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Gaussian Estimation of Single-Factor
Continuous Time Models of The Term Structure
of Interest Rates

K. B. NOWMAN*

ABSTRACT

This article presents the first application in finance of recently developed methods for
the Gaussian estimation of continuous time dynamic models. A range of one factor
continuous time models of the short-term interest rate are estimated using a discrete
time model and compared to a recent discrete approximation used by Chan, Karolyi,
Longstaff, and Sanders (1992a, hereafter CKLS). Whereas the volatility of short-term
rates is highly sensitive to the level of rates in the United States, it is not in the
United Kingdom.

THE ECONOMETRIC ESTIMATION of continuous time models of the short-term inter-
est rate has been a relatively recent development in empirical finance (see, for
example, Brown and Dybvig (1986), Melino and Turnbull (1986), Barone,
Cuoco, and Zautzik (1991), Babbs (1992), Abken (1993), Chen and Scott (1993),
Das (1993), Gibbons and Ramaswamy (1993), Pearson and Sun (1994), Lund
(1994), Pfann, Schotman, and Tschernig (1995), Ait-Sahalia (1995), and Broze,
Scaillet, and Zakoian (1995)).1 In an important study Chan, Karolyi, Longstaff,
and Sanders (1992a, hereafter CKLS) develop a general framework to estimate
and compare a range of different single-factor term structure models for the
short-term interest rate. Their major conclusion is that term structure models
with volatilities more highly sensitive to the level of interest rates than more
generally used models have a closer empirical fit to the data. In addition, the
functional form of the drift, with or without mean reversion, is of secondary
importance to the correct specification of the conditional heteroskedasticity.
In CKLS the continuous time models of the term structure are estimated
using a discrete approximation. We present in this article an alternative

* First National Bank of Chicago, London, United Kingdom. I thank Rex Bergstrom for sug-
gesting the approach of assuming that the volatility of the short-term interest rate is constant over
the unit observation period and using his Gaussian estimation methods. I thank the editor, René
Stulz and an anonymous referee for valuable comments and suggestions. Thanks to Jesper Lund,
Simon Babbs, Sanjay Yadav, Andrew Johnson, and Graham Hunt for comments, I thank Linda
Stone and The Center for Research in Security Prices (CRSP), Graduate School of Business,
University of Chicago for permission to use the U.S. T-bill data used in CKLS, and Andrew Karolyi
for sending me the data. I thank Angelo Melino and Jesper Lund for sending me research papers.
The views expressed are those of the author and not necessarily those of First National Bank of
Chicago. '

! Melino (1994) presents an interesting discussion of the estimation of continuous time models -
in finance.
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discrete time model that also nests the CKLS approximation but has the
advantage of reducing some of the temporal aggregation bias. We estimate the
models using recently developed Gaussian estimation methods for continuous
time models by Bergstrom (1983, 1985, 1986, 1990). The empirical analysis
provides an important result. Using one month British sterling rate data we
find that the volatility of the short-term interest rate is not highly sensitive to
the level of the interest rate. This differs sharply from the results reported by
CKLS. We also find using the U.S. T-bill data used in CKLS that the volatility
of interest rate changes are highly sensitive to the level of the riskless rate.

Section I below reviews the one-factor continuous time models used in
CKLS. Section II discusses the econometric methodology used in estimating
the model parameters. Section III describes the data used in the study. Section
IV presents the empirical results. Section V contains a summary and conclud-
ing remarks.

1. The Continuous Time Interest Rate Models

The general stochastic differential equation used by CKLS to specify the
dynamic adjustment of the interest rate is represented by equation (1) below.
This general equation has the advantage that it nests a wide range of different
term structure models (see also Marsh and Rosenfeld (1983) and Melino and
Turnbull (1986)). The equation allows the conditional mean and variance to
depend on the level r.

dr(t) ={a + Br(t)}dt + or'(t)dZ (t=0) (1)

where {r(t), t > 0} is a real continuous time random process, «, 3, vy, and o are
unknown structural parameters. Following Bergstrom (1983, 1984 Theorem 2)
we make the following assumption with regard to dZ:2

AssuMPTION 1: Z is a random measure defined on all subsets of the half line 0 <
¢ < o with finite Lebesgue measure, such that: E[dZ] = 0 and E[dZ?] = dt and
E[Z(A,)Z(A,)] = 0 for any disjoint sets A; and Ay on the halfline 0 < ¢ < «. (See
Bergstrom (1984, p. 1157) for a discussion of random measures and their
application to continuous time stochastic models.)

This is much weaker than the assumption that the innovations are gener-
ated by Brownian motion. The assumptions about the innovation process
include the case in which the innovations are a mixture of Brownian motion
and Poisson processes and allow for more general innovation processes in
which the increments are not independent but merely orthogonal.

Following CKLS we can obtain the various term structure models tested in
CKLS as special cases by imposing the necessary restrictions on the structural
parameters «, B, v, and o. The resulting term structure specifications are given
below and summarized in Table I. We also follow CKLS in ordering the models

2 Alternatively we call dZ Z(dt). Compare Bergstrom (1983, Assumption 1).
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Table I

Parameter Restrictions Imposed by Alternative Models of
Short-Term Interest Rate

The alternative term structure models for r are obtained from imposing the appropriate parameter
restrictions on the unrestricted model

dr(t) = {a + Br@®)}dt + or’(t)dZ.

Model a B o Y
Merton dr(t) = adt + odZ 0 0
Vasicek dr(t) = {a + Brt)}dt + odZ 0
CIR SR dr(t) = {a + Brt)}dt + orV%(t)dZ Yo
Dothan dr(t) = or(t)dZ 0 0 1
GBM dr(t) = Br(t)dt + or(t)dZ 0 1
Brennan-Schwartz dr(t) = {a + Brit)}dt + or(t)dZ 1
CIR VR dr(t) = or®2(t)dZ 0 0 ¥
CEV dr(t) = Br(t)dt + or*(t)dZ 0

starting with the Merton and Vasicek models which assume that conditional
volatility of changes in the interest rate are constant through to models with
higher levels of dependence of the volatility of the short-rate process to the
level of the rate itself.

1. Merton (1973) dr(t) = adt + odZ

2. Vasicek (1977) dr(t) = {a + Brt)}dt + odZ

3. Cox, Ingersoll, and Ross (1985) dr(t) = {a + Brt)dt + orV? (t)dZ
4. Dothan (1978) dr(t) = or(t)dZ

5. Geometric Brownian motion dr(t) = Br(t)dt + or(t)dZ

6. Brennan and Schwartz (1980) dr(t) = {a + Br)dt + or(t)dZ

7. Cox, Ingersoll and Ross (1980) dr(t) = or¥%(t)dZ

8. Constant Elasticity of Variance dr(t) = Brt)dt + or” (t)dZ

These models represent a number of well known models in the literature,
and their use was summarized in CKLS.

The stochastic differential equations considered by Bergstrom (1983, 1984,
1985, 1986) have not (as pointed out by Melino (1994)) been used in the
empirical finance literature to date. The reason is that Bergstrom assumes
that the conditional second moment is constant which is seldom satisfied for
financial data. We now assume as an approximation to the true underlying
model given by equation (1) that over the interval [0, T], r(#) satisfies the
stochastic differential equation '

dr(t) ={a + Br(t)}dt + of{r(t’' — 1)}dZ (2)

where ¢’ — 1 is the largest integer less than ¢ (i.e., ¢’ is the smallest integer
greater than or equal to £). We assume in equation (2) that the volatility of the
interest rate changes at the beginning of the unit observation period and then
remains constant. This assumption allows us to use the exact discrete model of
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Bergstrom (1984, Theorem 2) in the next section to obtain the Gaussian
estimates modified for heteroskedasticity.

We shall interpret equation (2) as meaning that r(¢) satisfies the stochastic
integral equation

t t
r¢) —rt' —1) = J' [a+ Br(s)] ds + o{r(t’ — 1)}7j dZ(s) (3)
t'—1 I t'—1
for all ¢ in [¢t' — 1, t'] where

t
t'-1<t=t and j dZ(s) = Z[t' — 1, t].
+-1

II. Gaussian Estimation

In this section the econometric methods used to estimate the underlying
structural parameters of the interest rate models are discussed. The approach
is based on the Gaussian estimation methods developed by Bergstrom (1983,
1985, 1986) (see also, Bergstrom (1990) and Nowman (1991)) for estimating
the parameters of open continuous time systems from discrete stock and flow
data using an exact discrete model which takes account of the exact restric-
tions on the distribution of the discrete data implied by the continuous time
model. Bergstrom (1983, 1985, 1986) provides a detailed analysis of using
exact discrete models as a basis for the Gaussian estimation of the structural
parameters of the continuous time model. We now proceed to discuss the
discrete model used for the estimation of the particular one-factor models.

It follows from Bergstrom (1984, Theorem 2) that the discrete model corre-
sponding to equation (3) used for estimation is given by

r(t) = ePr(t — 1) + %(eﬁ— D+m (=12, ...,T) (4)
where m, (t = 1, 2, ..., T) satisfies the conditions
E(nm) =0 (s #¢) (5)

¢ 2
E(n?) = J e2t=Bg2pr(t — 1)}27 d7 = ;—B(ezﬁ — D{r(t - 1D}**=mk. (6)
t—1

Let the complete vector of parameters be defined as 6 = [a, B, v, d?]. Following
Bergstrom (1985, 1986) we define L () as minus twice the logarithm of the
Gaussian likelihood function

T

L(6) = 2[2 log my +

t=1

{r(¢) — efr(t — 1)—(a/B)(ef — 1)}*

3
my

(7)
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We then have

T
L(6) = X[2 log m, + €] (8)
t=1
where ¢ = [eq, . .., €] is a vector whose elements can be computed from
mu€s = My- (9)

We also estimate the interest rate models with the discrete approximation
used in CKLS given as

rim—ri=a+ Br,+ (10)
E(nﬁ—l) =0, E(TI?H) = 0'27';27- (11)

It should be noted that the CKLS approximation can be obtained from the
discrete model (4) by expanding e® and neglecting higher-order terms. Al-
though both approaches use discrete approximations, one of the advantages of
using the specification in equation (3) and the resulting discrete model given
by equation (4) is that it allows us to use an exact maximum likelihood
estimator. This should help to reduce some of the temporal aggregation bias
(see, for example, Grossman, Melino, and Shiller (1987)). It should be noted
that, in the case of the Merton and Vasicek models, Bergstrom’s (1984, Theo-
rem 2) holds.

III. The Data

The British short-rate used in this study is the one-month sterling interbank
rate, middle rate, obtained from Datastream. The data are monthly covering
the period from March 1975 to March 1995 giving a total of 241 observations.
We also use the U.S. Treasury bill one-month yield data used in the CKLS
study (see CKLS for details) that are monthly covering the period from June
1964 to December 1989 giving a total of 307 observations. These data were

Table 11

Summary Statistics
Means, standard deviations, and autocorrelations of monthly sterling one-month interbank rate
and first differences are computed from March 1975 to March 1995. The variable r(¢) denotes the
sterling one-month interbank rate and Ar(z) is the monthly change. p, denotes the autocorrelation
coefficient of order j. T represents the number of observations used. ADF denotes the Augmented
Dickey-Fuller unit root statistic with a 5 percent critical value of —3.43.

Standard
Variable T Mean Deviation p, Pa Ps P4 Ps Ps ADF

r(?) 241 0.1097 0.0316 0.97 0.92 0.87 0.83 0.78 0.74 —25273
Ar(t) 240 —0.0002 0.0083 012 011 -0.09 -0.04 0.04 -0.01 -—5.4099
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Table III

Gaussian Estimates of Continuous Time Models of the Short-Term
Interest Rate

Gaussian estimates of alternative one-factor models of the short-term interest rate r(¢) (sterling
one-month interbank rate) from March 1975 to March 1995 (241 observations). The models are

Unrestricted dr(t) = {a + Br(t)}dt + or'(t)dZ
Merton dr(t) = adt + odZ

Vasicek dr(t) ={a+ Br(t)}dt + odZ

Cox, Ingersoll, and Ross dr(t) = {a + Br(t)}dt + or'¥(t)dZ
Dothan dr(t) = or(t)dZ

Geometric Brownian motion dr(t) = Br(t)dt + or(t)dZ
Brennan and Schwartz dr(t) ={a + Br(t)}dt + or(t)dZ
Cox, Ingersoll, and Ross dr(t) = or¥?(t)dZ

Constant Elasticity of Variance dr(t) = Br(t)dt + or’(t)dZ.

Gaussian estimates with ¢-statistics in parentheses are presented for each model. Likelihood ratio
tests evaluate restrictions imposed by different models against the unrestricted model. The x* test
statistics are reported with p-values in parentheses and associated degrees of freedom (df). S test
statistics denote the Box—Pierce type portmanteau test statistic proposed by Bergstrom for a check
on dynamic specification of the model with a critical value of 21.03 at 5% significance for the null
hypothesis of white noise residuals. The Gaussian estimates are obtained from the following
system of equations

r(t) = efr(t — 1) + %(eﬁ ~ 1)+,

t 2
E(nm) =0 (s#1t), Ej= J e Pa¥r(t — 1)} dr = g—B(ezﬁ = D{r(t — 1}
t—1

The CKLS Gaussian estimates are obtained from the following system

Tep1 — T =+ Bry+ M, E(m:1) =0, E(m2+1) = o,zrtzy
Log
Model @ B a? Y Likelihood x% Test df S Test
Unrestricted  0.0030 —-0.0291 0.0003 0.2898 1037.9510 19.72
(1.6065) (—1.7112) (1.3395) (1.7620)
CKLS 0.0029 —-0.0287 0.0003 0.2898 1037.9510

(1.6342) (—1.7440) (1.3456) (1.7720)




Gaussian Estimation of Continuous Time Dynamic Models 1701
Table III—Continued
Log
Model a B o y Likelihood x? Test df S Test
Merton —0.0002 0.0 0.0001 0.0 1034.7780 6.3460 2 20.03
(—0.4180) (10.9760) (0.0419)
CKLS —-0.0002 0.0 0.0001 0.0 1034.7780
(—0.4180) (10.9760)
Vasicek 0.0032 —0.0311 0.0001 0.0 1036.4100 3.0820 1 20.86
(1.5941) (—1.7709) (10.7828) (0.0792)
CKLS 0.0031 —0.0306 0.0001 0.0 1036.4100
(1.6371) (—1.8240) (10.9787)
CIR SR 0.0029 —0.0279 0.0007 0.5 1037.0813 1.7394 1 19.28
(1.6513) (—1.6958) (10.8072) (0.1872)
CKLS 0.0028 —0.0276 0.0006 0.5 1037.0813
(1.6653) (—1.7121) (10.9781)
Dothan 0.0 0.0 0.0067 1.0 1025.6063 24.6894 3 18.56
(10.9731) (<.0001)
CKLS 0.0 0.0 0.0067 1.0 1025.6063
(10.9731)
GBM 0.0 0.0006 0.0067 1.0 1025.6128 24.6764 2 18.57
(0.1135) (10.9585) (<.0001)
CKLS 0.0 0.0006 0.0067 1.0 1025.6128
(0.1135) (10.9765)
Brennan-Schwartz 0.0028 —0.0269 0.0068 1.0 1027.2555 21.3910 1 1941
(1.7913) (—1.6534) (10.8084) (<.0001)
CKLS 0.0027 —0.0266 0.0066 1.0 1027.2555
(1.8297) (—1.6900) (10.9775)
CIR VR 0.0 0.0 0.0776 1.5 1002.0835 71.7350 3 19.53
(10.9753) (<.0001)
CKLS 0.0 0.0 0.0776 1.5 1002.0835
(10.9753)
CEV 0.0 -0.0030 0.0003 0.2863 1036.6151 2.6718 1 1892
(—0.6133) (1.3503) (1.7552) (0.1021)
CKLS 0.0 —0.0030 0.0003 0.2863 1036.6151
(—0.6181) (1.3414) (1.7451)

obtained from the Center for Research in Security Prices (CRSP). (See Duffee
(1995) for an interesting recent discussion on the use of Treasury bill yields).
Table II reports the descriptive statistics for the British data. The table
displays the means, standard deviations, and first six autocorrelations of the
one-month rate and monthly changes in the one-month rate. We also report the
augmented Dickey-Fuller (ADF) statistic of Said and Dickey (1984) for the
presence of a unit root. The average level of the British one-month rate is 10.97
percent with a standard deviation of 3.16 percent. The autocorrelations for the
level fall off slowly and those of the first differences are small and not system-
atically positive or negative. See CKLS for summary details on the U.S. data.
The ADF statistics do not reject the null hypothesis of a unit root at the 5
percent level.
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Table IV

Gaussian Estimates of Continuous Time Models of the Short-Term
Interest Rate
Gaussian estimates of alternative one-factor models of the short-term interest rate r(¢) (annualized
one-month U.S. Treasury bill yield) from June 1964 to December 1989 (306 observations). The
models are

Unrestricted dr(t) ={a + Br(t)}dt + or*(¢t)dZ
Merton dr(t) = adt + odZ

Vasicek dr(t) ={a + Br(¢)}dt + odZ

Cox, Ingersoll and Ross dr(t) = {a + Br(t)}dt + orV*%(¢)dZ
Dothan dr(t) = or(t)dZ

Geometric Brownian motion dr(t) = Br(t)dt + or(t)dZ
Brennan and Schwartz dr(t) = {a + Br(t)}dt + or(t)dZ
Cox, Ingersoll, and Ross - dr(t) = or¥?(t)dZ

Constant Elasticity of Variance dr(t) = Br(¢)dt + or*(t)dZ.

Gaussian estimates with t-statistics in parentheses are presented for each model. Likelihood ratio
tests evaluate restrictions imposed by different models against the unrestricted model. The X test
statistics are reported with p-values in parentheses and associated degrees of freedom (df). S test
statistics denotes the Box—Pierce type portmanteau test statistic proposed by Bergstrom for a
check on dynamic specification of the model with a critical value of 21.03 at 5% significance for the
null hypothesis of white noise residuals. The Gaussian estimates are obtained from the following
system of equations

r(t) = ePr(t — 1) + %(eﬂ 1)+,

t 2
E(nm) =0 (s#1t), E)= f e® o r(t — D} dr = S—B(ez" = D{r@t - D™
t—1

The CKLS Gaussian estimates are obtained from the following system

regpr—re=a+ Brit My, E(ne1) = 0, E("'h2+1) = UzrtZy.
Log
Model a B a> v Likelihood x% Test df S Test
Unrestricted 0.0020 —0.0273 0.0701 1.3610 1412.0632 16.97
(2.2203) (—1.5400) (1.7443) (13.2834)
CKLS 0.0020 —0.0269 0.0682 1.3610 1412.0632

(2.2610) (—1.5597) (1.7259) (13.1523)
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Table IV—Continued
Log
Model a B o> v Likelihood x2 Test df S Test
Merton 0.0001 0.0 0.0001 0.0 1316.9808 190.1648 2 21.30
(0.1872) (12.3693) (<0.0001)
CKLS 0.0001 0.0 0.0001 0.0 1316.9808
(0.1872) (12.3693)
Vasicek 0.0035 —0.0506 0.0001 0.0 1321.0003 182.1258 1 18.93
(2.6632) (—2.7852) (12.0758) (<0.0001)
CKLS 0.0034 —0.0493 0.0001 0.0 1321.0003
(2.7191) (—2.8511) (12.3793)
CIR SR 0.0026 —0.0373 0.0008 0.5 1375.3886 73.3492 1 17.80
(2.3858) (—2.1537) (12.0983) (<0.0001)
CKLS 0.0025 —0.0366 0.0007 0.5 1375.3886
(2.4190) (—2.1806) (12.3682)
Dothan 0.0 0.0 0.0098 1.0 1402.4291 19.2682 3 17.75
(12.3642) (0.0002)
CKLS 0.0 0.0 0.0098 1.0 1402.4291
(12.3642)
GBM 0.0 0.0068 0.0097 1.0 1403.1628 17.8008 2 17.96
(1.2252) (12.3403) (0.0001)
CKLS 0.0 0.0069 0.0098 1.0 1403.1628
(1.2202) (12.3727)
Brennan-Schwartz 0.0021 —0.0297 0.0099 1.0 1405.7277 12.6710 1 17.32
(2.2464) (—1.7230) (12.1002) (0.0004)
CKLS 0.0021 —0.0293 0.0096 1.0 1405.7277
(2.2629) (—1.7277) (12.3688)
CIR VR 0.0 0.0 0.1530 1.5 1406.3987 11.3290 3 17.46
(12.3660) (0.0101)
CKLS 0.0 0.0 0.1530 1.5 1406.3987
(12.3660)
CEV 0.0 0.0101 0.0683 1.3600 1409.5431 5.0402 1 17.55
(1.8179) (1.7193) (13.0702) (0.0248)
CKLS 0.0 0.0102 0.0689 1.3600 1409.5431
(1.8539) (1.7422) (13.2678)
IV. Results

In this section we present the Gaussian estimation results from estimating
the unrestricted model and the eight different term structure models obtained
after imposing the appropriate restrictions on the general model. Following
Chan, Karolyi, Longstaff, and Sanders (1992b), the explanatory power of each
model is compared to the unrestricted model using the maximized Gaussian
log likelihood function value. We also report a formal check on the dynamic
specification of the different models using a recently proposed Box-Pierce type
portmanteau test by Bergstrom (1990).

A. UK. Gaussian Estimation Results

In Table III we present the Gaussian coefficient estimates, asymptotic -
t-statistics, maximized log likelihoods for the unrestricted and eight nested
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models, the likelihood ratio tests comparing the nested models with the unre-
stricted model, and the portmanteau test of Bergstrom (1990). A comparison of
the Gaussian estimates indicates that the bias resulting from using the CKLS
approximation is very small compared to the discrete approximation proposed
in this article. We now concentrate on the Gaussian estimation results using
the discrete model proposed in this article. Based on maximized Gaussian log
likelihood values compared to the unrestricted model, the CIR SR model
performs the best followed by the CEV and Vasicek models. Although the CEV
model allows the conditional volatility to depend on the level of interest rates,
the difference in the log likelihoods compared to the Vasicek model are very
small. The unrestricted model estimates imply that y = 0.2898 but is insig-
nificant. Also, there appears only to be weak evidence of mean reversion in the
short-term rate. Our results with regard to the dependence of conditional
volatility on the level of the interest rate are in contrast to the results of CKLS
(see also, Chan, Karolyi, Longstaff, and Sanders (1992b)) who find a greater
dependence with y = 1.499. Based on the ¥ likelihood ratio test under the null
hypothesis that the nested model restrictions are valid, the results imply that
we can reject the Merton, Dothan, GBM, Brennan-Schwartz, and CIR VR
models. »

As a more formal check on the dynamic specification of each model we
compute the Box-Pierce type portmanteau test statistic proposed by Berg-
strom (1990). This uses the vector of transformed residuals which, if the model
is correct, are independent and have variance 1. The statistic is given by

2

1 ! T

S =m - ( > sts,s,_l) (12)
i=1\ ¢t=l+1

and is asymptotically distributed as chi-squared with [/ degrees of freedom

(n = 1). The S-statistic is calculated for [ = 12. The null hypothesis of white

noise residuals is not rejected for any of the models at the 5 percent level.

B. U.S. Gaussian Estimation Results

In Table IV we present the empirical results using the CKLS data set. A
comparison of the Gaussian estimates indicates that the bias resulting from
the use of the CKLS approximation is again very small. We now concentrate on
the Gaussian estimation results using the discrete model proposed in this
article. Based on maximized Gaussian log likelihood values compared to the
unrestricted model, the CEV model performs the best followed by the CIR VR
and Brennan-Schwartz models. The unrestricted model estimate of yis 1.3610
and highly significant with a ¢-statistic of 13.28. This compares to the CKLS
reported estimated value of y of 1.4999. Also, there appears to be only weak
evidence of mean reversion in the short-term rate; the parameter g is insig-
nificant in the unrestricted model. The discrepancy in the results could be
attributed to the differences in the method of estimation since CKLS use
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Generalized Method of Moments methods. But the results still imply that the
volatility of the interest rate process is highly sensitive to the level of the
riskless rate as found by CKLS. Based on the x? likelihood ratio test, the
results imply that all the models are rejected. On the basis of the Bergstrom
(1990) S-statistic, the null hypothesis of white noise residuals is not rejected
for any of the models at the 5 percent level.

V. Conclusion

In this article we present the first application in finance of recently devel-
oped methods for the Gaussian estimation of continuous time dynamic models.
A range of one-factor continuous time models of the short-term interest rate
are estimated using data on the sterling one month interbank rate and the
U.S. Treasury bill yield data used in CKLS. We adopt the approach of CKLS,
which allows the nesting of eight well known models within a general stochas-
tic differential equation. We obtain estimates from using a discrete model and
compare them with the discrete approximation used in CKLS. We find that the
asymptotic bias from using the CKLS discrete approximation is very small.
Based on the Gaussian estimates using our proposed discrete model, we find
for the British data that the volatility of the short-term interest rate is not
highly sensitive to the level of the interest rate. This result differs sharply from
recent results for U.S. data.
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