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1 Panel data sets

Economic data sets that combine time series and cross sections are increasingly
being available. Sometimes, they are created by a researcher that collects data
on a given set of variables over a period of time for a set of countries. But
often, they are produced because a cross section of individuals or �rms are
followed over time, and the values of some of their characteristics and decisions
are collected in what is known as a Panel Data set. Examples of the latter are:

� National Longitudinal Surveys on Labor Market Experience (NLS) http://www.bls.gov/nls/nlsdoc.htm,

� Michigan Panel Study of Income Dynamics (PSID) http://psidonline.isr.umich.edu/
in which 8,000 families and 15,000 individuals, interviewed periodically
from 1968 to the present.

� The Bank of Spain puts together the Encuesta Financiera de las Familias,
http://www.bde.es/estadis/e¤/e¤.htm, a still short panel data on �nan-
cial decisions.

� British Household Panel Survey (BHPS), http://www.iser.essex.ac.uk/ulsc/bhps,
follows several thousand housegholds (over 5,000) anually, since 1991.

� German Socioeconomic Panel Data (GSOEP), http://dpls.dacc.wisc.edu/apdu/gsoep_cd_TOC.html,

� Medical Expenditure Panel Survey (MEPS), http://www.meps.ahrq.gov/

� Current Population Survey(CPS), http://www.census.gov/eps/, is a monthly
survey of about 50,000 households. Each household is interviewed each
month over a 4-month period, followed by a 8-month period without in-
terviews, to be interviewed again afterwards. These are known as rotation
panels.

A panel data has a cross section (N) and a time dimension (T ). Depending
on the type of panel Usually, the time dimension of the panel (T ) is short,
with a very large cross-sectional dimension (N). In that case, we search for
consistency of estimates along the N -dimension. This is because panel data are
usually oriented toward cross-section analysis, and heterogeneity across units
is the central focus of the analysis. However, other possibilities also exist, like
having relatively long time series for a short number of countries.
The general, linear panel data model is of the form:

yit = x0it�i + z
0
i�+ "it; i = 1; 2; :::; N; t = 1; 2; :::; T

in which variables in vector xit change over time and across individuals,
while those in vector zi change only across individuals while remaining constant
over time for each individual. The speci�cation above is generally designed for
a large N; short T: The model above would then imply estimation of a large
number of parameters, so it is usually assumed that coe¢ cients are the same
for all individuals, to allow for enough degrees of freedom. An example would
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estimate how family income, as well as the age and the level of education of the
household head help a¤ect family savings:

family savingsit = �+ �1incomeit + �2ageit + �3educit + uit

A panel data is very di¤erent of a SURE system of equations. In the latter,
we have a set of equations with a di¤erent endogenous variable in each one
of them. In a panel data we have always the same endogenous variable. We
could see it as a system of equations for each time period, but it has a tight
structure, that determines the correlation structure of the error term,as we will
see later, contrary to what happens in a SURE system where we have to proceed
by assumption. A panel data set is said to be balanced when all individuals are
observed for the same number of time periods, while it is unbalanced when the
opposite happens. If there is some self-selection, with individuals deciding when
to be interviewed, or some systematic decision on when to interview subjects,
then estimates may easily be biased. This requires some special treatment.
Some examples:

ln(wageit) = �0 + �0D91t + �2D92t + �3computerit + �4 exp erit +

+�5educit + �6femalei + uit

which is considered by Wooldridge (2002) to estimate the e¤ect of computer
usage (measured by hours of use in year t) on wages. The dummy variable
femalei is invariant through time, as it might be the case with the number of
years of education (educit). Two dummy variables, invariant across the cross-
section, are also included to allow for a time e¤ect on wages. This speci�cation
allows for intercepts speci�c of each decision unit, while slope coe¢ cients are
assumed to be the same for each individual. We could also allow for cross e¤ects
by introducing the product of some explanatory variables like computerit and
femalei:
A di¢ culty when working with panel data is that since we repeatedly observe

the same units, it is usually no longer appropriate to assume that observations
are independent, which may complicate the analysis in dynamic and nonlinear
models. On the other hand, an advantage is that it allows us to deal with
unobserved characteristics, and to identify certain facts at the individual level.
Panel data are not only suitable to model why individuals behave di¤erently,
but also to model why a given unit behaves di¤erently at di¤erent points in time.
The double dimension structure of the panel data allows for testing hypothesis
that could not be addressed in either a single cross-section or in a single set
of time series: does consumption increase by 2% because everybody increases
consumption by 2% or because half of the population increases consumption by
4%?. Ben-Porath (1973) observed that over time, 50% of women appear to be
working at any time period. However, it is unclear whether these are always the
same women or rather, each woman has a probability of 1/2 of being working at
any time period. The two possibilities would have very di¤erent policy implica-
tions. Another typical example refers to the possibility of separating economies
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of scale from technological change. The former could be explored in a cross
section, while the second is a proper hypothesis for tine series data, although
then, the two e¤ects would be confused. Usually constant returns to scales is
assumed and then the time series data is used to test for technological change.
A panel data can provide information on both issues at the same time.
Panel data techniques have clear advantages in dealing with unobserved in-

dividual characteristics. Consider estimates of a Cobb-Douglas production func-
tion with data on a number of �rms. Suppose the true model is,

yit = �+ x0it� +mi�k+1 + "it

where mi is the management quality for �rm i; which is assumed to be
constant over time. The unobserved mi variable is expected to be negatively
correlated with the other explanatory variables, since a high quality manage-
ment will possibly require a more e¢ cient use of inputs. Therefore, excluding
mi from the estimation because of not being observable will bias estimates for
the other parameters. With panel data, we can consider a �rm speci�c e¤ect,
de�ned as �i = �+mi�k+1; and even hope to estimate its size, although it will
be impossible to identify �k+1 by itself.
Similarly, a �xed time e¤ect can be included in the model to capture the

e¤ect of all (observed and unobserved) variables that do not vary across the
individual units. A �nal, more technical advantage, is that panel data models
provide internal instruments for regressors that are endogenous, or are subject
to measurement error. Usually, it can be argued that some transformations of
the original variables are uncorrelated with the model�s error term while being
correlated with the explanatory variables themselves. This is interesting, since
external instruments, which are often harder to justify, or for which data may
be hard to �nd, may not be needed. For instance, if xit is correlated with an
omitted explanatory variable �i (which will then be part of the error term), it
can be argued that xit � �xi; where �xi is the time average for individual i; is
uncorrelated with �i and hence, it provides a valid instrument for xit:

1.1 Estimation approaches

The individual or group time-invariant e¤ects in zi may be observed, like sex,
race, location, or unobserved, like family speci�c characteristics, individual het-
erogeneity in skill or preferences, all of them being constant over time. If zi
is observed for all individuals, the model can be handled easily, as a standard
regression model, to estimate vectors � and � in,

yit = x0it�i + z
0
i�+ "it; i = 1; 2; :::; N; t = 1; 2; :::; T

which is identi�ed by the standard condition,

E("it=xit; zi) = 08i; t

This condition implies,
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E(yit=xit; zi) = x0it�i + z
0
i�; i = 1; 2; :::; N; t = 1; 2; :::; T

As in any regression model, this expectation is what we are interested on.
Often, the error term "it is also assumed to be independent and identically
distributed over individuals and over time, with mean zero and variance �2":
Obviously, in the usually available short panels, the individual speci�c e¤ects

cannot be consistently estimated. Besides, the small number of observations
would lead to a huge loss of precision. Hence, we need to collapse the linear
combination of individual characteristics z0i� into a single number; z

0
i� = �i;

yit = x0it�i + �i + "it; i = 1; 2; :::; N; t = 1; 2; :::; T

We then substitute our interest on the previous conditional expectation, E(yit=xit; zi);
by a focus on:

E (yt=xit) = E (�i=xit) + x
0
it�

An important complication arises under standard estimation procedures
when zi is unobservable. Examples include the determination of wages on the
basis of experience and education, with no observation of the productivity of
the worker, or a study on health status of individuals with no data on usage
of health services.Also, the determination of pro�ts at the �rm level lacking
data on the quality of management. We cannot then compute the expectation
conditioned on the values of these unobserved variables.
Here, there are two possibilities: if we are willing to accept the Mean-

independence assumption, that the unobserved individual characteristics are
independent of the variables in xit: E (�i=xit) = �i; constant, we will have,

E (yt=xit) = �i + x
0
it�

and the model has an error term with two di¤erent components,

yit = �i + x
0
it� + ["it + (�i � �i)]

Under the Mean independence assumption, this speci�cation does not pose
serious estimation di¢ culties. This leads to the Random E¤ects model.
However, in many applications it may be natural to believe that zi and xit

will be correlated, so that E (�i=xit) = �i+h(xit); and this dependence will be
incorporated into the error term,

yit = �i + x
0
it� + ["it + (�i � fE (�i=xit)� h(xit)g)]

This leads to the Fixed E¤ects model. The correlation between explana-
tory variables and the error term will then lead to inconsistent least-squares
estimates, so whenever there is reason to believe that unobserved individual ef-
fects are correlated with the observed explanatory variables, we need to explore
alternative estimation approaches.1

1We are usually interested in estimating the partial e¤ects:
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The estimation approach suggested depends on the assumptions on the cor-
relations between "it and either zi� or �i:

� Pooled regression: Vector zi contains only a constant term, the same for
all individuals in the sample. Ordinary least squares estimates of the
common parameters � and � in

yit = �+ x0it� + "it

using all the data on all the individuals for all time periods are then consis-
tent and e¢ cient.

� Fixed e¤ects: If some zi are unobserved, but correlated with some xit; we
have,

yit = x0it� + �i + "it

where �i = z0i� captures all individual speci�c e¤ects. The least squares
estimator of � is biased and inconsistent, because of the omitted variable bias.
The Fixed E¤ects approach considers �i as an individual-speci�c constant

term in the regression. The term "�xed" does not refer to the individual e¤ect
being non-stochastic but rather, to being correlated with the variables in xit.
It will be impossible with this speci�cation to distinguish between �i and any
other individual e¤ect that is constant over time, so can just hope to identify a
single individual-speci�c e¤ect. The estimation approach in this situation will
consist of transforming the data so as to get rid of the individual e¤ects pro-
ducing the inconsistent estimates. We can estimate constant individual speci�c
e¤ects, �i; that can be treated in estimation as N unknown parameters, and the
model is referred to as the Fixed E¤ects model. Because of these data transfor-
mations, we will have some di¢ culty in identifying the e¤ects of time-invariant
characteristics, like race or gender.

� Random e¤ects: If the unobserved heterogeneity can be assumed to be
uncorrelated with any other explanatory variable, and we assume that
individual e¤ects can be jointly considered as z0i� = � + �i; with �i �
[0; �2�], the model can then be written,

yit = x0it�+E(z
0
i�=xit)+[z

0
i��E(z0i�=xit)]+"it = x0it�+�+(�i+"it) = x0it�+�+uit

@E[yt=xjt]

@xjt
= �j ; j = 1; 2; :::; k for all t

after correcting for individual characteristics. These marginal e¤ects can be identi�ed even if
the conditional mean is not. For instance, it is possible to identify the e¤ects on earnings of
an additional year of schooling, controlling for individual e¤ects, even though the individual
e¤ects and the conditional mean are not identi�ed.
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where uit = �i + "it; with �i being an individual speci�c element similar to
"it; except for the fact that there is a single draw for �i that enters the regression
identically every period. Individual intercepts are then treated as draws from a
distribution with mean � and variance �2�: The essential assumption is that these
draws are independent of the explanatory variables in xit: The error term has
then two components, a time invariant component, �i; and the "it component,
which is uncorrelated over time. It is sometimes referred to as Random e¤ects
model or Error Components model.
The presence of the �i component in the error term induces necessarily some

autocorrelation structure, even if the original error term in the model "it was
independent over time and across individuals, since:

E(wit:wis) = E [(�i + "it) (�i + "is)] = �2� if t 6= s and = �2� + �
2
" if t = s

2 The static linear model

2.1 Pooled OLS estimates

Consider the general panel data model,

yit = z0i�+ x
0
it� + "it; i = 1; 2; :::; N ; t = 1; 2; :::; T

where we assume that individual characteristics are either observable, or
non-observable but uncorrelated with the variables in xit:
Suppose that we are willing to make the crucial assumption:

E (z0i�=Xi) = � 8i

Then,

yit = �+ x0it� + ["it + (z
0
i�� E (z0i�=Xi))] ; i = 1; 2; :::; N ; t = 1; 2; :::; T

and we will have the same vector of coe¢ cients across individuals or decision
units. Here Xi includes both, the observable zi and the xit variables. We can
then write the panel data model as the system:

y1t = x01t� + u1t; t = 1; 2; :::; T1

y2t = x02t� + u2t; t = 1; 2; :::; T2

:::

yNt = x0Nt� + uNt; t = 1; 2; :::; TN

with error term: uit = "it + (z
0
i�� E (z0i�=Xi)) ; and we can think of the

model as having a single regression with:
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X =

0BB@
X1

X2

:::
XN

1CCA ; y =
0BB@

y1
y2
:::
yN

1CCA ; � = � �
�

�

where each Xi matrix is Tixk; while yi is Tix1:
But the central point of this model is that the assumption we have made

on E (z0i�=Xi) = � is inappropriate in most panel data situations, in which the
opposite will be likely to occur.
The pooled OLS estimator consists of applying OLS to the stacked y and X

above:

�̂POLS =

 
NX
i=1

X 0
iXi

!�1 NX
i=1

X 0
iyi

!
=

 
NX
i=1

TX
t=1

x0itxit

!�1 NX
i=1

TX
t=1

x0ityit

!

The properties of the alternative estimators will depend on two things: a)
the stochastic characteristics of the errror term in the original model, "it; and b)
the relationship between the unobservable, ommitted individual characteristics,
and the variables included in the model.
Regarding the �rst point, alternative possibilities are:

� The xit are contemporaneously exogenous: E("it=xit) = 0

� A stronger assumption: The xit are strictly exogenous: E("it=xis) =
0 8t; s

Strict exogeneity fails if xit = (1; yit�1); because: E("it=xi1;xi2; :::; xiT ) =
E("it=y0; y1; :::; yT�1) = "it
For the OLS estimator to be consistent we need lack of correlation between

explanatory variables and error term, together with existence of second order
moments of explanatory variables.
Consistency
The estimator is consistent for N ! 1 under conditions: i) E(x0ituit) =

0k; t = 1; 2; :::; T; ii) rank
h
E(
PT

t=1 x
0
itxit)

i
= k;with an asymptotic probability

distribution:

p
N
�
�̂POLS � �

�
!
d
N
�
0; A�1BA�1

�
where A = E(X 0

iXi) is estimated by Â = N�1PN
i=1X

0
iXi, and B =

V ar(X 0
iui) = E(X 0

iuiu
0
iXi) is estimated by B̂ = N�1PN

i=1X
0
iûiû

0
iXi;

2 so that

2This is the generalization of the standard variance-covariance matrix for the OLS estima-
tor: �(�̂OLS) = (X

0X)�1(X0�X)(X0X)�1
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the covariance matrix is estimated by:3

�(�̂POLS) =
1

N

 
1

N

NX
i=1

X 0
iXi

!�1 
1

N

NX
i=1

X 0
iûiû

0
iXi

! 
1

N

NX
i=1

X 0
iXi

!�1
=

 
NX
i=1

TX
t=1

xitx
0
it

!�10@ NX
i=1

 
TX
t=1

xitûit

!
NX
i=1

 
TX
t=1

xitûit

!01A NX
i=1

TX
t=1

xitx
0
it

!�1

E¢ ciency
It will not be an e¢ cient estimator, because the structure of the error term

induces autocorrelation: E(uituis) = �2u when t 6= s: The variance-covariance
matrix above incorporates the fact that unobserved individual characteristics
introduce autocorrelation in the error term. The practical consequence of the
described autocorrelation is that with the panel data we have less information
than with NT independent observations.

Unobservable individual e¤ects We now suppose that some of the indi-
vidual e¤ects are not observable, and we include them into a single variable �i:
Let us denote uit = "it+�i; i = 1; 2; :::; N ; t = 1; 2; :::; T: That would have two
implications:

1. if any of the unobservables in �i is correlated with any of the xit variables,
then condition i) above will no longer hold, and the pooled least squares
estimate will be biased and inconsistent,

2. estimating by pooled least-squares we have that the presence of individual
e¤ects in the error term introduces a speci�c form of autocorrelation,
because error terms corresponding to a same individual will be correlated
with each other:

E(uituis) = �2�; t 6= s

The estimate of the variance-covariance matrix proposed in White (19xx) is
robust against possible cross correlation among error terms across equations in
the same time period, or against a di¤erent variance for the error term in each
equation (time-varying variances). The conditional variance is also allowed to

3Since Xi =

0@ xi11 ::: xi1T
::: ::: :::
xik1 ::: xikT

1A ; then:
PN
i=1X

0
iXi =

PN
i=1

0@ PT
t=1 x

2
i1t :::

PT
t=1 xi1txikt

::: ::: :::PT
t=1 xiktxi1t :::

PT
t=1 x

2
ikt

1A ;the same kxk matrix we obtain

from adding up over i = 1; 2; :::; N and over time the kxk matrices of products:

xitx
0
it =

0@ xi1t
:::
xikt

1A� xi1t ::: xikt
�
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depend on Xi arbitrarily. However, it does not take into account the possible
autocorrelation of the error term, as it will be the case if we estimate by Pooled
least-squares the Fixed E¤ects model. This is taken into account in the esti-
mate proposed above. Alternatively, we can follow the Newey-West approach
to obtain a panel-robust estimate of the variance-covariance matrix :

�(�̂POLS) =

 
NX
i=1

X 0
iXi

!�1 NX
i=1

X 0
iûiû

0
iXi

! 
NX
i=1

X 0
iXi

!�1
=

 
NX
i=1

TX
t=1

xitx
0
it

!�1 NX
i=1

TX
t=1

TX
s=1

(ûitxit) (ûisxis)
0
! 

NX
i=1

TX
t=1

xitx
0
it

!�1
If the conditional covariance of uit is independent of xis for all s; then,

�(�̂POLS) =

 
NX
i=1

TX
t=1

xitx
0
it

!�1 " TX
t=1

TX
s=1

 
NX
i=1

ûitûis

!
xitx

0
is

# 
NX
i=1

TX
t=1

xitx
0
it

!�1
We need to be aware of the fact that the term �robust�applied to the variance-

covariance matrix produced by some statistical packages may refer to just the
correction for heteroskedasticity. However, in many relevant cases, the impor-
tant e¤ect in panel data is the autocorrelation induced by the repeated obser-
vations in a same individual.

Example: Using the Cornwell-Ruport (1988) data set, Green (6ed.), p187,
example 9.1, show estimates of the returns to schooling by an equation in which
logged wages are explained by working experience, their squared value, weeks
worked, years of education, and a set of dummy variables to represent whether
a given worker: has a blue collar occupation, works in manufacturing industry,
resides in the south, resides in an SMSA, is married, the wage is set by a union
contract, is a female, is black. The sample is made of 595 workers, which are
followed over a 7-year period, 1976-1982. Each year of education is estimated
to increase wages by 5.67%. OLS standard errors are in this example of similar
size to White�s robust standard errors, while both of them are about half size
of the Panel robust standard errors. It means that ignoring the within-group
correlations in this case matters a lot, substantially a¤ecting inference through
the implied autocorrelation of the error term.
The model can also be estimated using individual sample means, for a sample

of 595 observations. We will still have the inconsistency of least-squares esti-
mates in the �xed e¤ects model, but the within-group autocorrelation now dis-
appears. Table 9.2 in Green (6ed.) shows similar coe¢ cient estimates. White�s
robust standard errors are now similar to the Panel robust standard errors for
the whole Panel data sample.
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2.1.1 Hypothesis testing

Linear hypothesis of the form: H0 : R� = r can be tested by the usual Wald
statistic:

W = (R� � r)0
�
R�(�̂POLS)R

0
�
(R� = r)

that obeys a chi-square distribution with q degrees of freedom, q being the
number of rows in R and r (the number of independent restrictions being tested).

2.2 Generalized pooled least squares estimation

When we have some structure on the form of the conditional covariance matrix
of ui; we can prefer to use GLS estimation, in search of improved e¢ ciency.
Since we use random sampling, the unconditional covariance matrix should be
the same for each observation unit: 
 = E(uiu

0
i); a TxT matrix. As usual, the

numerical values of the elements in the variance-covariance will be unknown, and
we will have to estimate them �rst, then moving into what is usually known as
Feasible GLS estimation (FGLS).
Remember we have one equation for each time period, with N observa-

tions in each equation. It is important to bear in mind that consistency of
GLS estimator needs of a stronger condition on lack of correlation between
explanatory variables and error terms. Now, each element in Xi must be un-
correlated with ui [Wooldridge (2002)]. This is because for consistency we now

need p lim
�
1
N

PN
i=1X

0
i
ui

�
= 0: A typical case when this will not hold is in

dynamic panel data estimates under autocorrelation of the error term.
To construct the GLS estimator, we would follow the standard practice of

pre-multiplying the equation by 
�1=2; and:

�̂GLS =

 
NX
i=1

X 0
i
Xi

!�1 NX
i=1

X 0
i
yi

!
The reason to need a more strict condition on lack of correlation to show

consistency is that we now need: E(X 0
i
ui) = 0k:The asymptotic distribution

is:

p
N
�
�̂GLS � �

�
!
d
N
�
0; A�1BA�1

�
where A = E(X 0

i

�1Xi) and B = E(X 0

i

�1uiu

0
i


�1Xi) which are estimated
by using a consistent estimate 
̂ of 
 , computed using the residuals from a �rst-
step set of consistent, but ine¢ cient least squares regressions.
In most applications, it is natural to assume that: E(X 0

i

�1uiu

0
i


�1Xi) =
E(X 0

i

�1Xi) , which implies B = A and hence, the asymptotic variance of

�̂GLS becomes: �(�̂GLS) = A�1=N =
�
E(X 0

i

�1Xi)

��1
=N; which can be esti-

mated by: �̂(�̂GLS) = (
PN

i=1X
0
i


�1Xi): This assumption essentially requires
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conditional homoskedasticity (constant conditional variances and covariances),
i:e:; that the expectation E(u0i


�1Xi) does not depend on Xi.

3 The Fixed E¤ects model

This model embeds the idea that all the unobservable individual e¤ects for each
observation are aggregated in a single term �i:Under the assumption that:

E(�i=Xi) = h(Xi);

is constant over time, that constant being the Fixed individual E¤ect, each
individual e¤ect �i can be treated as an unknown parameter to be estimated,
and we get a linear regression model in which the intercept is allowed to vary
across individuals,

yit = �i + x
0
it� + uit;

with

uit = "it + (�i � h(Xi)) ; with "it � i:; i:d:(0; �2")

The model will usually imply a rather large number N of regressors which
it could lead to a noticeable loss of precision. It can be implemented in a
simpler way by taking into account that individual e¤ects disappear if we apply
the Within transformation, to transform the data in deviations with respect
to individual means. Taking averages in the previous equation: �ui = �"i +
(�i � h(Xi)) ; so that uit � �ui = "it � �"i; and:

yit � �yi = (xit � �xi)0� + ("it � �"i); i = 1; 2; :::; N ; t = 1; 2; :::; T

Applying least squares to this model, we get the Within estimator of the
Fixed E¤ects model,

�̂FE =

 
NX
i=1

TX
t=1

(xit � �xi)0(xit � �xi)
!�1 NX

i=1

TX
t=1

(xit � �xi)0(yit � �yi);

The estimator will be consistent as N !1 if E[(xit � �xi)"it] = 0:This will
hold if xit is uncorrelated with "it and �xi has no correlation with the error
term. These are implied by strict exogeneity of the regressors:

E(xit"is) = 0 8t; s

Strict exogeneity precludes the inclusion in xit of lagged dependent vari-
ables or variables that depend upon the history of yit: For instance, explaining
labour supply of an individual, we may want to include as a regressor years of
experience, but experience will clearly depend upon the person�s labour history.

13



By applying the Within transformation, the individual speci�c constant
characteristics will have dropped from the model. Individual e¤ects can later
be recovered by,

�̂i = �yi � �xi0�̂FE ; i = 1; 2; :::; N

which are unbiased, but will not be consistent if just the cross-section di-
mension tends to in�nity. For consistency we will need T ! 1: The reason
that these are not consistent as N !1 if T is short is that that leaves us with
a very limited amount of information to estimate each individual �xed e¤ect,
and x and y averages do not converge to any well de�ned limit as the number
of individuals increases. This is an interesting situation in which it is possible
to estimate the � coe¢ cients consistently, even if the �i cannot be estimated
consistently because of a short time dimension.
As we can see, we can just recover a single �i variable for each individual,

which is the reason why the speci�c e¤ects for a same infdividual need to be
considered as aggregated in a single variable �i:
If there are some observed individual e¤ects zi; their joint in�uence can be

recovered by regression,

(�yi � �xi0�̂FE) = z0i +
h
�i + �"i � �xi0

�
�̂FE � �

�i
leading to consistent estimates of  if each variable in vector z is uncorrelated

with "it and with �i: As in the case of the unobservable, time invariant individual
e¤ects, the estimated coe¢ cient will not be very reliable with a short time
dimension T .
The variance-covariance matrix,

V ar(�̂FE) = �2�

 
NX
i=1

TX
t=1

(xit � �xi)0(xit � �xi)
!�1

assumes that individual e¤ects are independent across individuals and time.
Unless T is large, this will underestimate the true variance. The reason is that
the error covariance matrix in the transformed regression is singular (since the
T transformed errors for each individual add up to zero), and the variance of
"it��"i is (T �1)=T�2"; rather than �2": If, for instance, T = 3; then the variance
of "it � �"i will be 2�2"

3 . A consistent estimator for �2" can obtained from the
Within groups estimation,

�̂2" =
1

N(T � 1)

NX
i=1

TX
t=1

(yit��̂i�x0it�̂FE)2 =
1

N(T � 1)

NX
i=1

TX
t=1

h
(yit � �yi)� (xit � �xi)0�̂FE

i2
although the appropriate number of degrees of freedom would beN(T�1)�k;

and we will have to introduce a correction factor.
A panel-robust estimate of the variance-covariance matrix is,
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�(�̂POLS) =

 
NX
i=1

TX
t=1

(xit � �xi) (xit � �xi)0
!�1 " TX

t=1

TX
s=1

NX
i=1

("it � �"i) ("is � �"i)0 (xis � �xi) (xit � �xi)0
#
:

:

 
NX
i=1

TX
t=1

(xit � �xi) (xit � �xi)0
!�1

A variance for individual e¤ects can be obtained from:

V ar(�̂i) =
�2�
T
+ �x0iV ar(�̂FE)�xi

showing that estimates of individual e¤ects �i are inconsistent, since even
though V ar(�̂FE) converges to zero with N; that is not the case with the �rst
term in V ar(�̂i): This is because of estimating each individual e¤ect with a
small number T of observations.
De�ning N individual dummy variables (Dij = 1;if i = j; j = 1; 2; :::; N; and

Dij = 0 otherwise) the model can also be written,

yit =

NX
j=1

�jDij + x
0
it� + "it

which is known as the least squares dummy variable (LSDV) estimator. As men-
tioned above, a limitation of this model is that all time invariant, unobservable
individual e¤ects get confused with each other in a single �i variable for each
individual, and we are just able to estimate their aggregate in�uence over yit:

3.0.1 Testing the signi�cance of the group e¤ects

Even though we can use the above results to tests for signi�cance of either one
of the individual e¤ects, the natural hypothesis is to test that they are all equal
to each other. If that is the case, the restricted model leads to the pooled least
squares estimate, and we have an F -test,

F (N � 1; NT �N � k) = (R2LSDV �R2POLS)=(N � 1)
(1�R2LSDV )=(NT �N � k)

The correction for the F -test comes from the fact that in the Pooled OLS
estimator we have NT � k � 1 coe¢ cients, while in the LSDV estimator we
estimated NT �N � k coe¢ cients, with a di¤erence of N � 1:

3.0.2 Fixed time e¤ects

The model can be extended to accommodate �xed time e¤ects through time
dummy variables. However, to avoid perfect collinearity, we should just include
T � 1 of the possible time e¤ects. Alternatively, we can specify the model,
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yit = x0it� + �+ �i + �t + "it; with
NX
i=1

�i =
TX
t=1

�t = 0

Least-squares estimates of the slopes � can be obtained by a regression of
y�it on vector x

�
it; with,

y�it = yit � �yi � �yt + �y
where �yi = T�1

PT
t=1 yit; �yt = N�1PN

t=1 yit; �y = N�1T�1
PN

t=1

PT
t=1 yit;

and similar expressions apply to vector x:
Once we have estimates for the vector �; we can recover estimates for the

remaining parameters from,

�̂ = �y � �x0�̂
�̂i = (�yi � �y)� (�xi � �x)0�̂
�t = (�yt � �y)� (�xt � �x)0�̂

The variance-covariance matrix is obtained from the standard cross-moment
product of transformed explanatory variables, with an estimate of �̂2" being
obtained from �̂2" = RSS=[NT � (N�1)� (T �1)�k�1]: As we will see below,
there are more general models allowing for time e¤ects.
Example: Green (6ed.), ex. 9.4, estimates the model in the previous ex-

ample, for logged wages, with a constant intercept and T � 1 time dummies.
The constant individual characteristics: education, sex (female-dummy) and
race (white-dummy), need to be dropped now, so that we lose the main inter-
est of estimating the returns to education. Pooled least squares estimates are
obtained for an initial speci�cation that includes a single, common intercept
and no time dummies. A second model includes again a single intercept but
also time dummies. A third speci�cation allows allowing for individual speci�c
intercepts and no �xed time e¤ects, while a �nal model allows for both, �xed
time and individual characteristics. In this �nal speci�cation, we need to drop
an additional time dummy variable, because the Experience variable is a nat-
ural time trend. The signi�cance of individual e¤ects and/or �xed time e¤ects
can now be tested by comparing the Residual Sums of Squares of appropriately
chosen speci�cations. Green also suggests comparing the conventional estimate
and the robust estimate, the latter with data in group mean deviations form, of
the variance-covariance matrices as a speci�cation test for the individual e¤ects
model. If the speci�cation is correct, there should not be any heterogeneity in
the error term and hence, not heteroscedasticity or autocorrelation left. In the
example, robust standard errors are of the order of 20 times as large as the
conventional ones, clearly pointing out to misspeci�cation errors.

4 Within and between estimators

The original Panel data speci�cation,
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yit = �i + x
0
it� + "it

can be written in terms of group means,

�yi = �i + �x
0
i� + �"i

and in deviations from group means:

yit � �yi = (xit � �xi)0 � + ("it � �"i)

All three models could be consistently estimated (although possibly not ef-
�ciently) by least-squares. Consider the overall second order matrices,

Stotalxx =
NX
i=1

TX
t=1

(xit � �x) (xit � �x)0 ; Stotalxy =
NX
i=1

TX
t=1

(xit � �x) (yit � �y)0

the within group matrices,

Swithinxx =

NX
i=1

TX
t=1

(xit � �xi) (xit � �xi)0 ; Swithinxy =

NX
i=1

TX
t=1

(xit � �xi) (yit � �yi)0

and the between-groups matrices,

Sbetweenxx =
NX
i=1

TX
t=1

(�xi � �x) (�xi � �x)0 = T
NX
i=1

(�xi � �x) (�xi � �x)0 ;

Sbetweenxy =
NX
i=1

TX
t=1

(�xi � �x) (�yi � �y)0 = T
NX
i=1

(�xi � �x) (�yi � �y)0

Notice that:

NX
i=1

TX
t=1

(xit � �xi) (�xi � �x)0 =
NX
i=1

 
TX
t=1

(xit � �xi)
!
(�xi � �x)0 = 0

because the inside bracket is equal to zero. Therefore, we have,

NX
i=1

TX
t=1

(xit � �x) (xit � �x)0 =
NX
i=1

TX
t=1

(xit � �xi) (xit � �xi)0+T
NX
i=1

(�xi � �x) (�xi � �x)0

so that,

Stotalxx = Swithinxx + Sbetweenxx ; Stotalxy = Swithinxy + Sbetweenxy ;
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4.1 The Within groups estimator

The Within-groups estimator is de�ned,

�̂
within

=
�
Swithinxx

��1
Swithinxy =

 
NX
i=1

TX
t=1

(xit � �xi) (xit � �xi)0
!�1 NX

i=1

TX
t=1

(xit � �xi) (yit � �yi)
!

so that it is the OLS estimator in the model,

yit � �yi = (xit � �xi)0 � + ("it � �"i) ; 1; 2; :::; N
where the possible individual speci�c intercepts have cancelled out. For that

reason, it yields consistent estimates of the panel data model under the Fixed
E¤ects assumption, whereas the Pooled OLS and the Between estimator that
we are about to see, do not. The Within Groups estimator is the same as
the Fixed E¤ects estimator and the Least-Squares Dummy Variable estimator
that we saw above. It can also be thought of as estimating regressions from
dependent and time-varying independent variables on individual dummies and
estimating a regression between the residuals from these auxiliary regressions.
Of course, the limitation of this approach is the impossibility to estimate the
coe¢ cients of time-invariant individual characteristics like race and gender.

4.2 The Between groups estimator

The Between groups estimator above is obtained applying least squares to the
data averaged for each individual, in deviations from the global sample average,

�yi � �y = (�xi � �x)0 � + (�i + �"i) ; 1; 2; :::; N
so that,

�̂
between

=

 
NX
i=1

(�xi � �x)0(�xi � �x)
!�1 NX

i=1

(�xi � �x)0(�yi � �y)
!
=
�
Sbetweenxx

��1
Sbetweenxy

This estimator is a cross section regression with N data points.The Between
groups estimator uses just the cross-sectional variation in the data, while the
pooled OLS estimator uses variation both over time and across individuals. The
Between groups estimator uses only information on how each individual di¤ers
from the global average, ignoring the variation over time for each individual in
the sample.
An interesting feature of the Between estimator is that it tends to reduce the

e¤ect of measurement errors, since it uses time averages. It would be consistent
with T !1 but that is un unlikely condition in most panel data sets.
Strong exogeneity is needed for consistency, since we need the individual

means �xi to be uncorrelated with �i. Su¢ cient, although not necessary con-
ditions for consistency are: E(�ixit) = 08t; and E("itxis) = 08s; t: These are
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of course very strict assumptions. The problem is that the transformation in
di¤erences with respect to group or individual means does not solve the issue of
the possible correlation between unobserved individual characteristics and ob-
served explanatory variables: E(�i=Xi) = h(Xi). Mundlak (1978) analyzes the
case when it can be assumed that such expectation is a function of the group
means: E(�i=Xi) = �x0i  . We would then have: yit = � + x0it� + �x

0
i + "it;

and taking averages: �yi = �x0i (� + ) + �"i; so that with the Between estimator
we would be estimating the sum � + ;a biased estimator of the partial e¤ects
� we are interested on.
Even when it is consistent, the Between estimator will be ine¢ cient, since it

does not exploit the structure of autocorrelation and heteroscedasticity in the
error term.
Relationship among estimators
The least-squares estimator can be written,

�̂
total

=
�
Stotalxx

��1
Stotalxy =

�
Swithinxx + Sbetweenxx

��1 �
Swithinxy + Sbetweenxy

�
=

=
�
Swithinxx + Sbetweenxx

��1 h
Swithinxx �̂

Within
+ Sbetweenxx �̂

Between
i

and if we de�ne:

FW =
�
Swithinxx + Sbetweenxx

��1
Swithinxy

FB = I � FW =
�
Swithinxx + Sbetweenxx

��1 �
Swithinxx + Sbetweenxx

�
�
�
Swithinxx + Sbetweenxx

��1
Swithinxy =

=
�
Swithinxx + Sbetweenxx

��1
Sbetweenxy

then,

�̂
total

= FW �̂
W
+ FB�̂

B

so that the least-squares estimater can be written as a matrix linear convex

combination of the Within and the Between estimators: �̂
total

= F�̂
within

+

(I � F )�̂
between

: We will later see that it is not the only estimator admitting
such a representation.

5 Estimating in �rst di¤erences

An alternative transformation that eliminates individual e¤ects is to take time
di¤erences in the model, obtaining:

�yit = �x
0
it� +�"it; i = 1; 2; :::; N; t = 2; 3; ::; T

even though if the error term of the original model was a white noise, the
error term in the �rst-di¤erenced model will have a MA(1) structure, with �rst-
order autocorrelation. So, we have changed the autocorrelation structure of the
error term.
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Estimating in First di¤erences is useful no matter whether the Random
E¤ects or the Fixed E¤ects models are appropriate. Estimating in First di¤er-
ences may be specially indicated in panels with a very short time dimension,
for which individual sample means may be subject to important sampling error.
However, a limitation of this approach is again the impossibility to estimate the
coe¢ cients in any time invariant explanatory variable.
Consistency of the First-di¤erences estimator requires,

E [("it � "i;t�1) = (xit � xi;t�1)] = 0

a stronger condition than E ["it=xit] = 0; but weaker than the strong exo-
geneity condition that is need for consistency of the Within estimator.
We have,

V ar(�"it) = �2H

where H is a symmetric, (T �1)x(T �1) matrix whose elements are equal to
+2 along the main diagonal, equal to -1 in the two diagonals next to the main
diagonal, and equal to -1 everywhere else.
The least squares estimator is:

�̂ =

"
NX
i=1

(�xit) (�xit)
0
#�1 " NX

i=1

(�xit) (�yit)

#

V ar(�̂) = �2"

"
NX
i=1

(�xit) (�xit)
0
#�1 " NX

i=1

(�xit)H (�xit)
0
#"

NX
i=1

(�xit) (�xit)
0
#�1

This approach will provide consistent, although ine¢ cient, estimates. Ma-
trices in these expressions have T � 1 rows. An alternative would be to use the
Newey-West robust estimate of the variance-covariance matrix, since we know
the exact order of autocorrelation in the error term.
Since the structure of the covariance matrix of the error term is known, we

could also try to improve e¢ ciency by using Generalized least squares:

�̂ = �̂ =

"
NX
i=1

(�xit)H
�1 (�xit)

0
#�1 " NX

i=1

(�xit)H
�1 (�yit)

#
In practice, it is usually the case that Generalized least squares estimates

in levels and in �rst di¤erences are noticeably di¤erent, which suggests the
existence of unobservable individual e¤ects that bias the estimation in levels.
This approach is not preferable to other estimation methods.
It is speci�cally appropriate for estimation of Treatment e¤ects in two-period

panels, with a speci�cation like,

yit = �i + x
0
it� + �St + "it;
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with t = 1; 2; where St = 0 in t = 1; and St = 1 in t = 2: The �rst period is
the before-treatment period, while the second period comes after the treatment
has been applied. The treatment e¤ect is:

E [�yit j (�xit = 0)] = �;

which it can therefore be estimated as the constant in the model in �rst
di¤erences.
The �rst-di¤erences estimator is less e¢ cient that the Within estimator for

T > 2 if "it is i:; i:d:: It coincides with the between estimator in panels with
T = 2; since: yi1��y = yi1� y1+y2

2 = yi1�yi2
2 and yi2��y = yi2� y1+y2

2 = �yi1�yi2
2 ;

and similarly for the xit variables. Under the assumption that the "it are i.,i.d.,
then it can be shown that the GLS estimator of the First-di¤erences model
equals the Within estimator. However, the First-Di¤erenced model estimates
the �rst di¤erenced equation by OLS and it is therefore less e¢ cient than the
Within estimator.

6 The Random E¤ects estimator

Under this approach, we view all the factors that a¤ect the dependent variable
and have not been included as regressors, as being included in the random error
term. The usual assumption for this model is that the unobserved �i-terms are
independently and identically distributed across individuals. The model is then,

yit = �+ x0it� + (�i + "it); "it � i:; i:d:(0; �2"); �i � i:; i:d:(0; �2�)

with assumptions:

E("it=X) = E(�i=X) = 0;8i
E("2it=X) = �2"

E(�2i =X) = �2�

E("it�j=X) = 0 8i; j; t
E("it"js=X) = 0 8t 6= s; i 6= j

E(�i�j=X) = 0 8i 6= j

Even if "it is uncorrelated, there will be some serial correlation in the error
terms �i+"it; coming from the �i component. We assume that the components
�i and "it are independent from each other, as well as independent of the
explanatory variables xis for all time periods t; s: This leads to a particular form
of time correlation, and the standard OLS covariance matrix is inappropriate,
while the estimator itself is ine¢ cient. For each individual i; all error terms can
be stacked as the Tx1 column vector: �i1T + "it; with covariance matrix,
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V ar (�i1T + "it) = 
 = �2�1T 1
0
T+�

2
"IT =

0BBBB@
�2" + �

2
� �2� ::: �2� �2�

�2� �2" + �
2
� ::: �2� �2�

::: ::: ::: ::: :::
�2� �2� ::: �2" + �

2
� �2�

�2� �2� ::: �2� �2" + �
2
�

1CCCCA
To compute the GLS estimator, we transform the data by premultiplying

each vector of variables by 
�1; where:


�1 = ��2"

�
IT �

�2�
�2" + T�

2
�

1T 1
0
T

�
= ��2"

��
IT �

1

T
1T 1

0
T

�
+  

1

T
1T 1

0
T

�
where:  = �2"

�2"+T�
2
�
: Since IT � 1

T 1T 1
0
T transforms the data in deviations

from their individual means and 1
T 1T 1

0
T takes individual means, the GLS esti-

mator for � can be written as,

�̂GLS =

 
NX
i=1

TX
t=1

(xit � �xi)0(xit � �xi) +  T
NX
i=1

(�xi � �x)0(�xi � �x)
!�1

 
NX
i=1

TX
t=1

(xit � �xi)0(yit � �yi) +  T
NX
i=1

(�xi � �x)0(�yi � �y)
!

Two special cases deserve some discussion:

� when T !1; the unobserved becomes observable, and it is unlikely that
�i can be constant, unless it is not random. The Fixed E¤ects estimator
would then be e¢ cient, and it would coincide with GLS,

� if �2"=�2� ! 0; then the stochastic component is dominated by �i; which
are constant over time, so we are left again with the Fixed E¤ects estima-
tor. In these two cases, the GLS estimator coincides with the Fixed E¤ects

estimator.

6.1 Relationship to other estimators

As it was the case with the Pooled OLS estimator, we can show that the Random
E¤ects GLS estimator is a vector convex linear combination of the Between and
the Fixed E¤ects estimators.
From the general expression for the GLS estimator, it can be shown that,

�̂GLS = (Ik ��)�̂B +��̂FE
where:
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� =
�
Swithinxx +  Sbetweenxx

��1
Swithinxx =

=  T

 
NX
i=1

TX
t=1

(xit � �xi)0(xit � �xi) +  T
NX
i=1

(�xi: � �x)0(�xi: � �x)
!�1 " NX

i=1

(xi: � �xi)0(xi: � �xi)
#

with  being the parameter that we de�ned above:  = �2"
�2"+T�

2
�
:

The matrix � is proportional to the inverse of the covariance matrix of �̂B ;
so that the GLS estimator is a matrix-weighted average of the Between and the
Within estimators, where the weight depends on the relative variances of the
two estimators, the more accurate estimator receiving the heavier weight.
The Between estimator discards the time series information in the data set.

The GLS estimator is the optimal combination of the Between and the Within
estimators, and is therefore more e¢ cient than either one of them. The POLS
estimator is also a linear combination of the two estimators, as seen in previous
sections, which di¤ers from the previous one by the presence of the  parameter
in the de�nition of the � weight. It is a special case of the previous linear
combination, for  = 1. Hence, the Pooled OLS estimator is not the e¢ cient
linear combination of the Between and the Fixed E¤ects estimators. GLS will
be more e¢ cient than OLS, as usual.
It is easy to see that for  = 0 we get the Fixed E¤ects orWithin estimator,

since then, � = 0. As we saw above, since  ! 0 when T !1; it follows that
the Random E¤ects and the Fixed E¤ects estimators are equivalent for large
T: If  = 1; the GLS estimator reduces to the Pooled OLS estimator. The  
parameter can be thought of as being the relevance given to variation across
individuals in the panel. The Fixed E¤ects or Within estimator, with  = 0;
ignores that variation. The Pooled least squares estimator, with  = 1; assigns
to variation across individuals the same importance as to the variation over time
among observations from a given individual, without taking into account that
some of their variability comes from variation in �i across individuals.
The GLS estimator will be unbiased if the explanatory variables are inde-

pendent of all "it and all �i: It will be consistent for N or T or both tending to
in�nity if in addition to i) E[(xit � �xi)"it] = 0 we also have ii) E(�xi"it) = 0;
and even most importantly, iii) E(�xi�i) = 0: These conditions are also required
for the Between estimator to be consistent (Verbeek).
Under weak regularity conditions, the Random e¤ects estimator , �̂RE ; also

known as the Balestra-Nerlove estimator, is asymptotically Normal, with co-
variance matrix,

V ar(�̂RE) = �2"

 
NX
i=1

TX
t=1

(xit � �xi)0(xit � �xi) +  T
NX
i=1

(�xi � �x)0(�xi � �x)
!�1

which shows that the Random E¤ects estimator is more e¢ cient than the
Fixed E¤ects estimator as long as  > 0: The gain in e¢ ciency is due to the use
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of the between variation in the data (�xi� �x) as it appears in the second term in
the expression of the variance-covariance matrix: The covariance matrix above
is obtained when estimating by OLS the transformed model (??).
We must remember that if we do not feel very con�dent on the analytical

structure we are imposing on the variance-covariance matrix of the error term,
we can always proceed by applying ordinary least-squares and a robust inference
by using an appropriately corrected empirical covariance matrix, as explained
in previous sections.

6.2 Practical implementation of the Random E¤ects esti-
mator

An easy way to compute the GLS estimator is obtained by applying OLS to
transformed variables:

yit � ��yi = �(1� �) + (xit � ��xi)0� + "it

where � = 1�  1=2; so that a �xed proportion � of the individual means is
subtracted from the data to obtain the transformed model.
The error term in this transformed regression is still i., i.d. over individuals

and over time. Again, � = 1 ( = 0) corresponds to the Fixed E¤ects orWithin
estimator, while � = 0 corresponds to the Pooled OLS estimator: As T !
1; � ! 1; and we get the Fixed E¤ects estimator.
We need estimates of the variances of the two error components �i and �"i;to

implement GLS. To that end, we use the variance of the Fixed E¤ects residuals,
with denominator NT �N � k as the estimate of �2": The denominator relfects
the fact that we are estimating N intercepts and k slope coe¢ cients. The error
variance for the Between regression is �2� + �2"=T; which can be consistently
estimated by,

�̂2B =
1

N � k

NX
i=1

(�yi � �̂B � �x0i�̂B)2

This leads to a consistent estimator for �2� :

�̂2� = �̂2B �
1

T
�̂2"

Again, the correction for degrees of freedom can be achieved by subtracting
k + 1 from the denominator of �̂2B :
As an alternative, Green (6 ed.) proposes the equality,

�2POLS = �2" + �
2
�

to compute an estimate of �2� after estimating by POLS and Fixed E¤ects.
The Residual sum of squares from the Pooled OLS estimator must be divided
by NT � k � 1; since there is a single intercept.
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6.3 Summary

� The Between estimator exploits the di¤erences between individuals, and
it is determined as OLS in a regression of individual averages. Consis-
tency, for N ! 1; requires two types of conditions: i) E(�xi�i) = 0; and
ii) E(�xi�"i) = 0; which will usually require explanatory variables to be
uncorrelated with the individual e¤ects �i, as well as strictly exogenous.

� The Fixed E¤ects (or Within) estimator exploits the di¤erences within
individuals, and it is determined as OLS in a regression using all observa-
tions in deviations from individual means. It is consistent for T ! 1 or
N !1 provided E[(xit� �xi)"it] = 0. This requires explanatory variables
to be strictly exogenous, but it does not impose any restrictions upon the
relationship between xit and �i:

� The OLS estimator exploits both dimensions, although less than e¢ ciently.
It is determined as OLS in the original model, and it can be written as
a convex linear combination of the two previous estimators. Consistency
for T ! 1 or N ! 1 requires that E[xit("it + �i)] = 0. This requires
explanatory variables to be uncorrelated with �i, but it does not impose
that they are strictly exogenous. It su¢ ces with xit and "it to be contem-
poraneously uncorrelated. It also requires explanatory variables to have
no correlation with the unobservable individual e¤ects �i:

� The Random e¤ects estimator combines the information in the Between
and the Within estimators in an e¢ cient way. It is consistent for T !1
or N !1 under the combined conditions that imply consistency for the
Between and the Within estimators. It can be obtained as the e¢ cient
weighted average of the Within and the Between estimators, or as the
OLS estimator in a regression with variables transformed as yit � ��yi;

with � = 1�  1=2 = 1�
q

�2"
�2"+T�

2
�
:

� Fixed E¤ects estimation is a conditional analysis, measuring the e¤ects of
xit on yit, controlling for the individual e¤ects �i: Prediction is possible
only for individuals in the particular sample being used, and even then
it is only possible if the panel is long enough that �i can be consistently
estimated. Random E¤ects estimation is instead an example of marginal
analysis or population averaged analysis, as the individual e¤ects are in-
tegrated out as i., i.d. random variables. The Random E¤ects estimator
can be applied outside the sample. If the true model is a Random E¤ects
model, then whether to perform a conditional or marginal analysis will
vary with the application. If analysis is for a random sample of countries,
then one uses random e¤ects, but if one is intrinsically interested in the
particular countries in the sample, then one does Fixed E¤ects estimation
even though this can entail a loss of e¢ ciency. However, if some unob-
served individual speci�c e¤ects are correlated with regressors, then the
Random E¤ects estimator does not make sense, being inconsistent, and
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we will need either the Fixed E¤ects estimator or the First Di¤erences
estimator.

6.4 Testing for random e¤ects

The treatment applied to the individual e¤ects can imply substantial di¤erences
in numerical estimates in the usual case in which the time dimension of the panel
data is small. The Fixed e¤ects approach fE(yit=xit) = x0it� + �ig is conditional
upon the values for �i: It considers the distribution of yit given �i; where the �0is
can be estimated. This makes sense if the individuals in the sample are "one of a
kind", and cannot be taken as random draws from some underlying population.
That would be the case if the number of units is relatively small. Inferences
are made with respect to the e¤ects that happen to be included in the sample.
The Random e¤ects approach fE(yit=xit) = x0it�g is not conditional upon the
individual �0is but "integrates them out". We are then not usually interested in
the value of �i for a given individual. Inferences are made with respect to the
population characteristics.
Even if we are interested in a large number of individual units and the

Random e¤ects approach seems appropriate, we may prefer the Fixed e¤ects
estimator if xit is clearly correlated with �i; since that would lead to inconsistent
least-squares estimators as used in the Random e¤ects estimator. This problem
disappears in the Fixed e¤ects estimator because �i is eliminated from the
model.

6.4.1 Hausman test

Hausman (1978) suggested a test for the null hypothesis that xit and �i are
uncorrelated. Two estimators are compared: one that it is consistent under both
the null and alternative hypothesis, and a second estimator which is consistent
only under the null hypothesis. A signi�cant di¤erence between both estimators
is interpreted as the null hypothesis not being true. In our case, the Fixed E¤ects
estimator is consistent with independence of the possible correlation between xit
and �i , while the Random E¤ects estimator will be consistent and e¢ cient only
if the null hypothesis of lack of correlation is true. Usually, to compare the two
estimators, we would have to compute the covariance between the two estimates.
The essential result in Hausman (1978) is that the covariance between an

e¢ cient estimator and its di¤erence with respect to an ine¢ cient estimator is
zero. Hence, since the Random E¤ects estimator is e¢ cient under the null, then
if the null hypothesis is true, we will have:

Cov(�̂RE ; �̂FE � �̂RE) = 0

so that,

Cov(�̂RE ; �̂FE) = �V ar(�̂RE)

and therefore,
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V ar(�̂FE � �̂RE) = V ar(�̂FE)� V ar(�̂RE)

and the test statistic is computed as:

H = (�̂FE � �̂RE)0
h
V ar(�̂FE)� V ar(�̂RE)

i�1
(�̂FE � �̂RE)

where the two variance-covariance matrices must be substituted by their re-
spective estimates. Under the null hypothesis, the statistic follows a chi-squared
distribution with k degrees of freedom, where k is the number of elements in �:
A word of caution: the matrix in square brackets may not be positive de�nite
in small samples. We should in that case conclude that the covariance matrices
are not di¤erent, thereby not rejecting the Random e¤ects model, since if the
two estimators were di¤erent, then the statistic should be positive and relatively
large. Even if the statistic turned out to be negative, we would still be able to
implement the test for a subset of elements in �: Another strategy would be to
move to asymptoticalley equivalent versions of the test statistic. One of them
is,

H = (�̂FE � �̂B)0
h
V ar(�̂FE) + V ar(�̂B)

i�1
(�̂FE � �̂B)

Hausman test can be applied to any other pair of estimators with properties
similar to the ones we have used here, as the estimator in First di¤erences versus
the Pooled OLS estimator, since, in the absence of Random E¤ects, the POLS
estimator is e¢ cient.

6.4.2 Alternative tests for the comparison between the Fixed E¤ects
and the Random E¤ects models

When we introduced the Between estimator, we mentioned Mundlak (1978)
assumption that the conditional expectation E(�i=Xi) can be assumed to be a
function of the group means: E(�i=Xi) = �x

0
i  . That led to the model:

yit = �+ x0it� + �x
0
i + "it

Mundlak�s assumption preserves the speci�cation of the Random E¤ects
model while modelling the correlation between individual e¤ects and the ob-
served time varying explanatory variables. This speci�cation is also a com-
promise between the Fixed E¤ects model and the Random E¤ects model, the
di¤erence between them coming from the vector of coe¢ cients : Hence, a sig-
ni�cance test for this vector of coe¢ cients is an alternative to the Hausman
speci�cation testy described above, so long as the assumption on E(�i=Xi) is
approximately correct.
An asymptotically equivalent way to implement the speci�cation test is to

perform the Wald test of  = 0 in the auxiliary OLS regression,

yit � ��yi = (1� �)�+ (xit � ��xi)0 �1 + (xit � �xi)
0
 + uit
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where � is the same parameter used in the alternative implementation of the
Random E¤ects estimator, which is a special case for  = 0: If instead, the Fixed
E¤ects estimator is appropriate, then the error term (uit � (1� �)�i + ("it � ��"i))
will be correlated with the regressors, and additional functions of the regressors
such as (xit � �xi) may have signi�cant coe¢ cients in the previous equation.
Breusch and Pagan (1980) proposed a Lagrange multiplier type of test for

signi�cance of random e¤ects, H0 : �
2
� = 0; versus the alternative that it is

positive, based on OLS residuals. We therefore, test for lack of autocorrelation
in the sum "it + �i. The Lagrange multiplier statistic,

LM =
NT

2(T � 1)

264
PN

i=1

hPT
t=1 "̂it

i2
PN

i=1

PT
t=1 "̂

2
it

� 1

375
2

=
NT

2(T � 1)

" PN
i=1

�
T "̂i
�2PN

i=1

PT
t=1 "̂

2
it

� 1
#2

follows a chi-square distribution with one degree of freedom. The residuals
in this expression come from the restricted model, estimated with OLS.
Example: Green (6ed., examples 9.5 and 9.6) applies this test for the logged

wages model that excludes the time invariant characteristics, and also computes
estimates of the variance component parameters.

6.5 Goodness of �t in panel data models

Goodness of �t under panel data has peculiar features, since we want to weight
di¤erently the ability of a model to explain the Between and the Within vari-
ation in the data. On the other hand, the R2 is appropriate only under OLS
estimation. It is standard to use a R2 de�ned as the square of the correlation
between the actual and �tted values, which is always in [0; 1]; and collapses to
the usual R2 under OLS estimation. Since Total variation can be decomposed
into Between and Within variation:

1

NT

TX
t=1

NX
i=1

(yit � �y)2 =
1

NT

TX
t=1

NX
i=1

(yit � �yi)2 +
1

N

NX
i=1

(�yi � �y)2

The Fixed E¤ects estimator is constructed to explain the Within variations,
and it maximizes the Within R2:

R2within =
�
corr

�
ŷFEit � ŷFEi ; yit � �y

	�2
=
h
corr

n
(xit � �xi)�̂

FE
; yit � �y

oi2
The Between estimator maximizes the Between R2:

R2between =
�
corr

�
ŷBi ; �y

	�2
=
h
corr

n
�x0i�̂

B
; �y
oi2

The OLS estimator maximizes the Overall goodness of �t:
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R2overall = [corr fŷit; yitg]
2

where ŷi = 1
T

PT
t=1 ŷit and ŷi =

1
TN

PP
ŷit where the intercept terms are

omitted. If we take into account the variation explained by the N estimated
intercepts �̂i; then the �xed e¤ects estimator captures perfectly the between
variation. This however, does not mean that it �ts the data well, since it is only
that the dummy variables capture the data perfectly, and that should not be
incorporated into a goodness of �t measure.
The point is that it is possible to de�ne Within, Between and Overall

R2 measures for any arbitrary estimator, using �tted values ŷit and averages
ŷi =

1
T

PT
t=1 ŷit and ŷi =

1
TN

PT
t=1

PN
i=1 ŷit; omitting intercept terms. As we

have mentioned, for the Fixed E¤ects estimator, this would ignore the variation
captured by the �̂i individual intercept estimates.
For the Random E¤ects estimator, the Within, the Between and the Overall

R2 will necessarily be smaller than for the Fixed E¤ects, Between and OLS
estimators, respectively. This again, shows that goodness of �t measures by
themselves are not adequate to choose between alternative (potentially non-
nested) speci�cations of the model.
Example: Verbeek (p. 358), logged wages. RATS program.

6.6 Instrumental variables estimators of the Random Ef-
fects model

As we have seen, the use of the Fixed E¤ects estimator to solve the problem
of correlation between explanatory variables and individual e¤ects may be un-
desirable, if we are interested in the e¤ect of time invariant variables on the
dependent variable.
The Fixed E¤ects estimator can be written:

�̂FE =

 
NX
i=1

TX
t=1

(xit � �xi)0xit

!�1 " NX
i=1

TX
t=1

(xit � �xi)0yit

#
which can be interpreted as an instrumental variable estimator in model:

yit = �+ x0it� + �i + "it

where each explanatory variable is instrumented by its value in deviations

from the individual speci�c mean. Since
PN

i=1

PT
t=1 [(xit � �xi)0�i] =

PN
i=1

hPT
t=1(xit � �xi)0

i
�i =

0, then all that it is needed for consistency is E [(xit � �xi)0"it] = 0 , which is
implied by the strict exogeneity of the xit variables. If a particular element in
xit happens to be uncorrelated with �i; it can be used as its own instrument
without taking di¤erences with respect to the individual mean. That is the case
of time invariant e¤ects, whose e¤ect on the dependent variable can therefore
be estimated under this approach.
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6.6.1 The Hausman and Taylor estimator

A more general approach was introduced by Hausman and Taylor (1981), in the
line of the Random E¤ects estimate, as follows: The random e¤ects approach
to the linear model:

yit = x0it� + z
0
i�+ "it

is based on the assumption that the unobserved individual speci�c e¤ects zi
are uncorrelated with the included variables xit: This is a major shortcoming,
since it is a very strong assumption to make. However, the Random E¤ects treat-
ment allows for observed time-invariant characteristics, to appear explicitely in
the estimated model, while the Fixed E¤ects estimator does not, since they are
absorbed into the �xed e¤ects. Hausman and Taylor�s (1981) estimator sug-
gests a way to overcome the �rst limitation while accommodating the second
advantage, and using only the information in the model.
These authors consider the model

yit = x01it�1 + x
0
2it�2 + z

0
1i�1 + z

0
2i�2 + ("it + ui)

where x1 is a k1-vector, x2 is a k2-vector, z1 is a l1-vector, z2 is a l2-vector,
and all individual e¤ects in zi are assumed to be observed. Unobserved e¤ects
would be contained into the individual-speci�c random term ui: Variables with
the 2-index are correlated with ui; while those carrying the 1-index are assumed
to be uncorrelated with ui. Hence, OLS and GLS estimates will be biased and
inconsistent. Assumptions on random terms are:

E(ui=x1it; z1i) = 0; although E(ui=x2it; z2i) 6= 0
V ar (ui=x1it; x2it; z1i; z2i) = �2u;

Cov ("it; ui=x1it; x2it; z1i; z2i) = 0;

V ar ("it + ui=x1it; x2it; z1i; z2i) = �2 = �2" + �
2
u;

Corr ("it + ui; "is + ui=x1it; x2it; z1i; z2i) = � = �2u=�
2

The group mean deviations x1it � �x1i; x2it � �x2i can be used as k1 + k2
instrumental variables. Since z1 is uncorrelated with the disturbances, it can be
used as a set of l1 instrumental variables for themselves. So, we need another l2
instrumental variables. Hausman and Taylor show that the individual (group)
means for x1 can be used as such, so the identi�cation condition4 is k1 � l2:
Feasible GLS is better than OLS, and it is also an improvement on the simple

instrumental variable estimator, which is consistent, but ine¢ cient.
Taking deviations from group means:

4To estimate the original model, Hausman and Taylor suggest using x1it; z1i; x2it � �x2
and �x1i as instruments. We can use time averages of those time-varying regressors that
are uncorrelated with �i as instruments for the time-invariant regressors. The identi�cation
condition is then that we have enough of those instruments: k1 � l2:
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yit � �yi = (x1it � �x1i)0 �1 + (x2it � �x2i)
0
�2 + ("it � �"i)

which can be consistently estimated by LS, in spite of the correlation be-
tween x2 and u: This is, of course, the Fixed E¤ects, Least-Squares Dummy
Variable (LSDV) estimator. However, it would not identify the values of coef-
�cients for time invariant variables. It is also ine¢ cient, since x1t is needlessly
instrumented.
We can describe four steps to compute the Hausman and Taylor instrumental

variable estimator, the �rst three of which provide us with the  -parameter
neded to transform the data and compute the estimator in a last step.

� Step 1: Obtain the LSDV (�xed-e¤ects) estimator of � = (�1; �2) based
on x1 and x2: The residual variance from this step is a consistent estimator
of �2":

� Step 2: Form the within groups residuals eit from LSDV regression in
Step 1. Stack the group (individual) means, conveniently repeated, in a
full sample length data vector, e�it = �ei; i = 1; 2; :::; N; t = 1; 2; :::; T: The
residuals are computed excluding the estimate of the constant term. These
are used as the dependent variable in an instrumental variable regression
on z1 and z2 with instrumental variables z1 and x1 (assuming k1 � l2):
Time invariant variables are repeated T times in the data matrices in this
regression. This provides a consistent estimator of �1; �2.

� Step 3: The residual variance from step 2 is a consistent estimator of
��2 = �2� + �2"=T: From this estimator and the estimator of �2" from step
1, we deduce an estimator: �2� = ��2� �2"=T; and compute the weight for
the GLS estimator:  =

q
�2"

T�2�+�
2
"

� Step 4: A weighted instrumental variable estimator. Consider the full set
of explanatory variables: w0it = (x

0
1it; x

0
2it; z

0
1i; z

0
2i) ; for which we have nT

observations. We perform the usual GLS transformation as for the random
e¤ects model: w�0it = w0it�(1� ̂) �w

0

i; y
�
it = yit�(1� ̂)�yi; and collect these

transformed data in a matrix W � and a column vector y�: For the time-
invariant variables, the group mean is equal to the original variable, and
the transformation just multiplies the original data by 1�  ̂: The instru-
mental variables are: v0it =

�
(x01it � �x1i)

0
; (x02it � �x2i)

0
; z01i; �x

0
1i

�
: These are

stacked as rows in an nTx(k1 + k2 + l1 + l2) matrix V: For the third and
fourth sets of instruments, the time invariant variables and group means
are repeated for each time period for that individual or group. The in-
strumental variable estimator would be:�

�̂
0
; �̂0
�0
IV
=
��
W �0V )(V 0V )�1(V 0W ����1 ��W �0V )(V 0V )�1(V 0y�

��
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For the sake of comparison, the FGLS random-e¤ects5 estimator would be:�
�̂
0
; �̂0
�0
RE

= (W �0W �)
�1
W �0y�:

The instrumental variable is consistent if the data is not weighted, that is,
if W , rather than W �; is used in estimation. But that would be ine¢ cient, in
the same way as OLS is ine¢ cient in estimation of the simpler random e¤ects
model.

7 Dynamic linear models

7.1 Linear autoregressive models

Consider an autoregressive panel data model with a vector of exogenous ex-
planatory variables:

yit = �i + yi;t�1 + x
0
it� + "it; "it � i:; i:d:(0; �2")

Here the problem is that the lagged dependent variable will depend upon
�i irrespective of how we treat the individual e¤ect �i: To see this, assume, for
simplicity, that there are not exogenous explanatory variables:

yit = �i + yi;t�1 + "it; "it � i:; i:d:(0; �2")

Denoting �yi;�1 =
PT

t=2 yi;t�1=(T � 1); di¤erent from �yi = (1=T )
PT

t=1 yi;t;
the Fixed E¤ects estimator is:

̂FE =

PP
(yit � �yi)(yit�1 � �yi;�1)PP

(yit�1 � �yi;�1)2
= +

1
N(T�1)

PP
("it � �"i)(yit�1 � �yi;�1)

1
N(T�1)

PP
(yit�1 � �yi;�1)2

which will be biased and inconsistent forN !1 and �xed T: This is because
the last term in the right-hand side does not have expectation zero due to the
correlation between �yi;�1 and �"i, and it does not converge to zero. In fact Nickell
(1981), Hsiao (2003) show that:

p lim
1

NT

XX
("it � �"i)(yit�1 � �yi;�1) = �

�2"
T 2
(T � 1)� T + T

(1� )2 6= 0

Notice that the inconsistency is not produced by any assumption we can
make on the �i; since it gets eliminated in the transformation, but rather, by
the fact that the Within transformed lagged dependent variable is correlated
with theWithin transformed error.6 Therefore, at a di¤erence of what happens

5This denotes the Feasible GLS estimator of the Random E¤ects model, the noe we de-
scribed in the Implementation section.

6Cov(yi;t�1; ci + "i) = �2c + Cov(yi;t�2; ci + "i); and the Covariance would converge, for

T large, to �2c
1�� :
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in a static model, the Fixed E¤ects estimator does not solve the inconsistency
in a dynamic model.
On the other hand, if T !1; then the expression above converges to zero,

and the Fixed E¤ects estimator is consistent if both T !1 and N !1: But
in �nite samples, this lack of consistency can be a serious problem. For instance,
if  = 0:5; then we have, as N !1 :

p lim ̂FE = �0:25 if T = 2
p lim ̂FE = �0:04 if T = 3
p lim ̂FE = 0:33 if T = 10

To avoid the inconsistency, we make a di¤erent transformation to eliminate
the individual e¤ects �i, by taking First di¤erences:

yit � yi;t�1 = (yi;t�1 � yi;t�2) + ("it � "i;t�1); t = 2; 3; :::; T "it � i:; i:d:(0; �2")

Once again, least squares would be inconsistent in this model because of the
correlation between yi;t�1 and "i;t�1; even when T !1: But the transforma-
tion suggests an instrumental variable approach (Anderson and Hsiao (1981))
so long as "it does not exhibit autocorrelation, since yi;t�2 is clearly correlated
with the explanatory variable, but not with the error term,

̂IV =

PN
i=1

PT
t=2(yit � yit�1)yi;t�2PP

t=3(yit�1 � yi;t�2)yi;t�2
A standard argument shows that consistency of this instrumental variable

estimator depends on p lim 1
N(T�2)

PN
i=1

PT
t=3("it � "i;t�1)yit�2 = 0 for either

N; T or both going to 1: Anderson and Hsiao suggested an alternative instru-
mental variable estimator, using yi;t�2 � yi;t�3 as instrumental variable:

̂IV =

PN
i=1

PT
t=3(yit � yit�1)(yi;t�2 � yi;t�3)PN

i=1

P
t=3(yit�1 � yi;t�2)(yi;t�2 � yi;t�3)

which will be consistent if p lim 1
N(T�1)

PN
i=1

PT
t=3("it�"i;t�1)(yit�2�yi;t�3)

= 0 for either N; T or both going to 1: As in the previous estimator, this
condition will hold whenever "it lacks serial correlation. If there are exogenous
regressors in the model, then not only their contemporaneous and lagged values,
but also their future values, are valid instruments as well. If they are prede-
termined, their contemporaneous and lagged values will be valid instruments.
The number of instruments increases with time, and it can easily get very large.
However, the latter set of instruments requires an additional lag, and hence, we
lose an additional sample period.
The instrumental variable estimator is,

�̂IV =

24 nX
i=1

�X 0
iZi

! 
nX
i=1

Z 0iZi

!�1 nX
i=1

Z 0i�Xi

!35�1 24 nX
i=1

�X 0
iZi

! 
nX
i=1

Z 0iZi

!�1 nX
i=1

Z 0i�yi

!35
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where the X matrix includes the lagged endogenous variable in addition to
possible predetermined or exogenous variables, and Z is the matrix of chosen
instruments. The variance-covariance matrix is,

V ar
�
�̂IV

�
= �2�"

24 nX
i=1

�X 0
iZi

! 
nX
i=1

Z 0iZi

!�1 nX
i=1

Z 0i�Xi

!35�1

where an estimate for �2�" could be obtained from the residual sum of squares
of the diferenced model: �̂2�" = RSS=[N(T � 2)]. But this will be an under-
estimate, since it ignores the fact that the di¤erence operator introduces �rst
order serial correlation. In fact, the previous footnote suggests that the previous
calculation will be an approximate estimate of 2�2". But there is also the addi-
tional problem that the observations are autocorrelated. Hence, the standard
IV variance-covariance matrix is inappropriate, and we must use,

V ar(�̂IV ) = A

24 nX
i=1

�X 0
iZi

! 
nX
i=1

Z 0iZi

!�1
�̂2"

 
nX
i=1

Z 0iGZi

! 
nX
i=1

Z 0iZi

!�1 nX
i=1

Z 0i�Xi

!35A

with7 G being a TxT matrix: G =

0BB@
2 �1 0 :::
�1 2 ::: 0
0 ::: ::: �1
::: 0 �1 2

1CCA ;where,

A =

24 nX
i=1

�X 0
iZi

! 
nX
i=1

Z 0iZi

!�1 nX
i=1

Z 0i�Xi

!35�1
While one could discuss whether it is preferable to use levels or di¤erences as

instruments, the Generalized Method of Moments provides a uni�ed approach
to instrumental variable estimation.

7.2 General Method of Moments (GMM) estimation

Rather than arguing about which instrumental variable estimator we should use,
a GMM argument would lead us to using both instruments, while eliminating
the disadvantage of reduced sample sizes.
The two previous instrumental variable estimators use the moment condi-

tions: E [("it � "i;t�1)(yit�2 � yi;t�3)] = 0 and E [("it � "i;t�1)yit�2] = 0. Arel-
lano and Bond (1991) suggest that the list of instruments can be extended by
exploiting additional moment conditions and letting their number vary with t ,
thereby increasing e¢ ciency. For instance, when T = 4; we have, for t = 2 the
moment condition:8

7V ar("i2 � "i1) = 2�2"; Cov("i2 � "i1; "i3 � "i2) = ��2"
8Assuming there is an initial y0 observation. Otherwise, we would have one moment

condition less at each point in time,
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E[("i2 � "i1)yi0] = 0

while for t = 3; we have:

E[("i3 � "i2)yi1] = 0

E[("i3 � "i2)yi0] = 0

and, for t = 4 :

E[("i4 � "i3)yi0] = 0

E[("i4 � "i3)yi1] = 0

E[("i4 � "i3)yi2] = 0

So, in general, we have a matrix of instruments:

Zi =

0BB@
[yi;0] 0 ::: 0
0 [yi0; yi1] ::: 0
::: ::: 0
0 ::: ::: [yi0; yi1; :::; yi;T�2]

1CCA
and the vector of transformed error terms:

�"i =

0@ "i2 � "i1
:::

"i;T � "i;T�1

1A
and a set of 1 + 2 + 3 + :::+ (T � 1) = (T�1)T

2 moment conditions:9

E[Z 0i�"i] = E[Z 0i(�yi � �yi;�1)] = 0

Since the number of moment conditions will usually exceed the number of
unknown parameters, as it is the case in this example, we will minimize the
quadratic form:

min


"
1

N

NX
i=1

Z 0i(�yi � �yi;�1)
#0
WN

"
1

N

NX
i=1

Z 0i(�yi � �yi;�1)
#

where WN is a symmetric, positive de�nite weighting matrix which will
depend on the sample size, N: Di¤erentiating with respect to  and solving:

9With T = 4 time observations, we will have 6 instruments or orthogonality conditions if
there is an initial condition yi0; and 3 such conditions if there is not known initial condition
yi0.

35



GMM =

" 
NX
i=1

�y0i;�1Zi

!
WN

 
NX
i=1

Z 0i�yi;�1

!#�1 " NX
i=1

�y0i;�1Zi

!
WN

 
NX
i=1

Z 0i�yi

!#
This estimator is consistent for any choice of positive de�nite weighting ma-

trix WN so long as orthogonality (moment) conditions are true. GMM theory
shows that the optimal choice of weighting matrix, in order to minimize the
variance-covariance matrix of the resulting estimator, is the inverse of the co-
variance matrix of the sample moments:

p lim
N!1

WN = [V ar(Z
0
i�"i)]

�1
= [E(Z 0i�"i�"iZi)]

�1

If no restrictions are imposed upon the covariance matrix, then it can be
estimated by the sample average of a function of the residuals "̂ from a consistent
initial estimate. Usually, this is obtained with the identity matrix as the initial
weighting matrix:

Ŵ opt
N =

 
1

N

NX
i=1

Z 0i�"̂i�"̂iZi

!�1
where "̂i denote the residuals from an initial GMM estimate obtained with

an identity as weighting matrix: WN = I:
The general GMM approach does not need that the "it be i., i.d. over

individuals, and the optimal weighting matrix is estimated without imposing
such constraint. However, the moment conditions are valid only under lack of
autocorrelation. And if autocorrelation is present, there is no point in computing
a robust estimate of the variance-covariance matrix of estimates, since they will
be inconsistent.
Under weak regularity conditions, the GMM estimator for  is asymptoti-

cally Normal for N !1 and �xed T; with covariance matrix,

p lim
N!1

24 NX
i=1

�y0i;�1Zi

! 
1

N

NX
i=1

Z 0i�"̂i�"̂iZi

!�1 NX
i=1

Z 0i�yi;�1

!35�1

With i., i.d. errors, the middle term reduces to,

�2"W
opt
N = �2"

 
1

N

NX
i=1

Z 0iGZi

!�1

with10 G being a TxT matrix: G =

0BB@
2 �1 0 :::
�1 2 ::: 0
0 ::: ::: �1
::: 0 �1 2

1CCA so long as

there is no autocorrelation in the error term: Alvarez and Arellano (2003) show
10V ar("i2 � "i1) = 2�2"; Cov("i2 � "i1; "i3 � "i2) = ��2"
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that the GMM estimator is also consistent when both, N and T tend to in�nity
despite the fact that the number of moment conditions tends to in�nity with
the sample size.
For large T; however, the GMM estimator will be close to the Fixed E¤ects

estimator, which provides a more attractive alternative.

7.3 Dynamic models with exogenous variables

In the case of the more general model:

yit = �i + yi;t�1 + x
0
it� + "it; "it � i:; i:d:(0; �2")

we will have di¤erent instruments as a function of the assumptions we make
on the xit variables. If they are assumed to be strictly exogenous, in the sense
of being uncorrelated with all error terms at all time periods, we will also have:
E(xit�"is) = 0 8s; t; so that xi1; xi2; :::; xiT can be added as instruments to
the model in �rst di¤erences. But that would make the number of rows in Zi
too large. Almost the same amount of information can be obtained if we use
the �rst di¤erenced xit as their own instruments. Then, we would be imposing
moment conditions:

E(�xit�"it) = 0;8t

and the matrix of instruments can be written:

Zi =

0BB@
[yi;0;�x

0
i2] 0 ::: 0

0 [yi0; yi1;�x
0
i3] ::: 0

::: ::: 0
0 ::: ::: [yi0; yi1; :::; yi;T�2;�x

0
iT ]

1CCA
If the xit variables are not strictly exogenous, but only predetermined:

E(xit"is) = 0;8s � t: Then, E [(xit � xi;t�1) ("it � "i;t�1)] 6= 0, and only
xi;t�1; :::; xi1 are valid instruments for the �rst-di¤erenced equation in period t
. The moment conditions imposed would then be:

E(xi;t�j�"it) = 0; for j = 1; 2; :::; t� 1; for each t

Usually, one should expect to have a mixture of some exogenous and some
predetermined variables to be used as instruments. Arellano and Bond (1995)
explain how this approach can be integrated into the instrumental variable es-
timator of Hausman and Taylor (1981). They also discuss how information in
levels of original variables can also be used in estimation.
Example: Verbeek
Verbeek refers to the estimation of a demand for labour equation based on

data from 2800 large Belgium �rms over 1986-1994. Using a theoretical model
of union bargaining as reference, the authors estimate a static version:
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logLit = �0 + �1 logwit + �2 logKit + �3 log Yit + �4 logwjt + uit

where wjt denotes the industry average real wage, acting as an indicator of
the reference negotiation wage level for unions, Kit is the stock of capital and
Yit is output, as well as adynamic version of the demand equation,

logLit = �0+�1 logwit+�2 logKit+�3 log Yit+�4 logwjt+ logLi;t�1+�i+"it

where it is assumed that the error term has two components, the �rst one be-
ing unobservable �rm-speci�c time-invariant heterogeneity. If we �rst-di¤erence
the equation, then� logLi;t�1 will be correlated with�"it: In addition, it is very
likely that wages and employment are jointly bargained, wages then becoming
an endogenous explanatory variable in the previous equation. Therefore,

E(� logwit�"it) 6= 0;

and we need to use an instrumental variables approach. Valid instruments
for � logwit are logwi;t�2; logwi;t�3; ::: while logLi;t�2; logLi;t�3; ::: could be
valid instruments for � logLi;t�1. Hence, the number of instruments increases
with t .

Estimation Labour demand equation [Konings and Roodhooft (1997)]
Dependent variable: logLit

Static model Dynamic model
logLi;t�1 0:60(0:045)
log Yit 0:021(0:009) 0:008(0:005)
logwit �1:78(0:60) �0:66(0:19)
logwjt 0:16(0:07) 0:054(0:033)
logKit 0:08(0:011) 0:078(0:006)
Test for overidentifying restrictions 29:7(df = 15; p = 0:013) 51:66(df = 29; p = 0:006)
Number of observations
The p-values for both models are clos to 1%. The estimated short-run wage

elasticity of labour demand is -0.66%, but the long-run elasticity is -1.64%,
higher than it had been estimated with macro data.11

11Although there were several di¢ culties with the way the data had been constructed. See
original article in De Economist.
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