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0.1 Zero coupon curve estimation

Before describing the use of the Principal Component technique for risk man-
agement in �xed income markets, let us remember the main idea behind zero
coupon curve estimation.
Note: Zero coupon curves are estimated using market prices for bonds that

pay coupon. As illustration for those of you interested, I leave the �polynomial
zero coupon curve.xls��le, that solves the following exercise. A .zip �le named
�nelson_siegel�will also be made available for those of yo interested in estimating
Nelson-Siegel and Svensson models of zero coupon curves using Matlab.
Consider the following exercise. Today is November 5, 2011. The �rst col-

umn of �le �polynomial zero coupon curve.xls�contains the coupon of each bond
traded in the secondary market for Government debt. The second column con-
tains the maturity date, the third column the date the bond was �rst issued,
which is assumed to be the same for all bonds, 15/08/2011. Each bond is as-
sumed to have a nominal of 100 monetary units. This is just for simpli�cation,
and it cold be changed without any di¢ culty. Finally, we see the (average)
market price for each bond.
We assume a polynomial discount function,

d(t) = a+ bt+ ct2 + dt3 + et4

to be applied to each cash �ow.
Hence, the price of a bond can be represented:
*
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where ni denotes the number of cash-�ows to be paid by the i-th bond

before maturity. We assume that all bonds pay coupon each semester (half of
the annual amount).
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For each vector of parameter values (a; b; c; d) we have a theoretical price for
each bond. We want to �nd the parameter values so that

Min
(a;b;c;d)

NX
i=1

(PMit � PTit )2

where PMit denotes the market price for each bond, and P
T
it denotes the the-

oretical price for that parameter vector.
The market price is �ex coupon�, meaning that we need to add to it the part

of the coupon which would correspond to the current holder since the last date
that a coupon was paid. To calculate that amount, we multiply the size of the
next coupon payment by the proportion of the 2-month interval that has already
gone by. Adding that to the �ex coupon�market price, we get the true traded
price.
The polynomial function dj(t) is the discount function, giving us the price

of a bond that would mature at any future date, with a single payment, to be
e¤ective at maturity. This would be a zero coupon bond maturing t periods
from now.
Estimate a discount function using a polynomial of degree 2, and another

one using a polynomial of degree 4, and represent both discount functions. Draw
a bar diagram with the market and the theoretical prices for each bond under
each speci�cation of the discount function.
The zero coupon curve itself, that represents zero coupon interest rates as a

function of maturity, is obtained from:

rt = 100

 �
1

dt

�1=t
� 1
!

Draw a diagram with the zero coupon curves that obtain from the two dis-
count functions you have estimated. In view of the results do you consider a
second degree polynomial to be adequate for this market?
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