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1 Modelos VAR

Utilizamos un modelo del tipo vector autoregresivo (VAR) cuando queremos
caracterizar las interacciones simultdneas entre un grupo de variable. Un VAR
es un modelo de ecuaciones simultdneas formado por un sistema de ecuaciones
de forma reducida sin restringir. Que sean ecuaciones de forma reducida quiere
decir que los valores contemporédneos de las variables del modelo no aparecen
como variables explicativas en ninguna de las ecuaciones. Por el contrario,
el conjunto de variables explicativas de cada ecuacién estd constituido por un
bloque de retardos de cada una de las variables del modelo. Que sean ecuaciones
no restringidas significa que aparece en cada una de ellas el mismo grupo de
variables explicativas.

Pueden incluirse también como variables explicativas algunas variables de
naturaleza determinista, como una posible tendencia temporal, variables ficticias
estacionales, o una variable ficticia de tipo impulso o escalén, que sirve para
llevar a cabo una andlisis de intervencién en el sistema. Por iltimo, podria
incluirse como explicativa una variable, incluso en valor contempordneo, que
pueda considerarse exdgena' respecto a las variables que integran el modelo
VAR.

El modelo VAR es muy 1itil cuando existe evidencia de simultaneidad entre
un grupo de variables, y que sus relaciones se transmiten a lo largo de un
determinado nimero de periodos. Al no imponer ninguna restriccién sobre la
version estructural del modelo, no se incurre en los errores de especificacién que
dichas restricciones pudieran causar al ejercicio empirico. De hecho, la principal
motivacion detrds de los modelos VAR es la dificultad en identificar variables
como exdgenas, como es preciso hacer para identificar un modelo de ecuaciones
simultdneas.

1.1 Un modelo estructural dinamico

Partimos de un modelo estructural dindmico,

Yie = Q10+ Qe + cayi—1 + casyai—1 + Y12 + 01161 + 1262 (1)
Yor = Qoo+ o1yt + Qoolie—1 + Qo3yat—1 + Va2t + 021811 + 020€0;

donde y1¢, Yo son variables estacionarias, y €1¢, £9¢ son procesos ruido blanco

con esperanza cero, varianzas 0?1,052 y covarianza 1. Este es un modelo de

1Se dice que la variable z es predeterminada en una ecuacién si E(zt—sut) = 0,Vs > 0,
siendo wut el término de error de dicha ecuacién. La variable seria exdgena respecto de dicha
ecuacion si: E(zi—sut) = 0,Vs > 0. Nétese que la exogeneidad no es una propiedad que una
variable tenga con cardcter absoluto, como parte de su naturaleza, sino que lo es en relacién
con una determinada ecuacién. De hecho, una variable z puede ser exégena con respecto a
una ecuacién y no serlo respecto a otra ecuacién diferente. También puede decirse que una
variable z que satisfaga las condiciones anteriores, es predeterminada o previa con respecto a
la variable dependiente de dicha ecuacién. Con esta interpretacién, la variable z podria ser
exdgena respecto de una variable y, y no ser exégena con respecto a otras variables.



ecuaciones simultdneas con dos variables son endégenas, y1¢, Y2¢, ¥ un vector z;
de variables exégenas. Un shock inesperado sobre yo, en la forma de un valor
no nulo de la innovacién estructural 9, afecta directamente a ys;, pero tam-
bién influye sobre yy; a través de la presencia de yo; como variable explicativa
en la primera ecuaciéon. Ademads, este efecto se propaga en el tiempo, debido
a la presencia de los valores retardados de ambas variables como variables ex-
plicativas. Por simplicidad, suponemos de momento que unicamente aparece un
primer retardo de ambas variables como explicativas en cada ecuacion, aunque
la identificacién del numero de retardos forma parte del andlisis de especificaciéon
del modelo, como veremos més adelante.

El modelo estructural puede incorporar asimismo un vector de variables ex-
plicativas exégenas z; en cada ecuacién, que pueden aparecer asimismo con
retardos. Un ejemplo de este tipo de variables serian una tendencia determin-
ista, o variables ficticias estacionales. También podrian ser variables que se
determinan claramente fuera de la influencia de y1; e yo2¢, de modo que pueda
justificarse que E(z;—se1¢) = E(z1—s€2:) = 0Vs. Por ejemplo, el precio del barril
de petroleo Brendt, determinado en mercados internacionales con poca influen-
cia de Espana, siendo y;; e yo; variables de ambito nacional (por ejemplo, las
rentabilidades del Ibex35 y del futuro sobre Ibex35).

De forma resumida, la representacién matricial del modelo estructural (nétese
que los coeficientes de y; no son la matriz identidad) de primer orden puede es-
cribirse,

By =Tg+T'1ys—1 + Gzt + Dey

En el caso del modelo de dos ecuaciones, las matrices de esta representacién

son:
1 - e} « «
B — ) )., = 0 ). — 12 03 ).
—Q21 @20 Q2 (23
/
_ Y1 ). n_ [ 011 d12
G = ;| D=
Yo 021 22
El modelo estructural VAR presenta dos dificultades para su estimacién:
a) la simultaneidad, al aparecer cada una de las dos variables como variable
explicativa en la ecuacion de la otra, lo que genera inconsistencia del estimador
MCO, b) si los términos de error tuviesen autocorrelacion, las estimaciones MCO
serian inconsistentes, al tratarse de un modelo dindmico. En cualquiera de estos
casos se incumplirfa la condicién de ausencia de correlacion entre cada una de las
variables explicativas y el término de error de una misma ecuacién E(z1:e1¢) =
0, E(xgie9:) = 0, donde 21, = (Yor, Y1e—1, Y2t—1,2t), ¥ T2t = (Y16, Y16—1, Y201, 2t)
que garantiza la consistencia del estimador de minimos cuadrados. Por tanto,
habria que esperar que éste fuese inconsistente.

El primer problema podria resolverse estimando por variables instrumen-
tales, siempre que contemos con instrumentos adecuados, lo cual es siempre una



apreciable dificultad. El segundo problema se debe resolver tratando de am-
pliar la estructura dindmica del modelo hasta lograr que los términos de error
carezcan de autocorrelacién.

Para evitar la primera de estas dificultades, sin duda la méds preocupante,
tiene interés transformar el modelo. Supongamos que la matriz B tiene inversa,
lo cual requiere que det(B) # 0. Tendriamos entonces:

Yy =B 'To+ B 'T1yi—1+ B "Gz + B 'Dey = Ao+ Arye—1 + Mz +uy (2)

con Ag = BTy, A, = B™'I'\, M = B~'G,u; = B~ 'De;. De este modo
habremos pasado a la forma reducida, o modelo vectorial autoregresivo (VAR),
en la cual los coeficientes de y; son la matriz identidad:

yir = Pio+ Brilie—1 + BiaY2i—1 +mi12 + uie (3)
Yoo = Bog T BorYii—1 + Bos¥2e—1 + mor 2y + uze

En el caso de dos variables la condicién suficiente para poder realizar esta
transformacién seria ajjas; # 1. La relacién entre pardmetros de la forma
reducida y de la forma estructural es entonces:

Bl = 1 1 i1
1—aqia; \ a2 1

A = ( b1 Pra ) _ 1 ( Q2 + 12 Q13 + Q1103 )

621 /322 1—aja Qo2 + Q2112 Q23 + 1321

_ Bro ) _ 1 ajgtarrasg \ N 1 Yy + @117
Ao = Tl v oven s M= ’ 7
Bao 1— oo \ @20 + 21010 1 — a1 \ @211 + 75
P e\ _ B-ls, — B! it ) _ 1 (011 + a12621)e1¢ + (012 + @12022)€2
K Ut K €2t 1 —ajiao \ (21011 + 621)e1s + (1012 + d22)e2

Aunque esta es la versién mds general del modelo VAR, es habitual hacer
supuestos simplificadores.? Uno de ellos es suponer que la matriz D = Iy,
siendo k el nimero de variables endégenas, es decir, el nimero de ecuaciones.
Este supuesto es razonable cuando pueda suponerse que los términos de error
del modelo estructural son las propias innovaciones en yi; e ys:. La relacién
entre los términos de error del modelo estructural y de su forma reducida que,
como veremos pronto, tiene gran importancia es entonces,

w — 1 €1t T Q12€2¢
;= —

1— o Q21€1¢ + €2t

donde ya se aprecia que habrd correlacién entre uy; y uos incluso si €14 y €9
estuviesen incorrelacionados.

2En realidad, ya hemos introducido uno de tales supuestos al hacer que la matriz B tenga
unos en su diagonal principal.

(4)
()

)



Otro supuesto es que la matriz de covarianzas de €; , X, es diagonal, es decir
que las innovaciones asociadas a distintas variables tienen covarianza nula. De
este modo, la posible correlacion entre las dos variables del modelo (pensemos
en las rentabilidades del Ibex35 y de su futuro) estdn explicadas en el modelo
estructural por la presencia de cada una de estas variables en la ecuacién de la
otra variable.

Los modelos anteriores se dicen que son de orden 1 porque en ellos las vari-
ables explicativas aparecen unicamente con un retardo. En general, un modelo
VAR de orden n , con variables endégenas, se especifica,

n
Yi=Ao+ Y AV +GZ +u (7)
s=1

donde Y; es un vector columna kx1, n es el orden del modelo VAR, o nimero
de retardos de cada variable en cada ecuacién, y u; es un vector kxl de innova-
ciones, es decir, procesos sin autocorrelacién, con Var(u;) = X, constante.

El elemento (4, ) en la matriz As,1 < s < n mide el efecto directo o parcial
de un cambio unitario en Y en el instante ¢ sobre Y; al cabo de s perfodos,
Yi++s. La columna j de la matriz A; mide el efecto que un cambio unitario en
Y; en el instante t tiene sobre el vector Y;. El elemento i-ésimo en u; es el
componente de Y;; que no puede ser previsto utilizando el pasado de las variables
que integran el vector Y;.

A lo largo de la exposiciéon consideraremos generalmente, unicamente por
simplicidad, que no hay variables exégenas en el modelo, G = 0.

1.1.1 El modelo VAR(1) simple

En el caso del modelo VAR de dos ecuaciones, los supuestos simplificadores
anteriores nos llevan a un modelo estructural dindmico de la forma,

Yie = @10+ a1y + a12yie—1 + @13yze—1 + €1t (8)

Yar = Qo0+ Q21Y1r + Q22Y1t—1 + Q23Y2t—1 + €2t

y a su correspondiente forma reducida o modelo VAR(1) :

yie = Bio+ BrYii—1 + Biayar—1 + v (9)
Yot Bag + BorY1t—1 + Bogy2e—1 + Uy

o, en forma matricial,

Y1t _ 5 5 ﬂ Y1t—1 U1t
(e )= (e )+ (G ) ()« () o)

donde los términos de error deben satisfacer:



E(uw) = E(uz) =0,V
E(uituis) = E(ugiuzs) = E(uiguzs) =0, YVt # s

Uit |\ _ g1 fut ) _ 1 €1t + 1162t
Ut €t 1— oo \ €2t +anier )’

Ut

2y

Es importante observar que las innovaciones del modelo VAR estarén correla-
cionadas entre si, 04,4, # 0,incluso si las innovaciones del modelo estructural
estdn incorrelacionadas, o.,., = 0, como hemos supuesto en la expresién an-
terior. La tnica excepcién requerirfa a1y = ag; = 0, el caso en que no hay
efectos contemporaneos de ninguna variable sobre la otra. Unicamente en este
caso limite tendriamos 0,4, = 0.

Dada la relacién existente entre los vectores €; v uy, si los términos de error
del modelo estructural eran ruido blanco, los términos de error del modelo VAR
también tendran estructura de ruido blanco: FE(uj;.uii—s) = 0Vs # 0. Es
asimismo importante examinar las relaciones entre los pardmetros de ambos
modelos, que son, en el caso del modelo VAR(1), las 6 relaciones entre los
pardmetros 3 y los pardmetros o que aparecen en (4) y (5), més las 3 relaciones
entre los elementos de las respectivas matrices de covarianzas,

1
R S )
(1 —aio91)
1
S S Y
(1 — )
1
Cuuy = ————— (102, +a1102)

(1 —arra91)
En notacién matricial:

ye = Ao + Arye + us (14)

En este modelo VAR, valores negativos de 315 y B4; tienden a inducir cor-
relaciéon negativa entre yi; e yo;, si bien no la garantizan, y valores positivos
de B9 v B9, tienden a generar correlacién positiva. Un shock inesperado en
yot, en la forma de un valor no nulo de la innovacién wusg:, ademéds de afectar
a yot, tambien influye sobre y; en periodos futuros, debido a la presencia del
retardo yo;—1 como variable explicativa en la ecuacién de yp;. Por otra parte,
dada la correlacion existente entre ambos términos de error, un valor no nulo de
ug¢ vendrd habitualmente acompaniado de un valor positivo o negativo (segin
sean los signos de ug; y de 012) de uq, por lo que la reaccién de yi; vendrd
acompanada tambien de ua reaccién de ;.

Algunas consideraciones sobre la estimacién de un modelo VAR:

2 2 2 2
Var( Uiy ) _ ( o1 012 > _ 1 ( og, a0,
- 2 - 2 2
Ut 012 035 (1 _ a11a21) a210;, + o110

2
€2

2
02107, + 110

2
Q31

2 2
oz, +0g,

(11)

(12)

361%)



e Como puede verse, en un modelo VAR todas las variables son tratadas
simétricamente, siendo explicadas por el pasado de todas ellas. El mod-
elo tiene tantas ecuaciones como variables, y los valores retardados de
todas las ecuaciones aparecen como variables explicativas en todas las
ecuaciones.

e Una vez estimado el modelo, puede procederse a excluir algunas variables
explicativas, en funcién de su significacién estadistica, pero hay razones
para no hacerlo. Por un lado, si se mantiene el mismo conjunto de variables
explicativas en todas las ecuaciones, entonces la estimacién por minimos
cuadrados ordinarios ecuacién por ecuacién es eficiente, por lo que el pro-
ceso de estimacion del modelo es verdaderamente sencillo. Por otro, la
presencia de bloques de retardos como variables explicativas hace que la
colinealidad entre variables explicativas sea importante, lo que hace perder
precisién en la estimacién del modelo y reduce los valores numéricos de los
estadisticos tipo ¢ de Student. Por tanto, no es buena estrategia proceder
en varias etapas, excluyendo del modelo las variables cuyos coeficientes
resultan estadisticamente no significativos, por cuanto que esto puede ser
consecuencia de la colinealidad inherente al modelo.

e En el modelo VAR pueden estimarse con bastante precision los elementos
globales del modelo, como el R2, la desviacién tipica residual, y los mismos
residuos, o el efecto global de una variable sobre otra, lo que se resume en
los contrastes de causalidad que veremos méas adelante. Sin embargo, no
cabe hacer interpretaciones de coeficientes individuales en distintos retar-
dos, ni llevar a cabo contrastes de hipétesis sobre coeficientes individuales.

1.2 Identificacion en un modelo VAR

En un modelo vectorial autoregresivo de primer orden, VAR2(1), las variables
explicativas de cada ecuacién son: una constante, més un retardo de cada una de
las variables del modelo, més 3 pardmetros en la matriz de covarianzas, con un
total de 9 pardmetros para explicar el movimiento conjunto de 2 variables. En el
modelo VAR;3(1), que explica el comportamiento temporal de 3 variables, habria
3 variables explicativas retardadas y dos contempordneas, mds una constante, en
cada ecuacién, para un total de 18 coeficientes a estimar, 6 en cada ecuacién, més
los 6 elementos de la matriz de covarianzas de las innovaciones (24 pardmetros
en total). Si el modelo fuera de segundo orden en dos variables, VAR3(2),
habria 9 coeficientes a estimar en cada una de las 3 ecuaciones que componen el
modelo VAR, con un total de 27 coeficientes, mas los 6 elementos de la matriz
de covarianzas de las innovaciones (33 pardmetros en total). Como se ve, el
numero de parametros a estimar en un modelo VAR aumenta muy rapidamente
con el orden del mismo o con el numero de ecuaciones.

Consideremos el caso sencillo de un modelo VARy(1) bivariante (9). Su
estimacién proporciona valores numéricos para 9 pardmetros: las dos constantes
mads los cuatro coeficientes en las variables retardadas, mas los 3 pardametros de
la matriz de covarianzas (13) del vector u;. Sin embargo, el modelo estructural



consta de 11 parametros: las dos constantes, los 6 coeficientes, y los 2 pardmetros
de la matriz de covarianzas del vector ¢; (sus varianzas), por lo que no es posible
recuperar valores numéricos para todos los pardmetros del modelo estructural
a partir de la estimacion de la forma reducida. A este proceso de recuperacion
de pardmetros se le conoce como identificacion del modelo VAR.

Que haya tantos pardametros estimados como pardmetros queremos recu-
perar (estimar) en la forma estructural es una condicién necesaria, aunque no
suficiente, para lograr la identificaciéon del modelo estructural. En el ejercicio 1
se prueba que el modelo estructural recursivo bivariante de orden 1,

Yie = @10+ @11y + aieyie—1 + @13y2e—1 + €1t (15)

Yot = Qo0 T Q22141 + 23Y2t—1 1+ €2t

estd exactamente identificado, es decir, que sus pardametros pueden recuper-
arse de forma unica a partir de las estimaciones del modelo VAR asociado. Este
es un modelo interesante, en el que se consigue identificar todos los pardmetros
del modelo estructural a partir de las estimaciones de la forma reducida (modelo
VAR), introduciendo la hipétesis de que la variable y;; afecta a la variable yo,
uinicamente con un retardo, mientras que la direccién de influencia de yo; hacia
y1¢ se manifiesta ya dentro del mismo periodo.

Se tiene:
B = i+ aniag; By = a3+ aqrags;
Bo1 = 225 PBoy = qa3; 510 = 10 + Q1100205 520 = (r20; fog = r23;
2 _ 2 2 2. 2 _ 2. _ 2.
Uul - 081 + a110-€27 auz - 0627 Uu1u2 - a110-527

que puede resolverse, con solucién unica, para encontrar los coeficientes «
junto con Ugly U?Q.

En este modelo no sélo se pueden recuperar estimaciones de todos los pardmet-
ros que aparecen en el modelo estructural. También las series temporales de
los residuos del modelo estructural pueden recuperarse a partir de los residuos
obtenidos en la estimacién del modelo VAR, mediante,

ot = Ugg; €1t + Q1182 = Uy
Un modelo més restringido,

Yie = @10+ 11y + oY1 + 13y2e—1 + €1t

Yot Qo0 + (a3Yar—1 + €2¢

implicaria que la variable y;; no afecta ni de forma contemporénea, ni re-
tardada, a la variable yo,, por lo que ésta puede considerarse exdgena’® respecto

3Una variable y2 es exégena en la ecuacién de otra variable yi¢, con innovacién wuig,
si E(y2tu1s) = OVt,s. La variable y2 es predeterminada en la ecuacién de la variable yi¢,
E(y2tuis) = 0Vt < s.



de yi1¢. Estas dos restricciones, as; = age = 0, hacen que en el modelo VAR,
891 = 0, restriccién que deberia resultar evidente tras estimar de dicho coefi-
ciente. Al haber introducido una restriccion més, el modelo estructural estd
ahora sobreidentificado, es decir, hay mas de una manera de recuperar valores
numéricos para los pardmetros de dicho modelo a partir de las estimaciones
numeéricas del modelo VAR.

Ma4s dificultades plantea el modelo,

Y1t = 10+ 1Yz + @2yie—1 + €1t

Y2t = Q20 T 21Y1¢ + Qa3Y2r—1 + €2t

que estd asimismo sobreidentificado, habiendo varias maneras de recuperar
las estimaciones de los pardmetros del modelo estructural. Sin embargo, en este
caso no hay ninguna restriccién contrastable sencilla que nos permita discutir
esta representacién. En este caso, las restricciones del modelo estructural in-
troducen restricciones no lineales entre los pardmetros del modelo VAR. Una
posible estrategia consiste en estimar el modelo VAR sujeto a las restricciones
no lineales generadas por las condiciones de sobreidentificaciéon.

1.3 El modelo VAR estructural

La denominacién de "VAR estructural" que utilizamos en esta seccién no debe
confundirse con "un modelo estructural" que consideramos en la primera sec-
cién. Son denominaciones comunmente aceptadas. Denominamos "estructural"
a todo modelo cuyas ecuaciones tienen una interpretacion en cuanto a que re-
flejan relaciones entre variables motivadas por la teoria econémica. El modelo
de la primera seccion era "estructural" pero no era un modelo VAR. Se de-
nomina VAR estructural a un modelo VAR al que se ha anadido una determi-
nada estrategia de identificacién, supuestamente basada en conceptos de teoria
econdémica o financiera, o a caracteristicas demercado en estudio.

El problema de obtener las innovaciones estructurales a partir de los resid-
uos del modelo VAR equivale a la posibilidad de disponer de valores numéricos
para los elementos de la matriz B, puesto que ¢, = Bu;. Esta matriz tiene
unos en la diagonal principal, pero no es simétrica, por lo que tiene k2 — k
parametros por determinar. Ademds, debemos encontrar las k varianzas de las
innovaciones estructurales ¢;; es habitual suponer que sus covarianzas son nulas.
Asi, tenemos k2 —k+k = k? pardmetros del modelo estructural, que querriamos
recuperar a partir de los (k2 + k) /2 elementos de Var(u;). Necesitamos, por
tanto, (k2 - k) /2 = k(k — 1) /2 restricciones, si queremos tener alguna posibili-
dad de identificar el modelo. En el caso de un modelo VAR(1) con 2 variables,
hemos de imponer (22 - 2) /2 = 1 restriccién para identificar el sistema exac-
tamente, como hemos constatado en los ejemplos anteriores. En un modelo con
3 variables necesitarfamos imponer (3% — 3) /2 = 3 restricciones. El nimero de
restricciones necesarias para identificar el modelo es independiente del orden de
retardos del modelo VAR.



Este andlisis se refiere a la version simplificada del modelo VAR. Si la matriz
D no fuese diagonal, tendrfamos k2 — k parametros adicionales a estimar (puesto
que ya estimamos k pardmetros cuando D es diagonal). Por otra parte, si
la matriz de covarianzas X, no fuese diagonal, tendrfamos otros k(k — 1)/2
pardametros adicionales a estimar. Esto se debe a que la matriz de covarianzas
Y. tendria entonces k(k+1)/2 elementos distintos, pero bajo el supuesto de que
Y. es diagonal ya estimamos k pardmetros.? La inclusién de variables exégenas
no empeora esta situacién, pues estimariamos tantos coeficientes en el VAR
como parametros debemos recuperar en la forma estructural. En definitiva, sin
estos supuestos tendriamos que imponer 3k(k—1)/2 restriciones adicionales para
poder identificar la forma estructural.

Una vez que hubiesemos identificado una determinada especificacion de la
matriz B, podremos pasar del modelo VAR estimado:

Yo = Ao+ A1 + Mz +uy (16)

al modelo estructural que supuestamente subyace al VAR, mediante:

By = (BAo) + (BA1) y4—1 + (BM) 2z, + Buy =To + T1ye—1 + Gz + Dey

debiendo quedar claro que hay m&s de una forma de hacer esta transforma-
cién, por lo que hay mas de un modelo estructural compatible con un determi-
nado modelo VAR estimado.

Si imponemos condiciones de recursividad en un modelo con 3 variables,
tenemos,

Uit = €1t
Ut = C21€1¢ + €2
Uzt = C€31€1¢ + C32€2¢ + €3¢

que implica imponer 3 restricciones sobre los elementos de la matriz B~!.
Con estas restricciones el modelo estaria exactamente identificado. La recursivi-
dad, que consiste en que la matriz B tiene estructura triangular inferior, siempre
impone (k% — k)/2 restricciones.

Hay conjuntos alternativos de restricciones, como,

Ur = €1t T C13€3t
Ut = C21€1¢ + €2t
Uzt = C32€2t T €3¢

que también lograria la identificacién exacta del modelo. Esta estructura
podria obedecer al tipo de relaciones entre las tres variables sugerido por la
teorfa economica. La representacién inversa es, en este caso:

4Luego estarfamos afiadiendo un nimero de parametros igual a la diferencia k(k+1)/2—k =
k(k—1)/2.
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E1¢ 1 €13C32  —C13 Uiy
1

2T I TP —c21 1 €13C21 Uoy
21C13€32

€3¢ C21C32 —C32 1 U3t

Otro tipo de restricciones consistiria en imponer un determinado valor numérico

para una respuesta. Por ejemplo, podemos pensar que la innovacién €94 tiene
un efecto unitario sobre yq4, es decir, que a7 = 1. En tal caso:

(1 —an; (1 -1
&t = B’U,t = ( — o 1 ) Uy = ( — oy 1 ) Ut

Una posibilidad diferente consistiria en identificar el modelo estructural im-
poniendo restricciones sobre la matriz de covarianzas, ya sea imponiendo un
valor numérico para la varianza de £14, la varianza de €94, o la relacién entre
ambas. Este tipo de restricciones conduce generalmente a soluciones muiltiples,
aunque en numero finito, por lo que el modelo estructural estd en tal caso,
sobreidentificado.

Por tltimo, puede conseguirse la identificacién imponiendo restricciones ra-
zonables entre los valores numéricos de los pardmetros estructurales. Por ejem-
plo, puede imponerse una condicion de simetria, a;; = a1, 0 cualquier otra
que resulte adecuada en la aplicacién que se analiza. En el caso del modelo de 2
variables estd condicién de simetria de efectos conduce asimismo a la condicién
de igualdad de varianzas para las innovaciones estructurales, lo que no ocurre
en modelos con mds de 2 variables.

1.3.1 Identificaciéon y respuestas del sistema: el enfoque Cholesky

Otra manera de entender los problemas de identificacién es la siguiente: supong-
amos que, sin considerar el posible modelo estructural, hemos estimado un mod-
elo VAR(1) bivariante, (10), en el que queremos calcular c6mo reacciona cada
variable ante una innovacién en una de ellas, lo que denominamos como funcién
de respuesta al impulso. Pero serfa poco adecuado, sin embargo, calcular las
respuestas a un impulso en una de las innovaciones, u1, por ejemplo, sin que
u9e experimente ningiin impulso, pues ambas innovaciones estdn correlacionadas
entre si. Por tanto, hemos de transformar primero el modelo estimado en otro
modelo en que las innovaciones del modelo estén incorrelacionadas entre si.

Para ello, nos basamos en la descomposicién de Cholesky de una matriz
simétrica, definida positiva. Dada una matriz simétrica, definida positiva, como
es la matriz de covarianzas 3, existe una dnica matriz triangular inferior C,
con 1 en su diagonal principal, y una tunica matriz diagonal D, con elementos
positivos a lo largo de su diagonal principal, tal que ¥,, admite una descomposi-
cién,

¥, =CDC’
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Si consideramos la transformacion lineal del vector de los términos de error
del modelo VAR con la matriz C~!, obtenemos:®

UV = C_lut,
Var (v) = E(vw;) = B(C™ uu (C_l)/) =C'y, (C_l)/ =D

por lo que, a diferencia de los componentes del vector u, los elementos del
vector v estdn incorrelacionados entre si, ya que su matriz de covarianzas es
diagonal. Invirtiendo la transformacién, tenemos,

Uit 1 0 0 0 V1t
Uoy cr2 1 0 0 Uoy
u = | uzy | =Cvg=| c13 co3 1 0 V3¢
Ukt Clk  Cak  C3k 1 Ukt
por lo que,
Uy = Vi (17)
Ut = V2t + C12V1¢,
Uzy = U3t + C13V1 + Ca3V2y, -
Ukt = Ukt + ClpV1¢ + CopV2¢ + oo + CL—1,kVk—1,t (18)

. Quiénes son estas nuevas innovaciones v;;? Supongamos que tuviesemos
datos acerca de las innovaciones us; y vj¢,%,J = 1,2,...,k, ¥ que los coeficientes
Clk,C2k, ---s Ck—1,k S€ estimasen mediante minimos cuadrados ordinarios en las
ecuaciones anteriores (17) que tienen a wuy; como variable dependiente, y a
V1¢, V2t ..., Uk—1,+ como variables explicativas.

Tendriamos entonces:

Vit = Ui,

V2t = U2t — C12V1t,

U3 = U3t — C13V1; — C23V2¢, ...

Ut = Ukt — C1pU1e — CopV2¢ — oo — Che1,kVk—1,¢ (19)

La primera innovacién, vy; , es igual a uy. La segunda innovacién, vy, es
el residuo de la regresiéon de minimos cuadrados de ug; sobre v1; (o lo que es lo

5En esta estrategia de identificacién, v; juega el papel de innovacién estructural e¢, y C 1
juega el papel de la matriz B de secciones anteriores.
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mismo, sobre uq;): vor = ugy —c12v1¢. La tercera innovacion, vs, es el residuo de
la regresién de minimos cuadrados de usz; sobre v1; y ve; (0 lo que es lo mismo,
sobre uy; y uat, ya que viy y vg; contienen la misma informacion que uiy y ugy).

Por construccién, el residuo de minimos cuadrados en una regresién lineal
tiene correlacién nula con cada una de las variables explicativas, por lo que:
E(vgt.v1e) = E(vge.var) = ... = E(vge.vp—1+) = 0. Dicho de otra manera, si
estimamos regresiones de cada innovacién wu;; sobre todas las que le preceden
dentro del vector u y nos quedamos con el residuo de dicha regresién, vamos
generando innovaciones v;¢, cada una de las cuales serd el componente de wu;;
que estd incorrelacionado con vi4, v, ..., Vi—1,+. Pero los valores numéricos que
toman las posibles combinaciones lineales que podamos formar con las variables
Ui, U2t, -y Uj—1,¢ Y cON las variables vy, vay, ..., v;—1,+ son los mismos, es decir,
que ambos conjuntos de variables contienen la misma informacién. La tnica
diferencia entre ambos es que las variables w4, uat, ..., u;—1,+ tiene correlaciones
no nulas, mientras que las variables vi4,va4, ..., v;—1,+ estédn incorrelacionadas
entre si. Por tanto, v;; puede interpretarse como el componente de u;; que esté
incorrelacionado con wis, e, ..., Ui—1,¢

Las nuevas innovaciones v;; van a jugar el papel de las innovaciones del mod-
elo estructural. Es decir hacemos €;; = v;; . Esta transformacion de los términos
de error, de las u;; a las v;,basada en la descomposicién de Cholesky de la matriz
de covarianzas de los términos de error originales del VAR, permite identificar
el modelo, pues la matriz C' incorpora precisamente (k? — k)/2 restricciones. El
procedimiento introduce una ordenacién de variables, al conceder a los términos
de error transformados una relevancia distinta: una vez ordenadas las variables
del vector Y%, el primer error transformado vi; coincide con el antiguo, uy;. El
segundo, vy, es la parte de ug; no explicada por ujy, y asi sucesivamente.

La ordenacién que se establezca entre las variables condiciona los resultados
que posteriormente se obtengan. Cuanto més correlacionadas estén las vari-
ables, mds dependientes son los resultados de la ordenacién de variables; cuanto
menores sean las correlaciones entre las variables de Y;, menos dependeran los
resultados de la ordenacién establecida. En presencia de correlaciones signi-
ficativas no cabe sino analizar el modelo con distintas ordenaciones y tratar de
interpretar los resultados obtenidos. En algunos casos, la propia naturaleza de
las variables hard natural pensar que una variable se mueve en anticipacién a la
otra, o que es causal-previa a la otra.

Utilizamos en lo sucesivo la notacién vi; = €1; para resaltar que las variables
v1¢ son perturbaciones estructurales, como vamos a ver.

En algunas ocasiones, la transformacién que pasa de las innovaciones u;; a
las £;; se basa en la descomposicién:

S, = CD'?*D'*C

y consiste en: wy = D~1/2C 1y, = D='/2¢,, por lo que la matriz de covari-
anzas del vector transformado w; es en este caso no solo es una matriz diagonal,
sino que es igual a la matriz identidad, es decir todas las varianzas son iguales a
uno: Var(w) = D=Y?Var(e)D~'/? = D=Y/2DD~'/? = I,. Un shock unitario
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en w;; es igual a un shock en ¢;; de tamano igual a o.,, la desviacién tipica
de g;;. Las respuestas del sistema a un shock unitario en £;; son respuestas a
shocks unitarios en y;;, mientras que las respuestas a w;; son respuestas a shocks
de magnitud o., en y;;. Légicamente, las primeras son iguales a las segundas,
multiplicadas por o,,.Cuando las variables que se incluyen en el VAR tienen
varianzas diferentes, esta transformacion facilita la comparacién al calcular re-
spuestas a shocks de tamano comparable en cada variable. Son comparables
las respuestas a shocks de tamafno una desviacién tipica de cada innovacién; es
decir, las respuestas a un shock unitario en las innovaciones w. No son com-
parables las respuestas a un shock unitario en cada innovacién €;4, porque éste
puede ser un shock grande para algunas variables y muy reducido para otras,
dependiendo de cuédles sean sus varianzas respectivas.

En un modelo VAR bivariante de orden 1, con dos variables, la descomposi-
cién de Cholesky seré:

cr% 012 . 1 0 m 0 1 ¢
012 Ug - c 1 0 n 0 1
y es sencillo probar que debe ser: m = 02, n = 03 — 03,/0%, ¢ = 012/0%.

Por tanto, la constante ¢ no es sino el estimador de minimos cuadrados en la
regresion de ug; sobre uq;. La transformacion sera:

(o)== v)0)

con matriz de covarianzas:

. 1 0 U1t 1 —c\ _ a% fcaeralg
Var(er) = (C 1).Va7“<u2t>.(0 1 )—(CU%JFUH C2U%+U§
o2 0
o 0 O’% — (;122

Premultiplicando el modelo VARy(1):

vie \ _ [ Bo B11 Bia Yit—1 U1¢
(y2t><52o >+<521 522)<y2t1 >+<u2t>

por la matriz ( l_é (1) ) , tendrfamos,
yie = Bro+ BriYi—1 + BioYar—1 +E1e (20)
Yor = (Bag — EB1o) + eyt + (Bar — EB11)Y1e—1 + (Baa — EB12)Y2e—1 + &2

6Recordemos que la desviacién tipica es una medida adecuada del tamafio de toda variable
aleatoria de esperanza nula.
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un modelo estructural en el que la variable y; tiene efectos contemporaneos
sobre 9, pero y2 no tiene efectos contemporédneos sobre y;. La estructura re-
cursiva que apreciamos en este modelo, como en (15), también se obtendria en
el caso de contar el modelo VAR con k ecuaciones. Como vemos, la estrategia
de identificacién de Cholesky conduce a un modelo VAR estructural recursivo.

En este modelo, tiene sentido preguntarse por las respuestas de ambas vari-
ables a una perturbacién en £1; o en £9; , puesto que ambas estdn incorrela-
cionadas, por construccién. En respuesta a un impulso en £1; , ambas variables,
Y1t YV Yat, reaccionardn en el mismo instante, y también en periodos siguientes,
hasta que dichas respuestas decaigan a cero. En cambio, en respuesta a una
perturbacién en €94, yo responderd en el mismo periodo y periodos siguientes,
mientras que y; sélo responderd en perfodos siguientes al de la perturbacién.
Si utilizamos esta transformacién, los shocks observados en é; son atribuidos a
ug. Si el modelo VAR contase con 3 variables endégenas entonces, en respuesta
a un impulso en &3, tanto y; como ys reaccionardn solo a partir del perfodo
siguiente.

Por tanto, la primera variable debe ser la que se considere primera en el
orden causal de relaciones entre todas ellas, la segunda variable es la segunda
en importancia, y asf sucesivamente.

Este es un modelo estructural exactamente identificado puesto que, como
acabamos de ver en el caso bivariante, el modelo estructural al que llegamos
mediante esta transformacion es un modelo recursivo. La estrategia de Cholesky
apenas utiliza conceptos tedricos, por lo que practicamente se distingue entre
esta estrategia de identificacién de un modelo VAR, y los modelos VAR estruc-
turales.

Mds adelante analizaremos nuevamente, de manera detallada y mds gen-
eral, esta estrategia de identificacion basada en la transformacion del modelo
mediante la descomposicion de Cholesky de la matriz de covarianzas de las in-
novaciones del modelo VAR.

1.4 VAR y modelos univariantes

Es 1til asimismo pensar en términos de cuéles son los modelos univariantes que
se deducen de una representacién VAR, en linea con el trabajo de Zellner y
Palm (19xx). En este sentido, si partimos de un VAR2(1), como (10), escrito
en funcién del operador de retardos,

yir = Bro+ BriLlyie + BroLlyar +uyy
y2r = Bog + Por Ly + BogLyos + uoy
tenemos,
_ PBag + Boy Lyi + uz
Yot =
1 — Byl
con lo que,
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L
(1= ByL) yae = Byo + 612Lﬂ20 + Boy Lyrs + ugy 4y,
1~ Gyl

y, finalmente,

[(1 —B11L) (1 = BauL) — 512521112] Y1t = [(1 = Baz) B1o + B1aBaol (1 — Bag L) ure + Biouas—1]

que es un proceso ARMA(2,1) con término de error (no innovacién): &;; =
(1 = BaoL) ure + Brouzi—1.

Las dos variables tienen la misma ecuacién caracteristica, e iguales propiedades
dinamicas, por tanto. Nétese que el hecho de que el modelo VAR sea estable
garantiza que los modelos univariantes con estructura AR(2) sean asimismo
estables, pues ambas raices quedan fuera del circulo unidad.

1.5 Estimacion de un modelo VAR

Como ya hemos mencionado, en ausencia de restricciones, la estimacién por
minimos cuadrados, ecuacién por ecuacién, de un modelo VAR produce esti-
madores eficientes a pesar de que ignora la informacién contenida en la matriz
de covarianzas de las innovaciones. Junto con el hecho de que la colinealidad
entre las variables explicativas no permite ser muy estricto en la interpretacién
de los estadisticos t, sugiere que es preferible mantener todas las variables ex-
plicativas iniciales en el modelo.

El estimador es consistente siempre que los términos de error sean innova-
ciones, es decir, procesos ruido blanco, pues en tal caso, estardn incorrelaciona-
dos con las variables explicativas, por la misma razén que en un modelo univari-
ante. Por tanto, la ausencia de autocorrelacién en los términos de error de todas
las ecuaciones es muy importante. Tomando ambos hechos conjuntamente, es
facil concluir que debe incluirse en cada ecuacién, como variables explicativas,
el menor nimero de retardos que permita eliminar la autocorrelacién residual
en todas las ecuaciones. Existen contrastes del tipo de razén de verosimilitud
sobre el nimero de retardos a incluir en el modelo.

Un modelo VAR no se estima para hacer inferencia acerca de coeficientes
de variables individuales. Precisamente la baja precisién en su estimacién, de-
saconseja cualquier andlisis de coeficientes individuales. Tiene mucho sentido,
por el contrario, el anélisis conjunto de los coeficientes asociados a un bloque
de retardos en una determinada ecuacién.

Bajo hipétesis de Normalidad del vector de innovaciones, el logaritmo de la
funcién de verosimilitud es,

T 1 1 1wy
L = — 5057 Ay
tl;[p 27Tk/2‘2|
Tk T 1<
| = 1nL=—71n(27r)—51n|2|—Qt;a;z—lat
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y, tras estimar 3 mediante la matriz de covarianzas del vector de residuos ,
T
= LS wi = as o =k
=7 Uy = Uy Uy =
t=1

llegamos a:

Tk T

1.6 Contrastacién de hipétesis
1.6.1 Contrastes de especificacién

Uno de los contrates més habituales en un modelo VAR es el relativo al nimero
de retardos que deben incluirse como variables explicativas. Hay que tener en
cuenta que en cada ecuacién entra un bloque de retardos de todas las vari-
ables del vector y. Si, por ejemplo, trabajamos con 4 variables y establecemos
un orden 3 para el VAR, tendremos 12 variables explicativas, mas el término
constante, en cada ecuacién, con un total de 52 coeficientes en el sistema de
ecuaciones, més 10 pardmetros en la matriz de varianzas-covarianzas de las in-
novaciones. El nimero de pardmetros a estimar crece muy rdpidamente con el
nimero de retardos. Si pasamos de 3 a 4 retardos, tendriamos 68 coeficientes
mds los 10 pardmetros de la matriz de covarianzas. Una estrategia razonable
consiste en incluir en cada ecuacién del modelo el menor nimero de retardos
que permita eliminar la autocorrelaciéon del término de error de todas ellas.

Existe un contraste formal de significacién de un conjunto de retardos, que
utiliza un estadistico de razén de verosimilitudes,

A= (T - k)(In|Sx| — In [Ssg|

donde |Xg|, |Zsr| denotan los determinantes de las matrices de covarianzas
de los modelos restringido y sin restringir, respectivamente. Si queremos con-
trastar si un cuarto retardo es significativo, deberfamos estimar el modelo con 3
y con 4 retardos, y construir el estadistico anterior, que tiene una distribucién
chi-cuadrado con un nimero de grados de libertad igual al ntimero de restric-
ciones que se contrastan. Al pasar del modelo con 3 retardos al modelo con
4 retardos, hay que anadir un retardo mas de cada variable en cada ecuacién,
por lo que el nimero de restricciones es igual al incremento en el nimero de
retardos, multiplicado por el nimero de variables, elevado al cuadrado.

Sin embargo, no puede olvidarse que la eleccién del nimero de retardos debe
tener muy en cuenta la eliminacién de autocorrelacién en los residuos. Los es-
tadisticos anteriores no examinan este importante aspecto y, por tanto, no deben
utilizarse por sf sélos. En consecuencia, una buena estrategia es comenzar de un
numero reducido de retardos, y examinar las funciones de autocorrelacion de los
residuos, junto con estadisticos del tipo Ljung-Box o Box-Pierce para contrastar
la posible existencia de autocorrelacién, lo que requeriria aumentar el niimero de
retardos y con ello, el nimero de pardmetros a estimar. Lamentablemente, sin
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embargo, es muy poco probable que pueda eliminarse la autocorrelacion residual
con menos de 4 retardos cuando se trabaja con datos trimestrales, o con menos
de 12 retardos, cuando se trabaja con datos mensuales.

Una estrategia distinta para encontrar el orden del modelo VAR consiste
en examinar los denominados criterios de Informacion, que son determinadas
correcciones sobre el valor muestral de la funcién logaritmo de Verosimilitud.
Los més conocidos son los de Akaike (AIC) y Schwartz (SBC o BIC),

AIC = _2% rol!
SBC = 72% n nln(TT)
Hannan — Quinn = —2% + Qw
siendo [ = _TTk(l +1In27) — % In ’f]’ , d es el nimero de variables exdgenas,

p el orden del VAR, k el nimero de variables, y n = k(d + pk) el nimero de
pardmetros estimados en el modelo VAR.

En ocasiones, se ignora el término constante de la funcién de verosimilitud,
y los criterios anteriores se aproximan por:

AIC = T.In(IZ))+2n
SBC = T.In(|Z|) +nln(T)

In (|X]) kln(In(T))
2 T +2 T

Hannan — Quinn =

siendo N el nimero de pardmetros que se estima, y X la matriz de covarianzas
de los residuos. Estos estadisticos se calculan para una sucesién de modelos con
distinto nimero de retardos y se comparan, seleccionando aquél modelo que
produce un menor valor del estadistico. Pero no cabe esperar que los tres
criterios conduzcan a la misma conclusién.

Un estadistico de razén de verosimilitudes como el antes descrito puede uti-
lizarse para contrastar cualquier tipo de hipdtesis, y no sélo la significacién de
grupos de variables, siempre que el modelo restringido esté anidado dentro del
modelo sin restringir.

1.6.2 Contrastes de causalidad

Un contraste especialmente interesante es el conoce como de causalidad en el
sentido de Granger: supongamos que estamos explicando el comportamiento
de una variable y utilizando su propio pasado. Se dice que una variable z
no causa a la variable y si al anadir el pasado de z a la ecuacién anterior no
anade capacidad explicativa. El contraste consiste en analizar la significacién
estadistica del bloque de retardos de z en la ecuacién mencionada, y la hipétesis
nula es que la variable z no causa, en el sentido de Granger, a la variable y.
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En realidad, la propuesta inicial de Granger hacia referencia a que la predic-
cién de y basada en el pasado de las dos variables y y z, sea estrictamente mejor
(es decir, con menos error) que la prediccién de y basada exclusivamente en su
propio pasado. Asi, se dirfa que la variable z no causa a la variable y si se tiene,

E(@/t / Yt—1,Yt—2,--+; thlaztf%m) = E(yt / ytflvytflm)

Sin embargo, esta propiedad no suele analizarse utilizando predicciones. Se
contrasta exclusivamente la significacién del bloque de retardos de z en la
ecuacién de y, y se supone que si dicho bloque de variables es significativo,
contribuird a mejorar la prediccién de la variable y. Esta manera de proceder se
basa en que, analiticamente, es evidente que la presencia del bloque de retardos
de z en la ecuacion de y hace que la esperanza de y condicional en el pasado de
las dos variables, y y z, sea distinta de la esperanza de y condicional en su propio
pasado exclusivamente, si bien esta propiedad tedrica no siempre se manifiesta
en resultados précticos, y es bien sabido que un buen ajuste no necesariamente
conduce a una buena prediccién.

El contraste puede llevarse a cabo utilizando el estadistico F' habitual en
el contraste de significacion de un bloque de variables, o mediante el estadis-
tico de razén de verosimilitudes anterior. Con més de dos variables, existen
muchos posibles contrastes de causalidad y en algunos casos, el estadistico de
razon de verosimilitudes puede resultar mds ttil que el estadistico F', al per-
mitir contrastar la exclusién de algin bloque de retardos en varias ecuaciones
simultdneamente.

Asimismo, el contraste de causalidad o, lo que es lo mismo, el contraste
de significacién de un bloque de retardos puede llevarse a cabo mediante un
estadistico de razén de verosimilitudes, en el que el modelo restringido excluye
un grupo de retardos de una ecuacién.

1.7 Representacion MA de un modelo VAR

Todo modelo VAR estacionario admite una representacién de medias méviles
(MA),

Y, = i Bgug_
s=0

a la que se llega tras sucesivas sustituciones de Y;_s en (7). Esta repre-
sentaciéon permite resumir las propiedades de las relaciones cruzadas entre las
variables que componen el vector Y;, que queda representado como una com-
binacién lineal de valores actuales y pasados del vector de innovaciones. La
simultaneidad vuelve a quedar palpable en el sentido de que cualquier inno-
vacién u;; afecta a todas las variables Y ;4.

Si resolvemos recursivamente el modelo VARy(1) tenemos,
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) = A+AYia+tu=Ac+A1(Ao+AYe o +u1) +us =
= (I + A1) Ao+ ATY, o + (Arug—1 + ) =

n—1
= (k+ A+ AT+ + AT DA+ ) Al + ATY;
1=0

Como puede verse, para la estabilidad del sistema es preciso que las sucesivas
potencias de la matriz A; decaigan hacia cero, pues de lo contrario, el futuro
lejano tendria efectos sobre el presente, en contra de la rdpida amortiguacién
temporal de efectos inherente a todo proceso estacionario. Esto requiere que
las rafces del polinomio caracteristico de dicha matriz |I, — A1 A| = 0, caigan
fuera del circulo unidad, condicién andloga a la que se tiene para un proceso
autoregresivo univariante.

Cuando se cumplen las condiciones de estabilidad, tomando limites en la
expresién anterior, tenemos,

o
Yi=p+ Z Ajug; (21)
=0

donde p = E(Y) es el vector de esperanzas mateméticas, que viene dado

por,”

p= (I — A1)~ Ag

Esta (21) es la representacion de medias méviles del VAR.
Ademass,

Var(Y;) = E[(Y; —p)’] = E

o0 2 o0 o0
ZAaut_i] =3 AVar(u ) (A1) = 30 41 (41)
=0 =0 =0

En el caso bivariante,

Yit _ B1o Bi1 Biz Yit—1 U1t _
<?/2t) B <520>+(521 /822><y2t1>+(u2t)
_ 1251 = B B2 ° Ult—s
B ( Ha > +§< Bar Baz ) ( Ugt—s )

tenemos:

-1
o= ( My ) _ {12_ ( B Pia )} ( Bo ) _ 1 ( B1o(1 = Baa) + B12Ba0 )
Ha 521 ﬂ22 520 A ﬂZ()(l_B11)+/621ﬁ1()
"Nétese la similitud con la expresién dela suma de una progresién geometrica de razon
menor que la unidad, si bien en este caso se trata de una progresién geométrica de matrices.
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siendo A = (1 — 811)(1 — Bas) — 812021, ¥

_ - B11 Bio ' ‘712“ 0u1u2> (511 B2 >il
VGT(Yt)_Z< Ba1 Bao > (Uuluz 032 [ Ba1 Bao

=0

Podemos encontrar las matrices de coeficientes de la representaciéon de me-
dias moviles:

Y; = (g + ¢ L+ do L? + .. )uy

utilizando la relacién,
Y, = AYia+ .. +AY ptu= (I —AL—AL— ... — ALY, =u =
= Y= — AL — AL — ... — A L") 'y

de modo que,

Y; = (¢po+d1 L+do L*+..)uy = (pg+¢1 L+ L*+..) (I, — Ay L—As L—...— A, LP)Y;

por lo que tenemos:

I, = (pg+ L+ oL+ .)(Ip — A\l — AL — ... — ApLP) =
b0 + (d1 — A1¢g)L + (¢ — A1y — Asgy)L? + ...

que conduce a,

¢g = Iy

¢ = Ay

¢2 = A1¢1 + AQ

¢s = A1¢sfl + A2¢572 + ...+ Ap¢37p

de donde podemos obtener recursivamente las matrices ¢, de coeficientes de
la representacién de medias méviles:

Y = wp + drup—1 + doup_2 + dp3us_3 + ...

A efectos de la interpretacion del modelo VAR estimado, es atin m&s im-
portante considerar la representacién MA en términos de las innovaciones del
modelo estructural, ya que dichas inovaciones admiten generalmente una inter-
pretacién conceptual:
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Y1t _ 1251 1 = B11 Bia ’ 1 a1 Elt—s
( Yot ) B Hg ) "1 — Q12021 ;( Ba1 Bas > < a1 ) ( €2t—s
_ Hq - $11(8)  d12(s) €lt—s \ _ -

B ( o ) +;( $21(8)  Paa(s) ) ( €2t—s > _M+;¢)(S)€t_s
donde,

o= (20 50) - e (50 32 (G 1)

1.8 Funciones de respuesta al impulso

7 N

Las funciones de respuesta al impulso miden la reaccion de cada una de las vari-
ables a un shock en una de las innovaciones estructurales. En un sistema de in-
terrelaciones, todas las variables reaccionaran a dicho shock; ademés, tratandose
de un modelo dindmico, puede haber reacciones contempordneas pero también
en todos los perfodos siguientes. Por tanto, para cada innovacién del modelo
hay tantas funciones de respuesta al impulso como variables endégenas; cada
una de dichas funciones dependen del tiempo transcurrido desde que se produce
el shock. Tenemos por tanto una matriz kzk de tales funciones de respuesta al
impulso.

Para estimar las funciones de respuesta al impulso en una determinada inno-
vacion del modelo estructural, fijamos el valor de dicha innovacién estructural
al tamano deseado, y a cero en los instantes sucesivos, mientras que fijamos el
valor numérico de todas las deméds innovaciones igual a cero en todos los perio-
dos, el corriente y los periodos futuros. Por ejemplo, en el modelo VARy(1)
identificado mediante la matriz de Cholesky (20),

yie = Bio+ BiiYi—1 + BroYar—1 +E1e (24)
Yar = (Bao — EB1o) + ¢yt + (Bay — EB11)Y1e—1 + (Baz — EB12)Y2t—1 + B2t

un shock en €14 de tamano 0., genera una respuesta contempordnea de igual
tamano, o.,, en y; y una respuesta igual a co., en ys. En t+1, la respuesta de
y1 es igual a (81, +512¢)0, , mientras que la respuesta de yq es [¢ (811 + B12¢) +
(Ba1 = €B11) + (Bag — €B12)c]oe, = [Ba1 + Bao]oe,, v asi sucesivamente.

En respuesta a un shock en ey; de tamafio o.,, y; no responderfa en di-
cho perfodo, mientras que y» mostraria una respuesta de tamano o.,. En t+1,
la respuesta de y; seria igual a (8,50.,, mientras que la respuesta de y, seria
igual a ¢6,90¢, + (Bag — ¢812)0e, = B920.,. Las respuestas en periodos poste-
riores se obtendrian igual que en el caso anterior. La respuesta contempordnea
de las variables que preceden en la ordenacién de Cholesky a la variable que
experimenta el shock son siempre nulas.
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El lector puede comprobar que si hubiésemos situado a yo primera en la
ordenacion de Cholesky, hubiésemos recuperado un modelo estructural diferente,
y las respuestas a los shocks en cada una de ellas habria sido diferente. De hecho,
como puede facilmente intuirse, en ese caso, la respuesta contempordnea de ys
a un shock en e, serfa igual a cero.

Las funciones de respuesta al impulso generan una gran cantidad de nimeros,
pues se calcula el impacto que, en cada instante futuro tendria, sobre cada
variable del modelo, un impulso en una determinada innovacién, y ello puede
repetirse para las innovaciones en cada una de las ecuaciones. Por eso, suelen
representarse en varios graficos, cada uno de los cuales incluye las respuestas a
través del tiempo, de una determinada variable a un impulso en cada una de las
innovaciones; de este modo se tiene tantos gréficos como variables en el modelo,
cada uno de ellos conteniendo tantas curvas como variables. Alternativamente,
pueden construirse graficos, cada uno de los cuales representa la respuesta tem-
poral de todas las variables del modelo a un impulso en una de las innovaciones.
Nuevamente hay tantos graficos como variables, cada uno de ellos conteniendo
tantas curvas como variables.

La manera mas natural de estimar las funciones de respuesta la impulso
es, sin embargo, a partir de la representacion MA del mismo. Consideremos
la representacién de medias méviles del modelo VAR(1) bivariante (22). Los
coeficientes de la sucesiéon de matrices ®(s) representan el impacto que, a lo largo
del tiempo, tienen sobre las dos variables del modelo y1; e y2¢ una perturbacién
en las innovaciones estructurales ei4,£9;. Por ejemplo, los coeficientes ¢4(s)
reflejan el impacto que en los distintos periodos s,s > 1, tiene sobre y; una
perturbacién del tipo impulso en 5.

Es decir, consideramos que €2 estd en su valor de equilibrio, cero, excepto en
un perfodo, en que toma un valor igual a 1; como consecuencia, tanto y; como
y2 reaccionan, puesto que e9; aparece en ambas ecuaciones en (22) y dicha
respuesta se extiende a varios perfodos, hasta que la sucesiéon ¢;5(s) se hace
cero. La sucesién de valores numéricos {¢,,(s)} se conoce como la respuesta de
y1 a un impulso en 9. El multiplicador o respuesta a largo plazo es la suma
> oo o 12(s). Esta suma existe si las variables son estacionarias, pues en tal caso
ha de cumplirse que Yoo |[P15(s)| < 0.

El problema al que nos enfrentamos al tratar de calcular las funciones de
respuesta al impulso es que, si bien contamos con estimaciones numéricas de
los pardmetros 3,;,i,j = 1,2, desconocemos los pardmetros a1 y a21 que
aparecen en (23). Por tanto, la estimacién de las funciones de respuesta al
impulso descansa en una determinada estrategia de identificacion, es decir, en
una determinada eleccién de matriz B, y dependerdn de dichas condiciones de
identificacién.®

En el caso particular de que utilicemos la transformaciéon de Cholesky para
identificar el modelo, tendremos perturbaciones estructurales: ( g; ) = ( EC
Con ¢ = 0y,u, /02, por lo que:

8 Excepto si las innovaciones del modelo VAR, w1 y uat, estuviesen incorrelacionadas.
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Vi = up + drue—1 + Gplis—2 + Pytus_z + ...

~ 1 0
¢5:¢5'<c 1)

Ejercicio: Consideremos un VAR(1) en forma reducida sin constante (es
decir, las variables tiene esperanza igual a cero y las innovaciones wu;; tienen
covarianza cero),

con:

Y1t 0,5 0 0 Y1e—1 Uiy
ye | =1{( 0,1 0,1 0,3 Yor—1 | + | u2
Y3t 0 0,2 0,3 Y3t—1 U3¢

y supongamos que antes del instante ¢y las innovaciones toman un valor igual
a cero en todos los periodos, las variables estdn en sus niveles de equilibrio,
yi =y = 0,7 = 1,2,3. En dicho instante, la innovacién u;;, toma un valor
unitario, ui, = 1, y vuelve a ser cero en los periodos siguientes. ;Cudl es la
respuesta del sistema?

En el instante tg,

Yito Ul 1
Yat, = U2t = 0
Y3t U3¢, 0

por lo que ya¢, € Yst, estardn en sus niveles de equilibrio, y2 = y5 =0, y3 =
y5 = 0, mientras que y1+, =y; +1 = 1.

Posteriormente,
Yito+1 0,5 0 0 Yito Ulto+1
Y2to+1 = 0,1 0,1 0,3 Y2t + U2ty +1 =
Y3to+1 0 0,2 0,3 Y3t U3gy+1
0,5 0 0 y; +1 0 0,5
= 0,1 0,1 0,3 Y5 +1 0 |]=1] 01
0 0,2 0,3 Y3 0 0
Yito+2 0,5 0 0 Yito+1 Ultg+2
Y2to+2 = 0,1 0,1 0,3 Y2to+1 + Uto+2 =
Y3to+2 0 0,2 0,3 Y3to41 U3gy+2
0,5 0 0 0,5 0 0,25
= 0,1 0,1 0,3 0,1 |+ 0 | =1 0,06
0 0,2 0,3 0 0 0,02

)

que van proporcionando la primera columna de las matrices que obtenemos
calculando las sucesivas potencias de la matriz de coeficientes Aj.
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De este modo, tendrfamos las respuestas del sistema a sorpresas en las in-
novaciones del modelo VAR. Si queremos calcular las respuestas a innovaciones
estructurales, debemos utilizar la representacion,

U A 1 i Bu P\ (1 an Vit—s
Y2t o 1 —anan &\ B B a1 Vat—s
y examinar la sucesién definida en (23).

1.9 Descomposicién de la varianza

Consideremos la representacion MA de un VAR en funcién de las innovaciones
estructurales para un valor futuro del vector de variables:

o0
Yetm = 1+ Z P(s)et-+m—s
s=0
A partir de esta expresion, las predicciones de las variables 1, y2, a horizonte
m serian:

Yit+m -
E m=F =pu+ E D(s)etim—s
tYt+ t( Yotim ) 1% ( )Et+

s=m
donde ® = (¢,;) es la sucesién de matrices que antes introdujimos. Nétese

que hemos introducido: Eyyi+1 = Eyyiro = ... = Bypym =0
En consecuencia, el error de prediccién a horizonte m es,

et(m) = Yt+m — Etyt+m = (,LL + Z(I)(S)Et+m8> — Et </L + Z ¢(S)Et+ms> = (I)(S)Et+m7 =
s=m

s=0
_ < (011(0)e1t4m + oo + G (M — Derg1) + (012(0)e2t4m + ... + dr1a(m — 1)eay1) >
(021(0)€1t4m + - + Po1 (M — Dersr1) + (P22(0)e2t4m + o + Poa(m — D)eapi1)

que, como vemos, depende de la realizacién de las perturbaciones que se
produzcan en ambas innovaciones desde t + 1 hasta t + m. El tamano del error
de prediccién viene indicado por su varianza:

Var [ e1r(m) } _ ( o2, ZZL:_ol ¢11(8)? + 02, Z:n:_ol P12(5)? )
ea(m) o2, ZTQ@I $o1 () + 02, Z:Zol P2a(5)?
que, inevitablemente, aumentan con el horizonte de prediccion. La expresion
anterior nos permite descomponer la varianza del error de predicciéon en dos
fuentes, segin tenga a €1 0 a €5 como causa. Con ello, estamos examinando
el inevitable error de prediccién en cada variable a un determinado horizonte,
y atribuyéndolo a la incertidumbre acerca de la evolucién futura en cada una
de las variables. Es, por tanto, una manera de hacer inferencia acerca de las
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relaciones intertemporales entre las variables que componen el vector y. Para
ello, se expresan los componentes de cada varianza en términos porcentuales,

-1 -1 -1 -1
051 Z;n:o (1511(5)2, ‘732 :lo P12(5)? 051 Z;n:o ¢21(5)2, 022 :lo Paa(5)?

Var(eiy(m)) 7 Var (e (m)) Y Var(es(m)) 7 Var (e (m))

Si una variable es prédcticamente exdégena respecto a las demds, entonces
explicara casi el 100% de la varianza de su error de prediccién a todos los
horizontes posibles. Esto es lo méds habitual a horizontes cortos, mientras que a
horizontes largos, otras variables pueden ir explicando un cierto porcentaje de
la varianza del error de prediccién.

La descomposicién de la varianza estd sujeta al mismo problema de iden-
tificacién que vimos antes para las funciones de respuesta al impulso, siendo
necesario introducir alguna restriccién como las consideradas en la seccién an-
terior. Nuevamente, si la correlacién entre las innovaciones del VAR es muy
pequena, la ordenacién que se haga de las variables del vector y o, lo que es lo
mismo, las restricciones de exclusién de valores contemporaneos que se introduz-
can serdn irrelevantes. En general, sin embargo, tales restricciones condicionan
muy significativamente la descomposicién de la varianza resultante. De hecho,
con las restricciones de identificacién que hemos venido haciendo para ilustrar
la estrategia de Cholesky, €5 explica el 100% de la varianza del error de predic-
cién un periodo hacia adelante en la variable ys. Si, en vez de dicha restriccion,
excluyéramos y9; de la primera ecuacién, entonces €1 explicaria el 100% de la
varianza del error de prediccién un periodo hacia adelante en la variable y;.

1.10 VAR estructural

uf = ey

ul = Byul + Byul + Baul" +¢i*
u; — A4u;n _"_ E?’LS

w = As(uf +ub) + Agup + e

1.11 Cointegracién

Consideremos un vector z de variables de naturaleza I(1). Se dice que dichas
variables estdn cointegradas si existe una combinacién lineal de las mismas,
definida por un vector a, tal que o’z es una variable aleatoria I(0), es decir,
estacionaria. Ma4s generalmente, se dice que un vector z de variables cuyo
méximo orden de integracion es g estdn cointegradas si existe una combinacién
lineal de las mismas, definida por un vector « tal que o’z es una variable aleatoria
I(p), con p < q. El vector a se denomina vector de cointegracion. Una relacién
de cointegracion entre variables (1) puede involucrar asimismo alguna variable
1(0), estacionaria, pero no variables 1(2).
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1.11.1 Contraste de cointegracion

Si partimos de variables y;,z; de naturaleza I(1), sus primeras diferencias,
Ay:, Az son estacionarias. Contrastariamos entonces la cointegracion de yq, ¢
estimando una regresién,

Yt :Bo—f—ﬁlxt—i-?]t, t= 1,2,...,T (25)

y contrastando la estacionariedad de los residuos, como propusieron Engle
y Granger (1987). Sin embargo, los niveles criticos para el contraste de esta
hipétesis no son los mismos que para el contraste de raices unitarias en una
variable, pues ahora, el contraste se lleva a cabo después de haber estimado el
modelo de regresién (25).

Esto no es irrelevante: el procedimiento de minimos cuadrados busca los val-
ores del espacio paramétrico (8, y 8, en la regresién anterior) que minimizan la
varianza del residuo resultante, y éste tiene una varianza infinita para los val-
ores de [3; que no hacen que las variables estén cointegradas. Por tanto, si y;, z;
estdn cointegradas, el método de MCO tenderd a seleccionar el valor de 3; que
genera residuos estacionarios, es decir, la constante de cointegraciéon. Aunque
esto es lo que pretendemos, ello significa que hay una cierta tendencia a concluir
con mas frecuencia de la que debiéramos que las variables estdn cointegradas.
En consecuencia, los valores criticos para el contraste de raiz unitaria de los
residuos de (25) deben ser més elevados en valor absoluto que los utilizados
para el contraste de raiz unitaria habitual.

La contraste de cointegracion (3, si existe, es uinica. En efecto supongamos
que existe otra constante  , con vy # (3, tal que y; —yx; es estacionario. Pero y;—
yxy = yr — P+ (B —y)xe, siendo y; — vy v y¢ — Bxy estacionarios por hipétesis.
Sin embargo, el dltimo sumando no es estacionario, por lo que el supuesto de
partida no es vdlido, y v no puede ser una constante de cointegracién.

Si los residuos de esta regresion resultan ser estacionarios, decimos que las
variables y:, z; estdn cointegradas, siendo (25) o &'z = y; — By — 12+ la relacion
de cointegracion entre ambas, en la que ya habrfamos normalizado una de las
coordenadas del vector o para que sea igual a 1 . Tal normalizacién es siem-
pre posible, ya que si una variable es estacionaria, dividirla o multiplicarla por
un nimero no va a cambiar dicha condicién. La relacién de cointegracuion se
interpreta como la relacién de largo plazo entre ellas, alrededor de la cual experi-
mentan ambas variables desviaciones a corto plazo que revierten posteriormente.
Es decir, si en un determinado perfodo, y; estd por encima del valor numérico
de By + 812+ para ese mismo perfodo, generalmente y; crecerd por encima de
By + B1 Az, de manera que y;4+1 tenderd a acercarse a S, + B12¢+1. En el caso
de dos variables y;, z;, decimos que [, es la constante de cointegracién entre
ambas.

El contraste de cointegracién descrito, mediante la contrastacién de la ex-
istencia de una raiz unitaria en los residuos de una regresién, se conoce como
contraste de Engle y Granger. Cuando el vector z; consta de méds de 2 variables
pueden existir varias relaciones de cointegracién. Esto es lo que sucede, por
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ejempo, al considerar un vector de tipos de interés a distinto vencimiento, den-
tro de un mismo mercado, ya sea el mercado secundario de deuda publica, un
mercado de swap en una determinada divisa, etc.. Fn este caso, el procedimiento
de Engle-Granger para estimar vectores de cointegracién es problemédtico, pues
estimaremos solamente una combinacién lineal de las posibles relaciones de coin-
tegracion existentes entre las variables que componen el vector. De hecho, la
estimacién resultante dependerd de la normalizacién de coeficientes utilizada
en (25), a diferencia de lo que ocurre en el caso de dos variables. En tal caso
hay que utilizar el procedimiento de Johansen, que explicamos en la seccién
siguiente.

Variables cointegradas: ejemplos

Ejemplo 1: Un ejemplo de variables cointegradas es,

Ty = Qg + 6th + Exy
i ay + Bywe + &y,
wy = Wi—1+E

donde w; es la tendencia (estocdstica) comun a z; e yy, siendo &g,, €,, vari-
ables aleatorias N (0,02), N (0,05), sin autocorrelacién. Las variables z; e y;
estdn cointegradas, puesto que

B B B
T CR  F O 28

que es una variable estacionaria. El vector (1, -8, / ﬂr) se denomina vector
de cointegracién, mientras que se dice que —3, /B, es la constante de cointe-

gracion, y la combinacién lineal £, = y; — g—ymt, que es estacionaria, es la cuantia
en la que se incumple la relacién de equiligrio a largo plazo en cada periodo t.

Ejemplo 2: En Example I1.5.11 (C. Alexander) se proporcionan datos diarios
de los indices CAC y DAX, desde el inicio de 1996 a mitad de julio de 2007.
El grafico presenta dichos datos, cuando estos se representan como indices, con

base 100 en el primer dato.
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FEl contraste de existencia de raiz unitaria, en GRETL, incluyendo constante
y tendencia, arroja para el logaritmo del indice CAC un estadistico para el
contraste de Dickey-Fuller ampliado de -1,695, con p-value de 0,753, incluyendo
7 retardos en la regresion de Dickey-Fuller ampliada. Para el DAX tenemos
un estadistico de contraste de -1,489, con p-value 0,833, incluyendo asimismo

7 retardos en la regresién de Dickey-Fuller.

Ambos indices tienen una raiz
unitaria.

En primeras diferencias, es decir, trabajando con rentabilidades diarias, para
el CAC tenemos un estadistico de -38,612, con p-value 0,0, incluyendo un retardo
en la regresiéon de Dickey-Fuller. Para el DAX tenemos un estadistico de -26,78,
con p-value de 0,0 incluyendo 3 retardos en la regresién. Podemos concluir que
las rentabilidades son estacionarias.

(Estdn cointegrados ambos indices? Continuamos trabajando con sus loga-
ritmos. Estimamos la regresion:

InCAC; = 0,195+ 0,959.1n DAX; + u;, R?> = 0,912
(0,005)
Para los residuos de esta regresion, incluyendo 5 retardos en la regresién de
DF, obtenemos un estadistico de contraste de -1,713, con p-value de 0,672, lo
que nos lleva a no rechazar la hipdtesis nula de existencia de raiz unitaria. En

consecuencia, los residuos no son estacionarios y los indices no estan cointegra-
dos.

Si generamos ambas series temporales a partir de procesos independientes,
este contraste nos sugerird en una mayoria de simulaciones que y;, x; no estan
cointegradas, lo que aparecera en la forma de residuos de naturaleza I(1) en

(25). En tal caso, habriamos de estimar un modelo en diferencias de ambas
variables,

Ayt = ﬁo +51Axt + U, t= 1727"'7T
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que arrojard un coeficiente §; no significativo y un coeficiente de determi-
nacién muy reducido.

Al contrastar cointegracién, estamos tratando de detectar la posible exis-
tencia de relaciones de largo plazo entre las variables del modelo. En ese sen-
tido, la naturaleza del contraste sugiere el uso de una datos no necesariamente
frecuentes, y una muestra temporal suficientemente amplia. De lo contrario,
predominard en la muestra, en términos relativos, la informacién acerca de las
fluctuaciones de corto plazo en las variables, frente a la de su evolucién tenden-
cial, que es lo que tratamos de detectar. Por tanto, una eleccién inapropiada de
la muestra, ya sea por una frecuencia alta de observacién de los datos, o por el
uso de un perfodo muestral no muy amplio, sesgard el resultado del contraste
hacia la no deteccién de relaciones de cointegracion.

Efectuar un anélisis de cointegracion significa relacionar los niveles de vari-
ables como oferta monetaria y precios, o los precios de dos activos financieros,
es decir, variables no estacionarias, y no sus tasas de variacién. Por el con-
trario, basar la caracterizacién de la relacién entre variables como las citadas
utilizando coeficientes de correlacion estdndar es delicado, pues puede conducir
a la deteccion de regresiones espireas. El concepto de cointegracién generaliza
el concepto de correlacién en la direccién adecuada. La existencia de una ten-
dencia estocéstica comin generaria una relacién sostenible a largo plazo entre
ambas variables, lo que hard que sus diferenciales reviertan a través del tiempo,
es decir, que sean mean-reverting. No tiene sentido analizar las relaciones entre
los niveles de variables I(1) si no estdn cointegradas.’

Cointegracion en un modelo estimado por minimos cuadrados

Al estimar la relacién anterior por minimos cuadrados hay que tener en
cuenta que las propiedades de dicho estimador son vilidas tnicamente en el
caso de variables estacionarias. Cuando las variables estdn cointegradas, el
uso de minimos cuadrados en la estimacién de la regresion estd justificado es-
tadisticamente, pero la distribucién de probabilidad del estimador MCO no es
la habitual. Por tanto, aunque el programa de estimacién que utilicemos nos
proporcionard las desviaciones tipicas estimadas y los ratios tipo-t de cada co-
eficiente, estos no son validos en este caso, y no deben utilizarse, por ejemplo,
para contrastar hipétesis sobre los coeficientes de la relacién de cointegracion.

Hay muchos casos en que el modelo tedrico sugiere que las variables y;, x;
deben estar relacionadas con un determinado valor numérico del coeficiente, por
ejemplo, 3% =1, por lo que el investigador estard interesado en contrastar dicha
hipétesis. Esto puede hacerse por un procedimiento indirecto, sustituyendo el
valor teérico de 3, B = (%n la relacién entre ambas variables. Ello significa
que construimos la variable auxiliar w; = y; — %24, y contrastamos la esta-
cionariedad de esta variable. Por ejemplo, la Hipdtesis de las Expectativas en
la formacién de la Estructura Temporal de los Tipos de Interés implica que el
diferencial de tipos a largo, R;, y corto plazo, r;, debe ser estacionario, es decir,

9El concepto de cointegracién, como existencia de una tendencia o de una raiz unitaria
comun a varias variables, se extiende a otros conceptos. Asi, se puede hablar de una estructura
ARCH comitn a varias variables, si todas ellas tienen estructura ARCH, pero existe una
combinacién lineal de todas ellas que no tiene tal estructura. Common Features.
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en la relacion: Ry = a + [ry + uy, los residuos 4; son estacionarios, y no se
rechaza la hipotesis: Hy : 8 = 1. Esto equivale a contrastar la estacionariedad
del spread R; — 7y.

Cuando se procede de este modo, es importante repetir el contraste para
valores de 8° en un entorno de 3°, con el objeto de analizar la precisién con que
hemos identificado la constante de cointegracion.

Correlacion y cointegracion no son sinénimos

El problema de correlacién espurea surge entre variables no estacionarias,
con independencia de que estén o no cointegradas, luego puede haber alta cor-
relacién (de hecho, muy elevada) sin cointegracién. Alternativamente, el hecho
de que exista una relacién de largo plazo entre variables no estacionarias no
impide que éstas experimenten desviaciones respecto de la misma que, si son de
apreciable magnitud, reducirdn la correlacién existente entre dichas variables.
Un ejemplo seria la evolucién temporal de la cotizacién de un valor en Bolsa,
analizada conjuntamente con un indice que lo incluya, ya sea el indice de mer-
cado, un indice de los valores més capitalizados, o un indice sectorial; dado que
todo indice es un promedio ponderado de las cotizaciones de los valores en él in-
cluidos, cabria esperar que ambas series temporales estuvieran correlacionadas.
Sin embargo, las fluctuaciones que ambos experimentan a corto plazo pueden ser
suficientes para que su coeficiente de correlacién sea reducido.Un ejemplo tipico
de variables posiblemente correlacionadas pero habitualmente no cointegradas
lo constituye algunos tipos de cambio.

Por esta misma razén, cointegracién tampoco es sinénimo de alta capacidad
explicativa. Podemos encontrar, por ejemplo, un conjunto reducido de acciones
que estdn cointegradas con el Ibex35, pero al constituir la cartera formada por
dichas acciones utilizando los coeficientes de la relacion de cointegracién podri-
amos descubrir que la capacidad explicativa de dicha cartera sobre el Ibex35
fuese muy reducida. La varianza de los residuos de dicha regresién, conocida
como tracking error de la cartera que intenta replicar el Ibex35, seria muy alta.

A partir de dos variables no estacionarias, pero cointegradas, es sencillo
construir dos variables no cointegradas, sin méds que anadir en cada periodo a
una de ellas, la suma hasta dicho periodo de un ruido blanco. Si la varianza de
este componente no es muy grande, mantendremos una correlacién andloga a la
inicial, que podia ser elevada. Sin embargo, por construccién, las dos variables
no estédn cointegradas. Por tanto, hay que tener sumo cuidado en interpretar
los resultados obtenidos en contrastes de cointegracion.

Generalized Purchasing Power Parity

La PPP afirma que el tipo de cambio nominal debe estar determinado por
el diferencial de tipos de interés de los dos paises (Paridad cubierta de tipos
de cambio). Dado que este supuesto es claramente refutado por los datos, una
versién mds flexible del modelo permite que los tipos de cambio reales estuviesen
determinados no solo por el diferencial de tipos de interés, sino tambien por el
diferencial de crecimiento de la renta, el diferencial de crecimiento de la oferta
monetaria, etc.. Tampoco esta versién del modelo parece dar buenos resultados.
Una interpretacion es que los determinantes de los tipos de cambio, no siendo
estacionarios, inducen la no estacionariedad de los propios tipos de cambio. Sin
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embargo, si los determinantes de distintos paises, no siendo estacionarios entre
sf, mantienen relaciones de largo plazo entre ellos, entonces los tipos de cambio
deberian estar cointegrados. [Ejercicio]

1.11.2 El contraste de cointegracién de Johansen

Si consideramos un vector autoregresivo VAR (p),

Ye =y + Arye1 + Aoyro+ ...+ Apyr—p + By +

donde y; es un vector de k variables no estacionarias, I(1), x; es un vector de
variables deterministas, y €; es un vector de innovaciones. Denotemos ®(B) =
I, —AB—AB?>—...— ApBP. Si todas las raices de la ecuacién caracteristica:
|®(B)| = 0 estén fuera del circulo unidad, entonces y; es estacionario, en el
sentido de no contener raices unitarias. Si la matriz de multiplicadores a largo
plazo satisface: |®(1)| =| Iy — A1 — A2 — ... — A, |= 0, entonces y; es no
estacionario, conteniendo al menos una raiz unitaria. Una rafz unitaria es un
factor del tipo (1— B) en la descomposicién factorial del polinomio autoregresivo
®(B). Suponemos por el momento que y; tiene como mucho una rafz unitaria.
En ese caso, (1 — B)y;: serfa estacionario.

El proceso VAR(p) puede escribirse en la forma de Modelo Vectorial de
Correccion del Error Vectorial (VECM) que justificaremos mds adelante:

p—1
Ay = py + 1y 1 + Z IiAy;—; + Bxy + ¢
i=1
con

P P
M= AL =-®(1), Ty =- Y Aji=12.,p-1
i=1 j=it1

Por simplicidad, ignoramos la posible presencia de variables exégenas en el
modelo. El término Ily; 1 se conoce como término de correccién del error, y
juega un papel central en el andlisis de cointegracién.

Yendo en direccién contraria, la representaciéon VAR(p) puede recuperarse
a partir de la estimacion del MCE mediante:

Ay = LL,+101-T
Ai = Fi —1—‘¢,17i=2,...,p7 con Fp zomk
Si y contiene raices unitarias, entonces |®(1)] = 0 y la matriz II = —®(1)

serd singular. Cabe considerar 3 casos:

1. Rango(Il) = 0. Esto implica IT = Okt y las variables que componen el
vector y; no estdn cointegradas. El modelo ECM se reduce a un modelo
VAR en primeras diferencias:
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Ay = py +T1Ay 1 + T2y o+ o+ Tp 1Ay pr1 + 6

1. Rango(Il) = k. Esto implica que |®(1)| # 0 e y; no contiene raices uni-
tarias, es decir, y; es 1(0). El modelo ECM no es informativo, y analizamos
directamente un modelo VAR en y; :

ye=py + Ty 1 +Toye o+ + 10 + &

1. 0 < Rango(Il) = m < k. Entonces, podemos escribir II como: I = af’,
donde ay 8 son matrices kxm con Rango(a) = Rango(S) = m. El modelo
ECM se convierte en:

Ay = pp +aB'yi—1+T1Ay—1 + ToAyp—o + oo + Tp 1 Ay pi1 + €

En este caso, las variables que componen el vector y; estdn cointegradas, ex-
istiendo m vectores de cointegracién linealmente independientes, que vienen
dados por las combinaciones lineales: w = [3'y;. La ecuacién caracteristica
|®(1)| = 0 tiene k—m raices unitarias, que generan k—m tendencias estocasticas
comunes a las variables que componen y;.

Por tanto, un enfoque para contrastar cointegracion es analizar el rango de
la matriz II de multiplicadores a largo plazo. Este es el enfoque de Johansen.
De hecho, el enfoque de Johansen, que consiste en estimar el modelo VAR por
méxima verosimilitud y analizar el rango dela estimacién de la matriz II, sugiere
dos contrastes: el contraste de la traza y el contraste del mdximo autovalor.
Los contrastes se ejecutan secuencialmente.

En el caso del contraste de la traza, la hip6tesis nula es del tipo:

Hy : Rango(Il) < m versus Hy : Rango(Il) > m

0, lo que es lo mismo: HO: Las variables que componen el vector vy, tienen
un mazimo de m relaciones de cointegracion, frente a la hipotesis alternativa:
H1 : Las variables que componen el vector y; tienen mds de m relaciones de
cointegracion.

El estadistico de contraste es:

siendo \; los autovalores generalizados estimados para una determinada ma-
triz que surge en el proceso de estimacién por Méxima Verosimilitud [el lector
interesado puede consultar detalles en Hamilton (1994) Time Series Analysis,
capitulo 19]. Si Rango(II) = m, entonces los \; serdn pequefios para i > m y
por tanto, el estadistico de contraste serd pequeno. Este es el contraste de la
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traza, aunque en realidad, es una secuencia de contrastes. La distribucién de
probabilidad del estadistico es funcién de movimientos Brownianos, y depende
del niimero de variables en el modelo y del componente determinista que se
incluya.

El primer contraste se efectiia para m = 0 : HO0: El vector y; no tiene
ninguna relacion de cointegracion, frente a la hipdtesis alternativa: H1 : Fl vec-
tor y; tiene al menos 1 relacion de cointegracion. Sirechazamos HO0, contrastariamos
conm =1: HO: El vector y; tiene como mdximo una relacion de cointegracion,
frente a la hipétesis alternativa: H1 : El vector y; tiene al menos 2 relaciones
de cointegracidn, y asi sucesivamente.

El contraste del mdzimo autovalor especifica:

Hy : Rango(Il) = m versus Hy : Rango(Il) = m + 1
y el estadistico de contraste es:

LK max(m) = —(T —p)In(1 — A\pg1)

Lamentablemente, la distribucién de probabilidad del estadistico de con-
traste de cointegracién depende del componente deternminista del vector y;, al
igual que sucedia con el contraste de rafz unitaria en el caso univariante. Las
distintas especificaciones pueden considerar una constante y/o una tendencia
lineal en la relacién de cointegracién, como cuando decimos que y; — fx: — « es
estacionario, siendo y; y x; variables I(1), o que y; — Sz, — vt — « es estacionario.
Los distintos paquetes estadisticos solicitan del usuario que especifique los com-
ponentes deterministas, para posteriormente proporcionarle los valores criticos
correspondientes a la especificacién que se haya propuesto para el componente
determinista.

En algunas ocasiones se leen trabajos en los que el investigador analiza la
posible cointegracién bajo todas las especificaciones posibles del componente
determinista, para luego tomar una decisién en funcién de cudntos de dichos
contrastes hayan dado una respuesta u otra. Incluso algunos programas es-
tadisticos permiten al usuario dar esa opcién. Sin embargo, tal enfoque debe
no es una buena practica estadistica. El usuario debe analizar previamente sus
series para tener una cierta idea acerca de la estructura del componente deter-
minista. Si las series tienen tendencia, entonces deberd incluir una tendencia en
la relacién de cointegracion y una constante en el modelo VECM. Si las series
tienen constante pero no tendencia, entonces deberd incluir una constante en la
relacién de cointegracién, y nada en el modelo VECM. Si las variables no tienen
constante ni tendencia, entonces no deberd incluir componente detemrinista ni
en la relacién de cointegracién ni en el modelo VECM.

Las matrices «, 8 no son tnicas. Si tomamos una matriz no singular kxk, C,
y formamos: o* = aC, 8" = BC~!, tenemos:

0*5" = (aC)(BCTTY = ap
por lo que la identificacién de « y B requiere imporner algunas restricciones.
Aplicacion practica del contraste de Johansen
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1. Buscar, posiblemente mediante contraste, la especificacion apropiada para
el orden del VAR. El niimero de retardos puede condicionar los resultados.
Hay que asegurarse de que los residuos estan libres de autocorrelacion.

2. Estimar el modelo y determinar el rango de II '°

3. Analizar los vectores de cointegracién normalizados y los coeficientes de
velocidad de ajuste al desequilibrio.

4. Contrastar restricciones, si se desea.

Contraste de restricciones
Estimar los modelos restringido y sin restringir, y utilizar el estadfstico:

k
Y [1n(1 “A) —In(1 = A)
1=m-+1
donde ;\: denotan las raices caracteristicas de la matriz II sin restricciones, y

A; las raices caracterfsticas obtenidas en el modelo estimado después de imponer
las restricciones.

1.11.3 EIl modelo de correccién de error

Teorema de representacion de Engle y Granger: el caso de 2 variables

Este teorema afirma que si dos variables y;, z; de naturaleza I(1),estén coin-
tegradas, sus relaciones dindmicas estdn caracterizadas por el modelo vectorial
de correccion de error (VECM):

Ay, = oy + Z 8 Awy_; + Z 058y i + 7,21 + &y, (26)

=1 i=1

P q
Azy O + Z 01 Az + Z 09 AY1—i + Yy 2i—1 + Eq,
i=1 i=1

donde z;_; denota la desviacién del periodo anterior respecto de la relacion
de equilibrio a largo plazo z;—1 = y;—1 — Bxs_1, siendo [ el coeficiente de
cointegracién entre y; v x4, y A es el operador de primeras diferencias. En el
modelo de correccién de error todas las variables son estacionarias, 1(0), por
lo que las propiedades habituales del estimador MCO en dicho contexto, son
validas. Los términos YyPt—1 Y VgZt—1 Se denominan términos de correccion
de error, y han de aparecer en las ecuaciones anteriores con un determinado
signo, que depende del modo en que se haya definido el desequilibrio z;_;. Con
nuestra definicién, cabrfa esperar que v, < 0,7, > 0; un valor negativo de
7, indicard que perfodos en que y; es alto, es decir, superior a Sz, tenderdn

10Si bien, como hemos dicho, el andlisis de autovalores se realiza para otra matriz diferente
de II
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a venir seguidos de crecimientos relativamente reducidos de dicha variable. Un
valor positivo de v, indica que siguiendo a perfodos en que y; es alto, x; tenderd
a experimentar un crecimiento mayor; la conjuncién de ambos efectos hace que
yr+1 tienda a aproximarse a fzi41. Lo dual ocurrird tras periodos en que y;
haya sido bajo, es decir, inferior a Sxz;. Si hubiéramos normalizado la relacién
de cointegracion de otro modo, habriamos definido el término de desequilibrio
como z¢_1 = PfyYi—1 —Tt—1, y los signos de los coeficientes Yy Yzt (26) deberian
ser entonces los contrarios a los antes descritos.

No es preciso, sin embargo, que se produzcan estos signos: la aproximacién
entre ambas variables puede conseguirse asimismo si ambas aumentan o dismin-
uyen simultdneamente, pero z; experimenta la mayor variacién. Por tanto, si
ambos coeficientes tienen igual signo, v, debe ser significativamente mayor que
7, en valor absoluto. De hecho, podria ocurrir también que sélo unos de los dos
coeficientes resulte estadisticamente significativo, lo que podria interpretarse en
el sentido de que la variable asociada soporta todo el peso del ajuste hacia la
relacién de equilibrio a largo plazo.

La cointegracién entre variables no lleva anadida ninguna interpretacién
concreta en términos de causalidad entre dichas variables. De hecho, como
la relacién de cointegracion puede normalizarse de distintas maneras, puede
presentarse una apariencia de causalidad en cualquiera de las dos direcciones.
El modelo de correcciéon de error muestra que, en presencia de cointegracion,
existe importante causalidad entre ambas variables, en principio, con carédcter
bidireccional. Sélo si algunos de los coeficientes del modelo VECM resultan ser
estadisticamente no significativos, podria hablarse de causalidad unidireccional.
Si dos variables estdan cointegradas, al menos una de ellas causa a la otra; sin
embargo, ello podria también reflejar el efecto comin de una tercera variable,
no considerada en el modelo.

Sin embargo, la ausencia de causalidad en un sistema cointegrado implica
que una de las variables no reacciona a variaciones en la otra. Esto significa
que los retardos de la segunda no aparecen en la ecuacién de la primera ni en la
forma de diferencias, ni tampoco a través del término de correccién del error.

Por ejemplo, al trabajar con datos de precios de contado y del futuro so-
bre un determinado activo financiero, es habitual hallar un mayor nimero de
retardos del precio del futuro en la ecuacién del contado, que viceversa, lo que
sugiere que los mercados de derivados (en este caso, de futuros), incorporan la
nueva informacién méds rapidamente que los mercados de contado, por lo que
los ultimos parecen responder a fluctuaciones en los primeros. En este tipo de
ejemplos, en ocasiones el término de correccién de error resulta no significativo
en la ecuacién de precios del mercado de contado.

Cuando el vector z; incorpora més de dos variables, y existe mds de una
relacién de cointegracion entre ellas, el modelo de correccién de error adopta una
expresién similar a la antes propuesta. La diferencia estriba en que aparecen
retardos de todas las variables, en diferencias, en todas las ecuaciones, y apare-
cen tantos términos de correccién de error como relaciones de cointegracién en
cada una de las ecuaciones. Dichos términos seran los valores retardados de
dichas relaciones de cointegracion; la normalizacién escogida afecta tinicamente
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a la interpretacién de los valores numéricos estimados.

La busqueda de variables cointegradas abundan en la literatura financiera,
donde trata de caracterizarse las posibles relaciones de equilibrio a largo plazo
entre precios de activos. Asi, se han analizado las posibles relaciones de coin-
tegracién entre tipos de cambio, entre tipos de interés dentro de una misma
estructura temporal, entre mercados de contado y futuro, entre commodities,
valoracién de divisas. También se ha utilizado este tipo de andlisis para discutir
el grado de integracién entre mercados de valores o de deuda, si bien parece
existir mds evidencia favorable en el primer tipo de mercados. Este analisis
tiene asimismo implicaciones para la gestién financiera: en principio, deberia
ser posible encontrar una cesta reducida de valores cointegrada con el indice, lo
que podrfa utilizarse en la gestién pasiva de carteras. Lo mismo deberfa ocurrir
con un pequeno conjunto de indices sectoriales, etc..

Ejemplo 1: Antes hicimos un andlisis de cointegracién de logaritmos de fips
datos diarios de los indices CAC y DAX, desde el inicio de 1996 a mitad de
julio de 2007 siguiendo el enfoque de Engle y Granger, concluyendo que ambas
variables no estan cointegradas en dicha muestra temporal. La aplicacién del
contraste de Johansen sugiere nuevamente que no existe ninguna relacién de
cointegracién entre ambos indices.

Cuando las variable no estdn cointegradas, como en este caso, el modelo a
estimar es un VAR en primeras diferencias. Para estimar una VAR en primeras
diferencias usando GRETL, el criterio de Akaike sugiere un orden 8, el criterio
bayesiano BIC sugiere orden 1 y el criterio Hannan-Quinn sugiere orden 4.
Un orden 8 parece excesivo con datos diarios, por lo que tomamos el orden
4 como compromiso. Aunque hay coeficientes individualmente significativos en
ambas ecuaciones, los R2 son muy reducidos y las desviaciones tipicas residuales
practicamente coinciden con las desviaciones tipicas de la variable dependiente,
como cabe esperar en series temporales largas, de datos frecuentes volitiles,
como son las rentabilidades. No hay evidencia de autocorrelacién residual en
ninguna de las dos ecuaciones.

Los contrastes de causalidad de Granger arrojan un valor numérico del es-
tadistico de 16,421 cuando contrastamos la presencia de la rentabilidad del DAX
en la ecuacién del CAC, y de 33,95 cuando contrastamos la presencia de la
rentabilidad CAC en la ecuacién del DAX. Ambos tienen p-values reducidos,
por lo que concluimos acerca de la influencia mutua entre ambos mercados.
Cabe observar que si hubiesemos optado por un orden inferior, como el sugerido
por el criterio de Akaike, n = 1, hubiesemos concluido que el bloque de retardos
del DAX no afiade informacion a los propios retardos del CAC para explicar el
comportamiento en rentabilidad de este tdltimo indice. Sin embargo, los con-
trastes de autocorrelacién muestran claros indicios de presencia de la misma en
los residuos de amba ecuaciones, al contrario de lo que sucede con n = 4, por lo
que desechamos la evidencia empirica arrojada por el modelo més sencillo, con
n=1.

Ejemplo 2: Tomamos datos del Ibex contado y del Futuro sobre Ibex, desde
el inicio de 1993 a 9/9/2014.

Los criterios de Akaike, BIC y Hannan-Quinn coinciden en sugerir un orden
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del VAR en niveles de n = 6. El estadistico de la traza de Johansen para el
contraste de no existencia de relaciones de cointegracion es 93,878, con p-value
0,0, y el estadistico del méximo autovalor es de 87,658, asimismo con p-value 0,0.
Por tanto, se rechaza dicha hipdtesis y pasamos a pensar que existe al menos
una relacién de cointegracién. Para el contraste de HO : existe un méximo de
una relacién de cointegracién, ambos estadisticos toman el valor 6,2206, con p-
value de 0,0126. Dado que trabajamos con una muestra larga, tiene sentido ser
estrictos en el contraste y tomar como nivel de significacién 99%, con lo cual no
rechazamos dicha hipétesis nula. Otra razén para no hacerlo es que de hacerlo,
concluirfamos que existen dos relaciones de cointegracién, es decir, que ambas
variables: Ibex y Futuro sobre Ibex, son estacionarias, lo cual evidentemente no
es cierto.

La estimacién de méaxima verosimilitud por el método de Johansen conduce
a a una relacién de cointegracion:

log(Ibex;) = 0,052 + 1,0059. In(FIbexy) + uy (27)
(0,0013)

El término de correcién del error (el residuo en la relacién anterior) entra
en la ecuacion de Alog(Ibex;) con coeficiente 0,0014(0,034) y en la ecuacién
de Alog(FIbex;) con coeficiente 0,0689(0,0359). En dichas ecuaciones aparecen
como variables explicativas, ademas de una constante y del término de correccién
de error, 4 retardos de la primera diferencia de cada una de las dos variables. Por
tanto, podemos interpretar que es el Futuro quien reacciona ante desviaciones
de los precios de futuro y contado con respecto de su relacién de equilibrio a
largo plazo, definida por (27).

El signo positivo es el esperado: valores positivos de u; indican precios de
contado "relativamente altos" dado el precio del futuro y la relacién (27), que se
ajustan en periodos sucesivos mediante elevaciones del precio del futuro, dado
el efecto positivo que u; tiene en su ecuacién. Valores negativos de u; indicarian
precios del futuro relativamente altos, que se corregirian con descensos en el
precio del futuro, ya que wu; entra con signo positivo en su ecuacién. Lo rele-
vante es que es el futuro quien ajusta estas desviaciones, lo cual es un resultado
habitual al analizar muchos mercados de futuros. Es un efecto que se conoce
como "price discovery", que se refiere al hecho de que el mercado de futuros
reacciona antes que el mercado de contado ante cualquier noticia, debido a que
mientras que es sencillo negociar el futuro sobre Ibex, es complicado negociar
una cartera de contado de Ibex.

En consonancia con este resultado, el estadistico F' para el contrate de causal-
idad de Granger desde el futuro hacia el contado es de 37,75, con p-value 0,0,
siendo de 6,61 con p-value de 0,16 cuando se contrasta la causalidad del contado
al futuro.

Un ejemplo similar pude verse en el ExIL.5.11 del libro de Alexander con-
sidera la cointegracion entre el indice Hang Seng y el contrato de futuros sobre
dicho indice.

Ejemplo 8: Tomamos datos diarios de tipos de interés cupén cero de UK,
con vencimientos 1 mes, 3 meses, 12 meses y 60 meses, extraidos del archivo
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PCA _short_Spot.xls, de C.Alexander, para el periodo: 4/1/1997 a 31/12/2007.
Las cuatro series contienen una raiz unitaria (es decir, son integradas de orden
1, I(1)). Los estadisticos de la traza y del maximo autovalor de Johansen para
el contraste de cointegracién son: 149,93 y 103,32, con p-values de 0,0, para la
existencia de un méximo de 0 relaciones de cointegracién; son 46,61 y 33,10 con
p—values asimismo nulos cuando se contrasta la hipétesis nula de un méximo
de 1 relacién de cointegracién, y son de 13,51 y 10,30, con p-values de 0,097
y 0,19 cuando se contrasta la hipétesis nula de un maximo de 2 relaciones de
cointegracién. Por tanto, esta hipétesis no se rechaza, y pasamos a creer quee
existen 2 relaciones de cointegracién.
Las dos relaciones de cointegracién se estiman:

T1,t — 1, 4797‘127,5 + 0, 855T607t = Ut
(0,072) (0,105)

r3¢ — 1, 4387“127,5 + 0, 7537‘607,3 = U2t
(0,058) (0,085)

donde puede verse que la diferencia de ambas implica, muy aproximada-
mente, que r1; — 3, es estacionario. La segunda relacién de cointegracion seria
una combinacién mds compleja entre los tipos de interés.

Los coeficientes de respuesta a los dos términos de correccién del error son
ambos significativos en las ecuaciones de las ecuaciones de Ary ; y Ars; y no son
significativos en las ecuaciones de Aria; y Argos, indicando que son los tipos
a corto plazo los que se ajustan para corregir desviaciones respecto de las dos
relaciones de equilibrio a largo plazo. Son ademds, numéricamente més elevados
en la ecuacién de Arj; que en la ecuacién de Ars;, sugiriendo que el tipo a 1
mes es quien soporta la mayor parte del ajuste.

1.11.4 Cointegracién por umbrales

Es habitual que los precios de contado y de contratos de futuros de un activo
que se negocia con suficiente liquidez estén cointegrados. En el caso de la renta
variable, si f;; denota el logaritmo del precio del futuro con vencimiento en [
(I > 1)y s es el log-precio del contado, una versién del modelo de cost-of-carry
especifica que:

fra—=st=(re1—q)(l—1) + 2

donde 7;; es el tipo de interés en ¢ con vencimiento en [ y ¢;; es la tasa de
dividendo durante el periodo (t,1). El tiempo a vencimiento es [ — ¢. El proceso
z; debe carecer de raices unitarias, pues de lo contrario, existirian oportunidades
persistentes de arbitraje. Consistirfan en tomar una posicién corta en el indice
y una posicién comprada en el futuro cuando los logaritmos de los precios se
separan en mds del cost-of-carry, siendo mds alto el precio del contado. La
estrategia contraria se tomaria si es el precio del futuro el que es més alto. Para
que el arbitraje resulte economicamente interesante, z; debe exceder de la suma
de costes de transaccién y de cualquier otro factor que acarree costes.
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Es habitual que la serie de un indice como S&P500 tenga una raiz unitaria,
al igual que el precio de sus contratos de futuros, pero que resulten cointegrados
una vez que se ajusta por tipos de interés y por dividendos. Tras el ajuste, es
frecuente que [1, -1] sea el vector de cointegracién, como se recoge en la ecuacion
anterior, y la serie cointegrada es z;. Por tanto, debemos especificar el VECM
para las series de rentabilidades: r; = (Af, As;)’, donde A denota primeras
diferencias.

Las consideraciones de costes que hemos hecho conducen a una especifi-
cacién:

re = pgp T F om0+ +Tprip 4+ Brze1 +eng, sizi1 <
e = fop+ Yar—1 + Toro+ oo + Lpri—p + Bozi1 + €2, 81y < zim1 <7y
re = g+ A1+ Aorio+ o+ Aprep + B3zi-1 €31, Sl 21 2> 79

por lo que tenemos un modelo con 3 regimenes. El arbitraje solo serd posible
si z; es suficientemente grande, es decir, en los regimenes 1 y 3, en cada uno de
ellos tomando una posicién opuesta a la del otro régimen. El segundo régimen
corresponde al funcionamiento normal del mercado, y esperarfamos que 85 = 0,
pues las dos series de precios se comportarfan como un camino aleatorio. [ver
ejemplo con datos en Seccion 8.7.2 en Tsay]

1.11.5 Aplicaciones

Index Benchmark tracking Case Study I1.5.4.7 Alexander y Dimitriu (2005),
"Indexing and statistical arbitrage: Tracking error or cointegration", Journal of
Portfolio Management, 31(2), 50-63.

La construccién de una cartera que pueda replicar muy aproximadamente
el comportamiento de un indice ofrece muchas posibilidades en la gestién de
carteras. Ha sido habitual tratar de caracterizar la cartera réplica que més se
aproxima al indice siguiendo procedimientos de minimos cuadrados. Para ello,
se estima una regresion de la rentabilidad del indice (si el objetivo es replicar
el indice) sobre las rentabilidades de un conjunto de acciones individuales, y se
utilizan los coeficientes de dicha regresiéon como pesos para configurar la cartera.
Los signos positivos y negativos se corresponderian con posiciones largas y cortas
en cada activo. El residuo es el tracking error, y su desviacion tipica es el tamano
de dicho error.

Pero si la cartera resultante no estd cointegrada con el indice (y no hay
garantia de que lo esté), su precio podria experimentar desviaciones duraderas
respecto del indice. Esto se evita utilizando procedimientos de cointegracion,
como se hace en este Case Study para el Dow Jones IA, para conseguir un
tracking error estacionario.

Siguiendo el método de Engle-Granger para analizar la cointegracion entre
un indice y un conjunto de n activos, estimarfamos el modelo:

In(l;) =a+ Z BiIn(Py) + &
i=1
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Si los residuos son estacionarios, habriamos encontrado una cartera coin-
tegrada con el indice I;, combinando los n activos con ponderaciones:

-1

B =B8] (BB Bn)
=1

Noétese que asf resolvemos el problema de asset allocation, es decir, de dis-
tribucién del importe nominal entre los n activos, pero no el problema de se-
leccién de dichos activos. Generalmente, cabria probar con distintos conjuntos
de activos para encontrar una cartera que combine una evidencia clara de coin-
tegracién con el indice, a la vez que una menor varianza del error de ajuste.
Generalmente, este anilisis requerird tomar posiciones cortas y largas en al-
gunos de los activos.

Un procedimiento de gestién pasiva de la cartera del fondo que comparase
ambos procedimientos durante el periodo muestral tomarfa una forma del sigu-
iente tipo:

1. estimar el modelo con 5 anos de datos diarios para calcular los pesos de
la cartera en ambos métodos

2. mantener la cartera durante 2 semanas; al término de ellas, anotar las
rentabilidades y desplazar la muestra dos semanas para volver a estimar
los pesos

3. repetir hasta agotar los datos.

En este tipo de ejercicios, el analista debe decidir sobre cudl es el nimero
de activos que va a utilizar en la cartera réplica, qué submuestra va a utilizar
en la primera estimacién de las ponderaciones, y con qué frecuencia realizara
el rebalanceo de la cartera. El gréfico superior muestra los residuos que se ob-
tiene cuando se sigue un enfoque de minimos cuadrados (Tracking error de
minima varianza, TEVM), o un enfoque de cointegracién. Como puede verse,
las desviaciones del modelo respecto del indice son estacionarias en el segundo
caso, mientras que las desviaciones que surgen al estimar las ponderaciones por
minimos cuadrados pueden tener cardcter permanente. A pesar de ello, el gra-
fico inferior muestra que ambos enfoques hacen un buen papel en la réplica del
indice, e incluso obtienen una rentabilidad superior al mismo.
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Alexander y Dimitriu (2005) "Indexing, cointegration and equity market
regimes", International Journal of Finance and Economics, 10, 213-231, explican
la preferencia por el método de cointegracion. Sin embargo, hay que tener
presente la posibilidad de encontrar més de una cartera cointegrada con el indice
que se pretende replicar. Actualmente, se propone seguir estrategias que toman
una posicién larga en la cartera de cointegracién, y una posicion corta en el
futuro sobre el indice.

Pairs trading [Case Study II.5 Pairs] Una estrategia que estd popularizan-
dose se basa en que si los precios de dos activos estdn cointegrados, su spread
serd estacionario. Esto es lo que sucede con dos indices de volatilidad sobre
contratos de futuros: VDAX y VSTOXX.

28%

=% dax Futures

26% +

Vstoxx Futures

24%
22%
20%
18%
16%
14%

12%

Teniendo cuidado en utilizar el spread en las mismas unidades que los indices
de volatilidad (por ejemplo, como porcentajes; en todo caso, el spread se calcula
por diferencia de ambos indices, por lo que generalmente no habra problemas).
Tras comprobar la cointegracién de ambos indices de volatilidad, en el Case
Study se estima un VECM que, posteriormente, se re-escribe en formato re-
gresién, dejando un indice a la izquierda de cada ecuacién, no sus primeras
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diferencias. Esta representacién nos permite calcular las respuestas a shocks en
ambos fndices de volatilidad, asf como la evolucién que seguiria su spread en
respuesta a ambos shocks.

El primer gréfico considera una situacién en la que ambos indices de volatil-
idad comienzan de niveles estables de 15% y experimentan u shock de 1% en
VDAX y de 2% en VSTOXX. En ausencia de otros shocks, los indices de volatil-
idad alcanzan un nuevo nivel de casi 16,94% para el futuro sobre VDAX y de
16,30% para el futuro sobre VSTOXX. Siendo estacionario, el spread revierte a
su media de largo plazo, que estimamos mediante su media muestral 0,00649.
Este andlisis permitirfa disenar estrategias tomando posiciones contrarias en
ambos activos. El segundo gréfico considera una situacion en la que los indices
estdn en 18% dos dias antes de sufrir un shock excepcionalmente elevado, se
situan en 19% un dia antes, y en 20% el dia que sufren el shock, pasando a un
25% al dia siguiente. Es hace que se estabilicen en niveles més elevados que en
la simulacién anterior. Sin embargo, el spread, siendo estacionario, se estabiliza
en torno al mismo nivel de 65 puntos bésicos.

La posibilidad de predecir la evolucién de dos indices cointegrados tras sufrir
un determinado shock y, con ello, predecir la evolucién de su diferencial, puede
permitir tomar posiciones en el par de activos.

—— Vdax
— —=Vstoxx

Spread(bps)
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;i J '\.,—‘_————_——-——-—-:_50-% 3523!0%,
Z160% A .I/ 140 £ |P225% |
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(ver asimismo "Pairs Trading: an empirical study", A. Fiz, tesina del Master
en Banca y Finanzas Cuantitativas, Julio 2014)
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1.12 Ejercicios

e Considere el modelo estructural recursivo,

Yit = Q10+ anyze + aroyie—1 + a13yze—1 + V1t

Yot = Qo0 T Qo211 + Q23Y2t—1 1 Vot

donde y;; afecta a yo; sélo con cierto retraso. Note que este modelo permite
identificar el término de error vy, a partir de las observaciones de la variable
yot. Pruebe que este modelo esté exactamente identificado, en el sentido de que
todos sus coeficientes, asi como las varianzas de los dos términos de error pueden
recuperarse a partir de la estimacién del modelo VAR(1) en estas dos variables.

Big = o+ a1 B = aig + ar1aag; By = g + a110s;
520 = 20; Pa; = Qa2; Poy = ia3;

2 _ 2 2 2. 2 _ 2. _ 2,
Oul - U’Ul + a110v27 0u2 - U'U27 0u17u2 - allo-vQy

sistema que puede resolverse para obtener los 9 pardmetros del modelo es-
tructural recursivo.

Muestre que en este modelo, no sélo se pueden recuperar estimaciones de
todos los pardmetros que aparecen en el modelo estructural, sino también las
series temporales de los términos de error vi; y voy.

1.13 Técnicas de cointegraciéon en el andlisis de ‘“Asset
allocation”

Vilidas para decisiones de inversién a largo plazo

Si las decisiones se toman en base a tendencias de largo plazo, no requieren
una actualizacién muy frecuente.

El andlisis de cointegraciéon trata de maximizar la estacionariedad y, con
ello, minimizar la varianza del “tracking error”. En contraste con el anélisis de
frontera eficiente, en el que nada asegura que los “tracking errors” sean “mean-
reverting”.

Los modelos de benchmarking o de index tracking utilizan generalmente
regresiones con logaritmos de precios. La variable dependiente puede ser el
log de un indice mds un pequeiio incremento que equivalga a un z% anual.
Las variables explicativas son los logs delos precios de los activos que pueden
incluirse en la cartera que sigue al indice.

El problema tiene dos partes: a) seleccionar los activos, b) optimizar las
ponderaciones de la cartera. El primero es dificil. Opciones: “fuerza bruta”:
estimar muchos modelos con distintas combinaciones de activos y ver cudl ajusta
mejor. Basarse en las preferencias de riesgo del inversor, o en las limitaciones de
inversién que se nos impongan. Segundo problema: Técnicas de regresion, de
andlisis de series temporales multivariante, o de cointegracién. Si se construye
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una cartera mediante regresién o cointegracion, as ponderaciones se normalizan
de modo que sumen 1, para ser ponderaciones de cartera.

En global asset management: primero, elegir los paises, y después, comprar
o vender futuros sobre los indices de los paises, o repetir el problema dentro de
cada pafs, para obtener carteras de seguimiento de cada indice.

En modelos de un sélo paifs: Primero, seleccionar los sectores; después, se-
leccionar los activos dentro de cada sector.

Constrained allocations:

Ejemplos:

) Seleccionar una cartera que invierte al menos un 50% en Espafia.

. Fijar como rentabilidad benchmark la del SP100 méds un 5% anual

° Construir un fondo corto-largo en 12 paises prefijados, con un indice

mundial como benchmark

Utilizar como variable dependiente, el indice que se quiere replicar, menos
w-veces el precio del activo en el que se nos restringe a tomar una posicién del
w%. Si se nos exige una posicién en el activo “no superior al w%” el problema
es mds dificil. Primero, resolver el problema sin restringir, a ver si hay suerte:
Jsatisface la solucién la restriccion?

Supongamos que no podemos tomar posiciones cortas. Si alguna ponderacién
es negativa, se fija en cero, y se vuelve a resolver, iterando de este modo. Confiar
en alcanzar una solucién.

Seleccién de pardmetros:

El modelo béasico de “index tracking” mediante cointegracién se define en
funcién de ciertos pardmetros:

° Una rentabilidad “alfa” por encima de | indice

° El intervalo de datos diarios que se utiliza en la estimacién “training
period”

) La relacién de activos en la cartera

° Las posibles restricciones

Los pardmetros se selecciona en base al resultado de pruebas dentro y fuera
de la muestra.

Dentro de la muestra:

. Estadisticos ADF

. Standard error of regresién

° Turnover

“Testing period”:

° Tracking error variance: varianza de los errors de réplica diarios RMSE

° Differencial de rentabilidades entre la cartera y el indice

. Information ratio: (Mean daily tracking error)/(desviacién tipica del
daily tracking error) a lo largo del “testing period”

) La decisién puede basarse sobre un “alfa” o sobre el nimero de activos

que queremos incluir en la cartera.

45



1.14 Apéndices

1.14.1 Las innovaciones de un modelo estructural deben estar incor-
relacionadas entre si.

De hecho, si dicha covarianza no fuese nula, podriamos transformar el modelo
del siguiente modo: proyectariamos uno de los dos errores, vy, por ejemplo,
sobre vy,

Vot = PV1t + Q¢
obteniendo que el residuo a;, definido por a; = voy — pvyy, estaria incorrela-

cionado, por construccién, con vi¢.
Si representamos el modelo estructural en forma matricial,

1 —aq1 yir \ _ [ @10 Q12 13 Yit—1 V1t
= + +
—ag 1 Yot Q20 Q2 Q23 Yot—1 Voy

y premultiplicamos por la matriz ( l—lb (1)

la segunda ecuacion por la diferencia entre ésta y el resultado de multiplicar la
primera ecuacién por p, tendriamos,

, lo que equivale a sustituir

Yie = Q10+ a11yer + a12y1i-1 + Q13Y2e—1 + V1t (28)
(T4 paar)yar = (@20 — paao) + (P + ao1)yie + (a2 — par2)yie—1 + (a3 — paiz)yar—1 + Qs

un modelo VAR en el que, una vez despejaramos yo; en la segunda ecuacion,
serfa indistinguible del modelo (8) con Cov(vyt,ar) = 0. Siempre debemos es-
tar considerando esta ultima representacién con errores ortogonalizados, por lo
que la condicién de ausencia de correlacién entre los errores de las distintas
ecuaciones en el modelo VAR estructural debe satisfacerse siempre.

1.14.2 La descomposicién de Cholesky en el caso general (Apéndice)

Para eliminar la correlaciéon contempordnea existente entre las innovaciones
de distintas ecuaciones, podemos transformar el vector u; en un vector e; medi-
ante la transformacién definida por la descomposicién de Cholesky de la matriz
de covarianzas ¥, ¥ = Var(u;). Esta descomposicién nos proporciona una ma-
triz triangular inferior G tal que GG’ = 3. Como consecuencia, G~'SG'~! =1,
y el sistema VAR puede escribirse,

oo

Y, = ZAsutfs = Z (ASG) (Gilutfs) = Z;{setfs
s=0 s=0

s=0

con Ay = A,G, ei_y = G luy_y, Var (e;—s) = G Var(u,_ ) G™Y = 1.
El efecto de e;; sobre Y ;4 viene medido por el elemento (j,%) de la matriz
A,. La sucesién de dichos elementos, para 1 < s < co proporciona la respuesta
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dindmica de la variable Y; a una innovacién en la variable Y;. esto se conoce
como funcidn de respuesta de Y; a un impulso sorpresa en Y;.

Como e;; es el error de predicciéon un periodo hacia adelante en Yj;, la rep-
resentacién MA ortogonalizada nos permite computar el error de prediccién de
Y+, m-periodos hacia adelante en el instante £ —m + 1, a través del elemento -
ésimo en el vector Z —0 A sCi_s. Su varianza, el elemento i-ésimo en la diagonal
de Y7 A AL, puede escribirse, Z] S A (i, 5) @ (5, 4) , siendo @ (4, 7) el
elemento (4,j) genérico de la matriz element A,. Al aumentar m, a partir de
m = 1, esta descomposicién de la varianza del error de prediccién de Yiiim
entre las k variables del vector Y; se conoce como descomposicién de la varianza
de Y;;. Proporciona una estimacién de la relevancia de cada variable del sistema
para explicar los errores de prediccion de las fluctuaciones futuras en Y.

1.14.3 Errata en Enders, pagina 299,

oo

Z Aluti] =AY (Var(u—;)) = (I,—A}) ™!

=0

Var(Y,) = E [(Y; -

T Ba1B12 + B3 —(B11 + Baz)B12 >
Var(y) = (I = A7) 7% = ( —(B11 + B22)Bar BarBiz + B

con M = [1— (By; 812 + 531)] (1= (Ba1812 +6§2)] — (B11 + B22)?B12Ba1-
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