )

1 F  

  


 

 

 


  , 

we characterize the balanced growth path of the Ramsey equilibrium by particularizing the 

system of equations above to: 

  
1

(1 )

1
1/ 1/

1
(1 )

2 1

(1 )
1

3

1 ( , ) ,

1 ( , ) ,

(1 ) ,

1/
,

1 1

,

1
,

/

B

  


  

  

  

     

    

   

  

  
 

  
 

 



 

 

     
   

 


  

 
 

 








 


 

(1 )
1 3 2

(1 )
1 2 3

1 1 1 1
1 0,

1 1
1 (1 ) 0,

1

  

  

       
   

       
   

 

 

           
          

  

  
 

a system of 8 equations in  1 2 3, , , , , , ,           that allows us to compute the balanced 

growth path for the Ramsey policy ( , )R R   as well as the implied allocation of resources, 

characterized by ( , , )R R R   . 
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Appendix 3.- Proofs of propositions 3, 4 and 6 

Proof of Proposition 3: 

The problem solved by the government is: 

 

  1
,

1

( ) Max ln ( ; , ) ln ( ; , ) ( )

where   ( , ) ( ; , ),

( ; , ) (1 ) ( , ) ,

( ; , ) ( , ) .
1

t t
t t t t t t t t

t t t t t t t

t t t t t t

t t
t t t t t t

t

V k k k V k

k k k

k k

k k

 
     

   
    

   






    

  
  

 


 









 

The first order conditions for this problem are: 

  
1

: (1 ) ( ) ( , ) ( ) 0
(1 ) tt t k t t t t

t t

V k
       

  
       


 , (A3.1) 

 
1

1 1 1 1
: (1 ) ( , ) 0

1 1tt k t t t
t t t

V k
       

    

  
        

 , (A3.2) 

From (A3.1) and (A3.2) we obtain a relationship between the optimal values of the 

tax rate and the government spending split in the Markov-perfect equilibrium: 

 
1

1
M
t M

t

t




 


. (A3.3) 

Proof of Proposition 4: 

i) To examine the dynamic properties of the Markov solution, we consider the envelope 

condition : 

 

1

( , )1 1
(1 ) (1 )

( , )

( , )1 1
        ( , ) ,

(1 )

t

t

t t t t
k

t t t t t t

t t t t t t
k t t

t t t t t t t t

V
k k k

V
k k k k

    
  

         
   

   
          

         
                     


 

 

which, using conditions (A3.1) and (A3.2), it can be written as, 

  
1

1
(1 ) ( , )

t tk k t t
t

V V
k

    


    . (A3.4) 

Using (A3.2) and (A3.3) in (A3.4), we obtain the dynamic equation: 

 1

1 1
0,t t

 
 


     (A3.5) 
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1
where  

(1 )
t

t
t


 





 . The solution to the difference equation (A3.5) is unstable, since 

1/ 1  . Hence the only stable solution is that t  stays constant over time, and the same 

applies to t , that is, ,t t   .  

 

ii)  Since t  is constant, condition (A3.3) implies that τt is also constant. From the two 

conditions: 

( ; , ) (1 ) ( , ) ,

( ; , ) ( , ) ,
1

t t t t t t

t t
t t t t t t

t

k k

k k

    
   


  

 





 

implying that the ratios t  and t  will also be constant. Together with the absence of 

indeterminacy, this result implies that the economy lacks transitional dynamics, being on the 

balanced growth path from the initial period on. 

 

iii)     From (A3.5) we obtain the value of  : 

 
(1 )

1 (1 )
M  

  



  

,  

and using (A3.3), we obtain the Markov perfect optimal tax rate:19 

 
(1 )

1
1

M  



 


.  

Proof of proposition 6:   

Particularizing the system of equations for the balanced growth path under the 

optimal Ramsey policy obtained in Appendix 2 to the case of a logarithmic utility function 

(σ=1) and full depreciation (δ=1), we obtain: 

                                                            
19 Malley et al. (2002) obtain a similar expression for the Markov perfect tax rate. 
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 

 

 

 

1
1/

1
1/

1
1/ 1/

1
1/

1
1/

(1 ) (1 ) ,

(1 ) (1 ) ,

(1 ) ,

1 1
(1 ) (1 ) 1 1,

(1 ) (1 ) ,

B F

B

B

B

F B


 


 


  


 


 

       

    

   

   
 

  











    

   

 

        
 

  

 

 

1

1 1

1

1 11
1/

2 1 1
1/ 1/

1
3

1 1 1/
,

1

1
,

1 1 (1 )(1 ) (1 )

,

(1 )

1
,

1 1
1

F

F

F B

B


 


  

 
  

       
 

  


  


 



 







 
  



   
    

    




 

 
 



 



 

together with: 

1 3 2

1 2 3

1 1 1
0,

1 1
1 (1 ) 0.

1

     
  

      
   

   
   

 
          

  

  
 

Substituting the expressions for the Lagrange multipliers into the last two equations 

gives us: 

 

 

1
1 1

1/ 1/ 1/

1
1 1

1/

1 1 1 1
0,

1
1(1 )(1 ) (1 ) (1 )

1
1 11

1 (1 ) 0.
1 1(1 )(1 ) (1 ) 1

B B

B

 
   


 

    
        

    
        



 

 

 
   
    
     
 

                      





 

Finally leading to the system: 
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1
1

1 (1 ) (1 ) 0,
1 1

(1 )
.

(1 )(1 )
(1 )(1 )

1

R R

R
R

R

      
 

     





      
 




 
  



 

The first equation yields the Ramsey-optimal tax rate as a function of the structural 

parameters α, θ, ρ, while the second equation gives us the associated optimal split of public 

resources. It is easy to see that the solution to this system is given by, 

(1 )
1 ,

1
(1 )

.
1 (1 )

R

R

 


 
  


 





  

 

 

Appendix 4.- Optimal Markov policy 

Proof of Proposition 7: 

Taking into account the generalized Euler equation (22): 

 
     

1
(1 )

,, 1
1

t t

t

t

t
t t

t t t

t tt t t

t

 




    
  

     
 


 




  




, (A4.1) 

we need to compute the partial derivatives of t with respect to the two policy variables 

,t t  . To that end, we differentiate in (24) to obtain:  

 

   

1 (1 ) (1 ) (1 ) (1 ) 1

(1 ) 1 (1 ) (1 ) (1 ) 1

(1 )

11
(1 ) (1 ) , 0

(1 )

t t t t t t t

t t
t t t t t t t t t
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and, similarly, we would obtain: 
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As we can see, the product (1 ) (1 )
t t t
            cancels out again in both partial derivatives. 

As a consequence, the characterization of that product that we made at (24) as a function 

( )tF k  of the state of the economy does not play any role in the first Generalized Euler 

equation that relates the optimal choice of the two policy variables ,t t   . 

Using now the partial derivatives ,
t t   in the first Generalized Euler equation (A4.1), we 

finally get: 
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that can only hold if: 
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Appendix 5. The planner’s problem under lump-sum taxes 

A planner with access to lump-sum taxes would allocate resources so as to maximize 

time aggregate utility with the global constraint of resources as its sole restriction, thereby 

solving the problem, 

 1
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1
1 , ,(1 )t t t t p t t p tk k c g k Bk k  
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leading to optimality conditions: 
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that defines the rate of growth P , and 
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 
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These relationships lead to expressions for the ratios of private and public consumption to 

capital: 

1
1/1

(1 ) (1 ) ,
1P PB


     



 
       

 

.t
P P

t

g

k
    

For the purpose of comparison with the Markov and Ramsey equilibria, we can 

introduce a measure of the size of the public sector, as ,t p tP
t

t

g i

y



  and the composition of 

public expenditures, 
,

P t
t

t p t

g
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. 
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Figure 1 
Values for the main variables in the economy under the three equilibrium concepts, 

for different values of the risk aversion parameter 
 

θ = 0.40        Relative weight of public consumption in utility function 
α = 0.80        Elasticity of private capital in production function 
ρ = 0.99        Discount rate 
δ  = 0.10       Depreciation rate 
B  = 0.4555   Productivity level  

From left to right and from above to below, the graphs display: the 
share of public resources devoted to public consumption, the optimal 
income tax rate, the growth rate along the balanced path, the 
difference between the growth rates under the Ramsey and the 
Markov policies, and the ratios of private and public consumption to 
output. 
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Figure 2 
Values for the main variables in the economy under the three equilibrium concepts, 

for different values of the relative weight of public consumption in the utility function 

σ = 2.0          Relative risk aversion 
α = 0.80        Elasticity of private capital in production function 
ρ = 0.99        Discount rate 
δ  = 0.10        Depreciation rate 
B  = 0.4555    Productivity level  

From left to right and from above to below, the graphs display: the 
share of public resources devoted to public consumption, the optimal 
income tax rate, the growth rate along the balanced path, the 
difference between the growth rates under the Ramsey and the 
Markov policies, and the ratios of private and public consumption to 
output. 
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Figure 3 

Consumption compensation needed for the Markov policy to achieve the same level of 
welfare as the planner’s allocation of resources 
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σ = 2.00        Relative risk aversion (in the second graph) 
θ = 0.40        Relative weight of public consumption in preferences (in the first graph) 
α = 0.80        Elasticity of private capital in production function 
ρ = 0.99        Discount rate 
δ  = 0.10        Depreciation rate 
B  = 0.4555    Productivity level  


