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STATIONARITY AND INVERTIBILITY OF A DYNAMIC
CORRELATION MATRIX

Michael McAleer

One of the most widely-used multivariate conditional volatility models is the dynamic condi-
tional correlation (or DCC) specification. However, the underlying stochastic process to derive
DCC has not yet been established, which has made problematic the derivation of asymp-
totic properties of the Quasi-Maximum Likelihood Estimators (QMLE). To date, the statistical
properties of the QMLE of the DCC parameters have purportedly been derived under highly
restrictive and unverifiable regularity conditions. The paper shows that the DCC model can be
obtained from a vector random coefficient moving average process, and derives the stationarity
and invertibility conditions of the DCC model. The derivation of DCC from a vector random
coefficient moving average process raises three important issues, as follows: (i) demonstrates
that DCC is, in fact, a dynamic conditional covariance model of the returns shocks rather than
a dynamic conditional correlation model; (ii) provides the motivation, which is presently miss-
ing, for standardization of the conditional covariance model to obtain the conditional correlation
model; and (iii) shows that the appropriate ARCH or GARCH model for DCC is based on the
standardized shocks rather than the returns shocks. The derivation of the regularity conditions,
especially stationarity and invertibility, may subsequently lead to a solid statistical foundation
for the estimates of the DCC parameters. Several new results are also derived for univariate
models, including a novel conditional volatility model expressed in terms of standardized shocks
rather than returns shocks, as well as the associated stationarity and invertibility conditions.

Keywords: dynamic conditional correlation, dynamic conditional covariance, vector ran-
dom coefficient moving average, stationarity, invertibility, asymptotic proper-
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1. INTRODUCTION

Among multivariate conditional volatility models, the dynamic conditional correlation
(or DCC) specification of Engle [15] is one of the most widely used in practice. Both
multivariate conditional correlations and the associated conditional covariance mod-
els are very useful for determining optimal hedging strategies, volatility spillovers and
causality in volatility among financial commodities. Checking the underlying stochastic
properties, where they might exist, is crucial in examining the internal consistency of
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the models, as well as in deriving asymptotic properties of the associated parameter
estimates, for purposes of sensible empirical analysis.

These theoretical issues are especially important in empirical energy finance, where
the relationships among the prices, returns and volatility of fossil fuels, such as oil,
coal and gas, and the associated carbon emissions, are crucial for public and private
policy making. In this context, Chang and McAleer [6], Chang, McAleer and Tansuchat
[7, 8, 9, 10], Chang, McAleer and Zuo [12], and Chang, McAleer and Wang [11] have
discussed important practical issues arising in empirical finance, especially as they relate
to the pricing, returns and volatility of the primary sources of fossil fuel energy output,
the resulting volatility in pricing carbon emissions, and in related stock prices.

In order to calculate optimal hedging strategies (or risk insurance) to mitigate fi-
nancial risk, the two alternative models that have been used widely for estimating and
forecasting multivariate conditional correlations and conditional covariances have been
based on: (i) the diagonal and full BEKK models of Baba et al. [3] and Engle and
Kroner [16], which have been derived from an m-dimensional vector random coefficient
autoregressive process (see McAleer et al. [21] and Section 2 below); and (ii) the DCC
model, which was presented without an underlying stochastic specification in Engle [15].

The basic DCC modelling approach has been as follows: (i) estimate the univariate
conditional variances using the GARCH(1,1) model of Bollerslev [4], which are based on
the returns shocks; and (ii) estimate what is purported to be the conditional correlation
matrix of the standardized residuals.

The first step in the modelling approach is arbitrary as the conditional variances
could just as easily be based on the standardized residuals themselves, as will be shown
in Section 4 below. The second step is fatally flawed as the model can be derived from an
appropriate underlying stochastic process as a conditional covariance model rather than
as a conditional correlation model. However, as no regularity conditions were presented
in the presentation of the DCC model in Engle [15], no statistical properties have yet
been derived for the estimated parameters of the model.

A similar comment applies to the varying conditional correlation model of Tse and
Tsui [23], where the first stage is based on a standard GARCH(1,1) model using returns
shocks. The second stage is slightly different from the DCC formulation as the condi-
tional correlations are defined appropriately. However, as no regularity conditions are
presented, including invertibility, no statistical properties can be derived.

The DCC model has been analyzed critically in a number of papers as its underly-
ing stochastic process has not yet been established, which has made problematic the
derivation of the asymptotic properties of the Quasi-Maximum Likelihood Estimators
(QMLE). To date, the statistical properties of the QMLE of the DCC parameters have
been derived under highly restrictive and unverifiable regularity conditions, which in
essence amounts to proof by assumption.

This paper shows that the DCC specification can be obtained from a vector random
coefficient moving average process, and derives the sufficient conditions for stationarity
and invertibility of the DCC model. The derivation of regularity conditions may subse-
quently lead to a solid statistical foundation for the estimates of the DCC parameters.

The derivation of DCC from a vector random coefficient moving average process raises
three important issues: (i) demonstrates that DCC is, in fact, a dynamic conditional
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covariance model of the returns shocks rather than a dynamic conditional correlation
model; (ii) provides the motivation, which is presently missing, for standardization of the
conditional covariance model to obtain the conditional correlation model; and (iii) shows
that the appropriate ARCH or GARCH model for DCC is based on the standardized
shocks rather than the returns shocks.

The remainder of the paper is organized as follows. In Section 2, the standard ARCH
model is derived from a random coefficient autoregressive process to provide a back-
ground for the remainder of the paper. The multivariate counterpart of ARCH is derived
from a vector random coefficient autoregressive process, which will explain intuitively
how the univariate results of Marek [20] on a random coefficient moving average process
can be extended to an m-dimensional vector counterpart. In Section 3, the DCC model
is presented and discussed. Section 4 presents and discusses a new vector random coef-
ficient moving average process that will be used as an underlying stochastic process in
order to derive DCC. Several new results are derived for the associated univariate mod-
els, including a novel conditional volatility model expressed in terms of standardized
shocks rather than returns shocks, as well as the associated stationarity and invertibility
conditions. In Section 5, DCC is demonstrated to be derived from the vector random
coefficient moving average process. The conditions for stationarity and invertibility of
DCC are derived in Section 6. Some concluding comments are given in Section 7.

2. RANDOM COEFFICIENT AUTOREGRESSIVE PROCESS

This section presents the underlying stochastic autoregressive processes for univariate
and multivariate GARCH processes, as compared with the multivariate moving average
process for the multivariate DCC process in the following section. Consider the following
random coefficient autoregressive process of order one:

εt = φtεt−1 + ηt (1)

where

φt ∼ iid(0, α),

ηt ∼ iid(0, ω), independent of {φt} .

The ARCH(1) model of Engle [14] can be derived as (see Tsay [22]):

ht = E(ε2t |It−1) = ω + αε2t−1, (2)

where ht is conditional volatility, and It−1 is the information set at time t-1. The use of
an infinite lag length for the random coefficient autoregressive process in equation (1)
leads to the Generalized ARCH (or GARCH) model of Bollerslev [4].

The diagonal version of the BEKK model of Baba et al. [3] and Engle and Kroner [16],
though not the Hadamard BEKK and full BEKK models, can be derived from a vector
random coefficient autoregressive process (see McAleer et al. [21]). As the statistical
properties of vector random coefficient autoregressive processes are well known, the
statistical properties of the parameter estimates of the ARCH, GARCH, and diagonal
BEKK models are straightforward to establish.
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3. DCC SPECIFICATION

This section presents the DCC model, as given in Engle [15], which does not have an
underlying stochastic specification that leads to its derivation. Let the conditional mean
of financial returns be given as:

yt = E(yt|It−1) + εt, (3)

where yt = (y1t, ..., ymt)
′, yit = ∆ logPit represents the log-difference in stock prices (Pit),

i = 1,. . . ,m, It−1 is the information set at time t-1, and εt is conditionally heteroskedas-
tic. Without distinguishing between dynamic conditional covariances and dynamic con-
ditional correlations, Engle [15] presented the DCC specification as:

Qt = (1− α− β)Q+ αηt−1η
′

t−1 + βQt−1, (4)

where Qt in (4) is purported to be a conditional correlation matrix, without proof, Q is
assumed to be positive definite with unit elements along the main diagonal, the scalar
parameters α and β are assumed to be non-negative and satisfy the stability condition,
α+β < 1, the standardized shocks, ηt = (η1t, ...,ηmt)

′, where ηit = εit/
√
hit, are assumed

to be iid, and Dt is a diagonal matrix with typical element
√
hit, i = 1,. . . ,m. If m is

the number of financial assets, the multivariate definition of the relationship between εt
and ηt is εt = Dtηt.

Define the conditional covariance matrix of εt as Qt. As the m × 1 vector, ηt, is
assumed to be iid for all m elements, the conditional correlation matrix of ηt is given
by Γt. Therefore, the conditional expectation of the covariance matrix of εt is defined
as:

Qt = Dt ΓtDt. (5)

Equivalently, the conditional correlation matrix, Γt, is defined as:

Γt = D−1t QtD
−1
t . (6)

Equation (5) is useful if a model of Γt is available for purposes of estimating Qt,
whereas equation (6) is useful if a model of Qt is available for purposes of estimating Γt.
Ling and McAleer [19] and McAleer et al. [21] provide general proofs of the asymptotic
properties of univariate and multivariate conditional volatility models based on satisfying
the regularity conditions in Jeantheau [18] for consistency, and in Theorem 4.1.3 in
Amemiya [2] for asymptotic normality.

In view of equations (5) and (6), as the matrix Qt in equation (4) does not satisfy
the definition of a correlation matrix, Engle [15] uses the following standardization for
Qt in equation (4):

Rt = (diag(Qt))
−1/2Qt(diag(Qt))

−1/2. (7)

There is no clear explanation given in Engle [15] for the standardization in equation
(7) or, more recently, in Aielli [1], especially as equation (7) does not satisfy the definition
of a correlation matrix, which is given in equation (6). The standardization in equation
(7) might make sense if the matrix Qt in equation (4) were the conditional covariance
matrix of εt or ηt though this is not made clear. It is worth noting that the unconditional
covariance matrix of εt is not analytically tractable.
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Despite the title of the paper, Aielli [1] also does not provide any stationarity condi-
tions for the DCC model, and does not mention invertibility. Indeed, in the literature
on DCC, it is not clear whether equation (4) refers to a conditional covariance or a
conditional correlation matrix, although the latter is presumed, without proof. Some
caveats regarding DCC are given in Caporin and McAleer [5].

4. VECTOR RANDOM COEFFICIENT MOVING AVERAGE PROCESS

The random coefficient moving average process will be presented in its original univariate
form in section 4.1, as in Marek [20], with an extension to its multivariate counterpart in
section 4.2, in order to derive the corresponding univariate and multivariate conditional
volatility models, respectively.

4.1. Univariate process

In an interesting and useful paper, Marek [20] proposed a linear moving average model
with random coefficients (RCMA), and established the conditions for stationarity and
invertibility. In this section, we extend the univariate results of Marek [20] using an m-
dimensional vector random coefficient moving average process of order p, which is used
as an underlying stochastic process to derive the DCC model, and prove the stationarity
and invertibility conditions. Several new results are also derived for the associated
univariate models, including a novel conditional volatility model expressed in terms of
standardized shocks rather than returns shocks, as well as the associated stationarity
and invertibility conditions.

Consider a univariate random coefficient moving average process given by:

εt = θtηt−1 + ηt, (8)

where ηt ∼ iid (0, ω). The sequence {θt} is supposed to be independent of ηt−1, ηt, ηt+1, . . .,
which is called the Future Independence Condition, with mean zero and variance α. It
is also assumed to be measurable with respect to It, where It is the information set gen-
erated by the random variable {εt,εt−1,...}. Furthermore, it is assumed that the process
{εt} is stationary and invertible, such that ηt ∈ It. For further details, see Marek [20].

Without the measurability assumption on {θt} it would be difficult to obtain results
on the invertibility of the model. However, an important special case of the model arises
when {θt} is iid, that is, not measurable with respect to It, in which case the conditional
and unconditional expectations of εt are zero, and the conditional variance of εt is given
by:

ht = E(ε2t |It−1) = ω + αη2t−1 (9)

which differs from the ARCH(1) model in equation (2) in that the returns shock is
replaced by the standardized shock. This is a new result in the conditional volatility
literature.

As ηt ∼ iid (0, ω), the unconditional variance of εt is given as:

E(ht) = (1 + α)ω.
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The use of an infinite lag length for the random coefficient moving average process in
equation (8), with appropriate restrictions on θt, would lead to a generalized ARCH
model that differs from the GARCH model of Bollerslev [4] as it would replace the
returns shock with a standardized shock.

The univariate ARCH(1) model in equation (9) is contained in the family of GARCH
models proposed by Hentschel [17], and the augmented GARCH model class of Duan
[13].

It can be shown from the results in Marek [20] that a sufficient condition for station-
arity is that the vector sequence υt = (ηt, θtηt−1)′ is stationary. Moreover, by Lemma
2.1 of Marek [20], a new sufficient condition for invertibility is that:

E [log |θt|] < 0. (10)

The stationarity of νt = (ηt, θt, ηt−1) and the invertibility condition in equation (10)
are new results for the univariate ARCH(1) model given in equation (9), as well as its
direct extension to GARCH models.

4.2. Multivariate process

Extending the analysis given above to the multivariate case and to a vector random
coefficient moving average (RCMA) model of order p, we can derive a special case of
DCC(p,q), namely DCC(p,0 ), as follows:

εt =

p∑
j=1

θjtηt−j + ηt, (11)

where εi and ηi are both m× 1 vectors and θjt, j = 1,. . . ,p are random m×m matri-
ces, independent of ηt−1, ηt, ηt+1, . . .. Under Assumption 1, it is possible to derive the
conditional covariance matrix of εi in equation (11):

Assumption 1.

1. E(ηt|It−1) = 0, E(ηtη
′
t|It−1) = Ω.

2. The random coefficient matrices θjt have the following properties: For all j = 1, . . . , p,
and t = 1, . . ., T , it is assumed that E(θjt|It−1)= 0 and E(θjt,klθ

′
jt,mn|It−1) =

Aj,klA
′
j,mn for appropriate matrices Aj,kl and Aj,mn that form the conditional

covariance matrix of θjt, and E(θjt,klθ
′
is,mn|It−1) = 0, i 6= j, and/or s 6= t.

This is similar to Proposition 1 of McAleer et al. [21] in that the conditional covariance
matrix is given by:

Ht = E(εtε
′
t|It−1) = Ω +

p∑
j=1

Ajηt−jη
′

t−jA
′
j

such that:

E(vec(Ht)) =

Im +

p∑
j=1

Aj ⊗Aj

 vec(Ω).
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This approach can easily be extended to include autoregressive terms. For example,
in a model analogous to GARCH(p,q), namely:

Ht = Ω +

p∑
i=1

Aiηt−iη
′

t−iA
′
i +

q∑
j=1

BjHt−jB
′
j ,

where the parameter matrices Bj are such that the maximum eigenvalue of
∑q

j=1Bj⊗Bj

is smaller than one in modulus, it follows that:

E(vec(Ht)) =

Im − q∑
j=1

Bj ⊗Bj

−1 Im +

p∑
j=1

Aj ⊗Aj

 vec(Ω).

The derivation given above shows that, as compared with the standard DCC formula-
tion, which is not based on an underlying stochastic process that leads to its derivation,
the formulation given above permits straightforward computation of the unconditional
variances and covariances via the derived models in equations .

It should also be noted that in Aielli’s [1] variation of the standard DCC model, it is
possible to calculate the unconditional expectation of the Qt matrix, as in equation (4),
but this is not equal to the unconditional covariance matrix of εt , which is analytically
intractable. This is an additional advantage of using the vector random coefficient
moving average process given in the above equations, as will be shown explicitly in the
following section

5. DERIVATION OF DCC

In this section, the DCC model will be derived from a vector random coefficient moving
average process as the underlying stochastic process. If θjt in equation (11) is given as:

θjt = λjtIm, with λjt ∼ iid(0, αj),

j = 1, . . . , p, where λjt is a scalar random variable, then the conditional covariance
matrix can be shown to be:

Ht = E(εtε
′

t|It−1) = Ω +

p∑
j=1

αjηt−jη
′

t−j . (12)

The DCC model in equation (4) is obtained by letting p→∞ in equations (11) and
(12), setting αj = αβj−1, and standardizing Ht in equation (12) to obtain a conditional
correlation matrix. For the case p = 1 in equation (12), the appropriate univariate
conditional volatility model is given in the new model in equation (9), which uses the
standardized shocks, rather than standard ARCH in equation (2), which uses the returns
shocks.

The derivation of DCC in equation (12) from a vector random coefficient moving
average process is important as it: (i) demonstrates that DCC is, in fact, a dynamic
conditional covariance model of the returns shocks rather than a dynamic conditional
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correlation model; (ii) provides the motivation, which is presently missing, for standard-
ization of the conditional covariance model to obtain the conditional correlation model;
and (iii) shows that the appropriate ARCH and GARCH models for DCC are based
on the standardized shocks rather than the returns shocks. Point (iii) provides novel
univariate ARCH and GARCH models.

It is worth noting that the derivation of the DCC model using the underlying vector
random coefficient moving average process is not argued to be unique as the latter
has not been shown to be a necessary condition. However, to date there has been no
derivation of the DCC model from an underlying stochastic process that leads to its
derivation.

6. DERIVATION OF STATIONARITY AND INVERTIBILITY OF DCC

The formulation of DCC given in the previous section is more natural than the standard
treatment as it can be derived from an underlying stochastic process which leads to its
derivation, and can be also analyzed in terms of mathematical and statistical properties,
such as stationarity, invertibility, and existence of moments.

This section derives the stationarity and invertibility conditions for the DCC model
in Theorem 1, based on Assumption 2:

Assumption 2.
E [log ‖Θt−k‖] < log

√
pm (13)

where ‖Θt‖ is the Frobenius norm, and Θt is given by:

Θt =


−θ1t −θ2t . . . −θpt

1 0 . . . 0
. . . .
0 . . . 1 0

 .

Theorem 1. A sufficient condition for stationarity is that the vector sequence:

υt = (ηt, θ1tηt−1, . . . , θptηt−p)
′

is stationary. Furthermore, under Assumption 2, the vector random coefficient moving
average process, εt, is invertible.

P r o o f . The proof of stationarity is similar to the sufficient condition for stationarity
of the univariate random coefficient moving average process, namely that the vector
sequence υt = (ηt, θtηt−1)′ is stationary. For invertibility, note that:

ηt = εt −
p∑

j=1

θjtηt−j

which can be written as:
η̃t = Θtη̃t−1 + ε̃t
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where η̃t = (ηt, ηt−1, . . . , ηt−p+1)
′

and ε̃t = (εt, εt−1, . . . , εt−p+1)
′
.

Hence,

η̃t =

n−1∑
j=0

(
j∏

k=1

Θt−k+1

)
ε̃t−j +

(
n−1∏
k=0

Θt−k

)
η̃t−n.

Now let:

η̃
(n)
t =

n∑
j=0

(
j∏

k=1

Θt−k+1

)
ε̃t−j .

Consider

1

n
log

1
√
pm
‖ η̃t − η̃nt ‖ =

1

n
log

1
√
pm

∥∥∥∥∥
(

n−1∏
k=1

Θt−k

)
η̃t−n

∥∥∥∥∥

≤ 1

n
log

1
√
pm

∥∥∥∥∥
n−1∏
k=1

Θt−k

∥∥∥∥∥+
1

n
log

1
√
pm
‖ η̃t−n‖

≤ 1

n

n∑
k=1

log
1
√
pm
‖Θt−k‖+

1

n
log

1
√
pm
‖ η̃t−n‖

−→
a.s.

E log
1
√
pm
‖Θt−k‖ < 0

as E log ‖Θt−k‖ <
√
pm, by assumption. This implies that ηt − ηnt −→

a.s.
0 and, hence,

ηt is asymptotically measurable with respect to {εt−1, εt−2, . . . }, and εt is invertible.
�

The derivation of the sufficient conditions for stationarity and invertibility of the
DCC model in Theorem 1 makes it more viable and understandable in practice, and
contributes toward a statistical analysis of the model for practical purposes, as discussed
in Section 1.

Note that a sufficient condition for equation (13) is that:

p∑
j=1

E ‖θjt‖2 < m (14)
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as

E log
1
√
pm
‖Θt−k‖ ≤ logE

1
√
pm
‖Θt−k‖

= logE
1
√
pm

√√√√ p∑
j=1

‖θjt‖2 + (p− 1)m

= logE

√√√√ 1
√
pm

p∑
j=1

‖θjt‖2 + (p− 1)/p

≤ log

√√√√ 1
√
pm

p∑
j=1

E ‖θjt‖2 + (p− 1)/p

< 0.

The condition given in equation (14) may be easier to check in practice than the con-
dition given in equation (13). The simplicity and convenience of equation (13) may be
important for the practical implementation of the DCC model.

For the special case θjt = λjtIm, with λjt ∼ iid(0, αj), j = 1, . . . , p, discussed in
Section 5 above, the condition in equation (14) simplifies to the well-known condition
on the long-run persistence to returns shocks, namely:

p∑
j=1

Eλ2jt =

p∑
j=1

αj < 1.

7. CONCLUSION

The paper was concerned with one of the most widely-used multivariate conditional
volatility models, namely the dynamic conditional correlation (or DCC) specification.
As the underlying stochastic process to derive the DCC model has not yet been estab-
lished, this has made problematic the derivation of the asymptotic properties of the
Quasi-Maximum Likelihood Estimators (QMLE). To date, the statistical properties of
the QMLE of the DCC parameters have been derived under highly restrictive and un-
verifiable regularity conditions.
The paper showed that the DCC specification could be obtained from a vector random
coefficient moving average process, and derived the sufficient stationarity and invert-
ibility conditions of the DCC model. The derivation of the regularity conditions may
eventually lead to a solid foundation for the statistical analysis of the QMLE estimates
of the DCC parameters.

The derivation of DCC demonstrated that DCC is, in fact, a dynamic conditional co-
variance model of the standardized shocks rather than a dynamic conditional correlation
model based on returns shocks, as presumed in Engle [15]. Moreover, the derivation of
the DCC model provided the motivation, which is presently missing, for standardizing
the conditional covariance model to obtain the conditional correlation model. The stan-
dardization of the estimated DCC models in practice does not satisfy the definition of a
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correlation matrix, which has always been problematic in interpreting the DCC model
(see, for example, Caporin and McAleer [5]).

The derivation of the DCC model also showed that the appropriate ARCH and
GARCH models underlying the DCC model are based on the standardized shocks rather
than the returns shocks. Several new results were also derived for univariate models,
including a novel conditional volatility model that was derived from an underlying uni-
variate random coefficient moving average process.
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Abstract 

The purpose of the paper is to (i) show that univariate GARCH is not a special case of multivariate 

GARCH, specifically the Full BEKK model, except under parametric restrictions on the off-

diagonal elements of the random coefficient autoregressive coefficient matrix, that are not 

consistent with Full BEKK, and (ii) provide the regularity conditions that arise from the underlying 

random coefficient autoregressive process, for which the (quasi-) maximum likelihood estimates 

(QMLE) have valid asymptotic properties under the appropriate parametric restrictions. The paper 

provides a discussion of the stochastic processes that lead to the alternative specifications, 

regularity conditions, and asymptotic properties of the univariate and multivariate GARCH models. 

It is shown that the Full BEKK model, which in empirical practice is estimated almost exclusively 

compared with Diagonal BEKK  (DBEKK), has no underlying stochastic process that leads to its 

specification, regularity conditions, or asymptotic properties, as compared with DBEKK. An 

empirical illustration shows the differences in the QMLE of the parameters of the conditional 

means and conditional variances for the univariate, DBEKK and Full BEKK specifications. 

 
Keywords: Random coefficient stochastic process, Off-diagonal parametric restrictions, Diagonal 
BEKK, Full BEKK, Regularity conditions, Asymptotic properties, Conditional volatility, 
Univariate and multivariate models, Fossil fuels and carbon emissions. 
 
JEL: C22, C32, C52, C58. 
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1. Introduction 
 

The most widely estimated univariate and multivariate models of time-varying volatility for 

financial data, as well as any high frequency data that are measured in days, hours and minutes, is 

the conditional volatility model. The underlying stochastic processes that lead to the specifications, 

regularity conditions and asymptotic properties of the most popular univariate conditional 

volatility models, such as GARCH (see Engle (1982) and Bollerslev (1986)) and GJR (see Glosten 

et al. (1993)) are well established in the literature, though McAleer and Hafner (2014) have raised 

caveats regarding the existence of the stochastic process underlying exponential GARCH 

(EGARCH) (see Nelson (1990, 1991)).  

 

However, the same cannot be said about multivariate conditional volatility models, specifically 

Full BEKK (see Baba et al. (1985) and Engle and Kroner (1995)), for which the underlying 

stochastic process that leads to the specification, regularity conditions and asymptotic properties 

have either not been established, or are simply assumed rather than derived. These conditions are 

essential for forecasting and valid statistical analysis of the empirical estimates, which are the 

primary purposes of the models.  

 

The purpose of the paper is to show that the stochastic process underlying univariate GARCH is 

not a special case of that underlying multivariate GARCH, except under parametric restrictions on 

the off-diagonal elements of the random coefficient autoregressive coefficient matrix that are not 

consistent with Full BEKK. The paper provides the regularity conditions that arise from the 

underlying random coefficient autoregressive process, and for which the (quasi-) maximum 

likelihood estimates (QMLE) have valid asymptotic properties under the appropriate parametric 

restrictions. 

 

The Full BEKK model is estimated almost exclusively in empirical practice, to the exclusion of 

Diagonal BEKK (DBEKK), despite the fact that Full BEKK has no underlying stochastic process 

that leads to its specification, regularity conditions, or asymptotic properties, as shown in the 

proposition and four corollaries, as compared with DBEKK.  

 

The plan of the paper is as follows. Section 2 provides a discussion of the stochastic processes, 
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regularity conditions, and asymptotic properties of univariate and multivariate GARCH models. 

Section 3 shows that the Full BEKK model has no underlying stochastic process that leads to its 

specification, regularity conditions, or asymptotic properties, as compared with DBEKK. In 

Section 4, an empirical illustration for the financial returns on spot and futures prices of fossil fuels 

and carbon emissions for the European Union and USA shows the differences that can arise in the 

QMLE of the parameters of the conditional means and conditional variances for the univariate, 

DBEKK and Full BEKK specifications. Section 5 gives some concluding comments. 

 
2. Univariate and Multivariate GARCH Models 
 
2.1 Univariate Conditional Volatility Models 

 
Consider the conditional mean of financial returns for commodity i, in a financial portfolio of m 

assets, as follows: 

 

    𝑦௧ ൌ 𝐸ሺ𝑦௧|𝐼௧ିଵሻ  𝜀௧ , 𝑖 ൌ 1, 2, … , 𝑚,   (1) 

     

where the returns,  𝑦௧ ൌ Δ𝑙𝑜𝑔𝑃௧ , represent the log-difference in financial commodity prices, 

𝑃௧ , 𝐼௧ିଵ is the information set for all financial assets at time t-1, 𝐸ሺ𝑦௧|𝐼௧ିଵሻ is the conditional 

expectation of returns, and 𝜀௧ is a conditionally heteroskedastic error term.  

 

In order to derive conditional volatility specifications, it is necessary to specify the stochastic 

processes underlying the returns shocks, 𝜀௧. The most popular univariate conditional volatility 

model, GARCH model, is discussed below.  

 

Consider the random coefficient autoregressive process underlying the returns shocks, 𝜀௧ , as 

follows: 

 

    𝜀௧ ൌ 𝜙௧𝜀௧ିଵ 𝜂௧ ,  𝑖 ൌ 1, 2, … , 𝑚,   (2) 

       

where 
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𝜙௧~𝑖𝑖𝑑ሺ0, 𝛼ሻ, 𝛼  0, 

𝜂௧~𝑖𝑖𝑑ሺ0, 𝜔ሻ, 𝜔  0, 

𝜂௧ ൌ 𝜀௧/ඥℎ௧ is the standardized residual,  

ℎ௧ is the conditional volatility of financial asset i. 

 

Tsay (1987) derived the following conditional volatility of financial asset i as an ARCH process 

(see Engle, 1982): 

 

𝐸ሺ𝜀௧
ଶ |𝐼௧ିଵሻ ≡  ℎ௧ ൌ  𝜔  𝛼𝜀௧ିଵ

ଶ  ,     (3) 

       

where ℎ௧ represents conditional volatility, and 𝐼௧ିଵ is the information set available at time t-1. A 

lagged dependent variable, ℎ௧ିଵ, is typically added to equation (3) to improve the sample fit: 

 

ℎ௧ ≡ 𝐸ሺ𝜀௧
ଶ |𝐼௧ିଵሻ ൌ 𝜔  𝛼𝜀௧ିଵ

ଶ   𝛽ℎ௧ିଵ, 𝛽 ∈ ሺെ1, 1ሻ.    (4) 

 

From the specification of equation (2), it is clear that both 𝜔 and 𝛼 should be positive as they are 

the unconditional variances of two different stochastic processes. In equation (4), which is a 

GARCH(1,1) model for commodity i (see Bollerslev, 1986), the stability condition requires that 

𝛽 ∈ ሺെ1, 1ሻ.  

 

The stochastic process can be extended to asymmetric conditional volatility models (see, for 

example, McAleer (2014)), and to give higher-order lags and a larger number of alternative 

commodities, namely up to m-1. However, the symmetric process considered here is sufficient to 

focus the key ideas associated with the purpose of the paper. 

 

As the stochastic process in equation (2) follows a random coefficient autoregressive process, 

under normality (non-normality) of the random errors, the maximum likelihood estimators (quasi- 

maximum likelihood estimators, QMLE) of the parameters will be consistent and asymptotically 

normal. It is worth emphasizing that the regularity conditions include invertibility, which is 

obvious from equation (2), as: 
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𝜀௧ െ 𝜙௧𝜀௧ିଵ ൌ  𝜂௧. 

 

The standardized residuals,  𝜂௧ , can be expressed in terms of the empirical data through equations 

(1) and (2), as 𝜀௧  can be estimated using equation (1), 𝜀௧ିଵ is the lagged value, which has already 

been estimated, and the random coefficient can be generated under appropriate explicit 

assumptions regarding its underlying stochastic process. In short,  𝜂௧ can be related directly to the 

data, 𝑦௧ , using equations (1) and (2). 

 

Ling and McAleer (2003) and McAleer et al. (2008) provide general proofs of the asymptotic 

properties of univariate and multivariate conditional volatility models based on satisfying the 

regularity conditions in Jeantheau (1998) for consistency, and in Theorem 4.1.3 in Amemiya 

(1985) for asymptotic normality. 

 

2.2 Multivariate Conditional Volatility Models 
 
The multivariate extension of the univariate ARCH and GARCH models is given in Baba et al. 

(1985) and Engle and Kroner (1995). It is useful to define the multivariate extension of the 

relationship between the returns shocks and the standardized residuals, that is, 𝜂௧ ൌ 𝜀௧/ඥℎ௧ . 

The multivariate extension of equation (1), namely:  

 

𝑦௧ ൌ 𝐸ሺ𝑦௧|𝐼௧ିଵሻ  𝜀௧ ,    (5) 

 

can remain unchanged by assuming that each of the three components in equation (5) is an 𝑚 ൈ 1 

vector, where 𝑚 is the number of financial assets. 

 

The following two definitions are intended to elaborate on the discussion below:  

 

Definition 1: Each marginal of  𝜀௧  should be a univariate counterpart of the multivariate returns 

vector, 𝜀௧. 
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Definition 2: An underlying stochastic process of a univariate returns shock, or multivariate 

returns shocks, is one that leads to the regularity conditions, likelihood function, and asymptotic 

properties of the resulting quasi- maximum likelihood estimators. 

 

Consider the vector random coefficient autoregressive process of order one, which is the 

multivariate extension of the univariate process given in equation (2):    

 

𝜀௧ ൌ 𝛷௧𝜀௧ିଵ  𝜂௧,     (6) 

 

where 

𝜀௧ and 𝜂௧ are 𝑚 ൈ 1 vectors,  

𝛷௧ is an 𝑚 ൈ 𝑚 matrix of random coefficients,   

𝛷௧~𝑖𝑖𝑑ሺ0, 𝐴ሻ, A is positive definite,  

𝜂௧~𝑖𝑖𝑑ሺ0, 𝐶ሻ, C is an 𝑚 ൈ 𝑚 matrix. 

 

Vectorization of a full matrix A to vec A can have dimension as high as 𝑚ଶ ൈ 𝑚ଶ , whereas 

vectorization of a symmetric matrix A to vech A can have a smaller dimension of mሺm  1ሻ/2 ൈ

mሺm  1ሻ/2.  

 

In the case where A is a diagonal matrix, with 𝑎 > 0 for all i = 1,…,m and |𝑏| < 1 for all j = 

1,…,m, so that A has dimension 𝑚 ൈ 𝑚 , McAleer et al. (2008) showed that the multivariate 

extension of GARCH(1,1) from equation (6) is given as the Diagonal BEKK (DBEKK) model, 

namely:  

 

𝑄௧ ൌ 𝐶𝐶ᇱ  𝐴𝜀௧ିଵ𝜀௧ିଵ
ᇱ 𝐴ᇱ  𝐵𝑄௧ିଵ𝐵ᇱ,   (7) 

 

where A and B are both diagonal matrices. The diagonality of the positive definite matrix A is 

essential for matrix multiplication as 𝜀௧ିଵ𝜀௧ିଵ
ᇱ  is an 𝑚 ൈ 𝑚 matrix; otherwise equation (7) could 

not be derived from the vector random coefficient autoregressive process in equation (6). 
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McAleer et al. (2008) showed that the QMLE of the parameters of the DBEKK model were 

consistent and asymptotically normal, so that standard statistical inference on testing hypotheses 

is valid (or further details, see Chang et al., 2018). It should be emphasized that the QMLE of the 

parameters in the conditional means, namely equations (1) and (5), and the conditional variances, 

namely equations (4) and (7), will differ as the multivariate models, (5) and (7), respectively, are 

estimated jointly, whereas the univariate models, (1) and (4), respectively, are estimated 

individually. 

 

3. Full BEKK 
 
Consider element i of equation (6), that is: 

 

 

𝜀௧ ൌ ∑ 𝜙௧𝜀௧ିଵ 𝜂௧

ୀଵ  ,  𝑖 ൌ 1, 2, … , 𝑚,     (8) 

 

which is not equivalent to equation (2) unless  𝜙௧ ൌ 0  ∀ i ് j. Such parametric restrictions are 

not consistent with the Full BEKK specification, which assumes 𝜙௧ ് 0 for at least one i ് j, 

𝑖, 𝑗 ൌ 1, 2, … , 𝑚.   

 

The stochastic process given in equation (8) is not a random coefficient autoregressive process 

because of the presence of an additional m-1 random coefficients, 𝜙௧, i ് j. Importantly, equation 

(8) is not invertible as the standardized residual, 𝜂௧, cannot be connected to the data, 𝑦௧, as m 

equations are required, as in equation (6). Consequently, the stochastic process underlying 

univariate ARCH is not a special case of the stochastic process underlying multivariate ARCH 

unless  𝜙௧ ൌ 0  ∀ i ് j.   

 

The same condition holds ∀ i, j = 1,…,m, which leads to the following proposition: 

 

Proposition: The stochastic process underlying univariate ARCH in equation (2) is a special case 

of the stochastic process underlying multivariate ARCH in equation (8) if and only if:    
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𝜙௧ ൌ 0  ∀ i ് j, 𝑖, 𝑗 ൌ 1, 2, … , 𝑚.  

 

Proof: If 𝜙௧ ൌ 0  ∀ i ് j, equation (8) collapses to equation (2), with 𝜙௧ ൌ  𝜙௧. If 𝜙௧ ് 0 for 

at least one i ് j, equation (2) is not a special case of equation (8).  

 

A similar condition holds for univariate GARCH and multivariate GARCH. 

 

The Proposition leads to the following corollaries:  

 

Corollary 1: The 𝑚 ൈ 𝑚 matrix of random coefficients, 𝛷௧, is a diagonal matrix. 

 

Corollary 2: From Corollary 1, it follows that the 𝑚 ൈ 𝑚 weight matrix of (co-)variances, A, is a 

diagonal matrix, which is not consistent with Full BEKK.  

 

Corollary 3: Corollaries 1 and 2 show that a Full BEKK model, namely where there are no 

restrictions on the off-diagonal elements in 𝛷௧ , and hence no restrictions in the off-diagonal 

elements in A, is not possible if univariate ARCH is to be a special case of its multivariate 

counterpart, Full BEKK.  

 

Corollary 4: As there are no underlying regularity conditions for Full BEKK, including 

invertibility, the model cannot be estimated using an appropriate likelihood function. Therefore, it 

is not possible to derive the asymptotic properties of the QMLE of the unknown parameters in the 

Full BEKK soecification.  

 

Corollary 4 is consistent with the proof in McAleer et al. (2008) that the QMLE of Full BEKK has 

no asymptotic properties, whereas the QMLE of Diagonal BEKK can be shown to be consistent 

and asymptotically normal.  

 
For all intents and purposes, the statistical properties of Full BEKK cannot be derived from an 

underlying stochastic process, except by assumption. 
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It should be emphasized that the QMLE of the parameters in the conditional means and the 

conditional variances for univariate GARCH, DBEKK and Full BEKK will differ as the 

multivariate models are estimated jointly, whereas the univariate models are estimated individually. 

The QMLE of the parameters of the conditional means and the conditional variances of DBEKK 

and Full BEKK will differ as DBEKK imposes parametric restrictions on the off-diagonal terms 

of the conditional covariance matrix of Full BEKK. 

 

4. An Empirical Illustration for Fossil Fuels and Carbon Emissions 

 

The data for the empirical analysis are given in Chang et al. (2017), who evaluated the financial 

returns on spot and futures prices for fossil fuels and carbon emissions for the European Union 

and USA using the DBEKK and Full BEKK models. The authors did not provide the estimates for 

the univariate GARCH models, or compare the differences in the conditional means and 

conditional variances of the univariate, DBEKK and Full BEKK specifications. The purpose of 

the empirical illustration in this section is to show the differences that can arise in the QMLE of 

the parameters of the conditional means and conditional variances of the univariate, DBEKK and 

Full BEKK specifications. 

 

The carbon emission trading market of the European Union (EU) has daily data only on futures 

prices, whereas only daily spot prices are available for carbon emissions for the USA. Daily data 

for EU carbon emission, crude oil, and coal futures are available from 2 April 2008 to 19 May 

2017, while daily data for US carbon, coal, and oil spot prices are available from 6 January 2016 

to 19 May 2017. The data sources and definitions are given in Table 1, where “fr” denotes futures 

returns, “sr” denotes spot returns, and daily returns are calculated as obtained as the first difference 

in the natural logarithm of the relevant daily price data. 

 

The descriptive statistics for the returns of the six variables are given in Table 2 (for a detailed 

discussion of the data, see Chang et al., 2017). Table 3 presents the ADF test of Dickey and Fuller 

(1979, 1982) and Said and Dickey (1984), the DF-GLS test of Elliott et al. (1996), and the KPSS 

test of Kwiatkowski et al. (1992) to test for unit roots in the individual returns series (see Chang 

et al., 2017).   
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The univariate GARCH estimates for EU carbon, coal and oil futures returns are given in Table 4. 

The QMLE of the parameters of the conditional means are standard in that there is not a lot of 

explanatory power. However, the QMLE of the parameters of the conditional variances are highly 

significant, with the short run responses to shocks being around 0.1 or less, and the long run 

responses to shocks lying between 0.996 and 0.997. 

 

The univariate GARCH estimates for US carbon, coal and oil spot returns are given in Table 5. 

The QMLE of the parameters of the conditional means are similar to those in Table 4 in that there 

is not a lot of explanatory power. However, the QMLE of the parameters of the conditional 

variances are highly significant. The short run responses to shocks are surprisingly large for carbon 

at 0.462, while those for coal and oil are more standard at 0.073 and 0.130, respectively. Give these 

estimates, the long run responses to shocks are 0.936, 0.982 and 0.954 for carbon, coal and oil, 

respectively, all of which are considerably lower than their counterparts for EU futures returns. 

  

The corresponding estimates for the DBEKK and Full BEKK models for EU carbon, coal and oil 

futures returns are given in Tables 6 and 7, respectively. The QMLE of the conditional means for 

DBEKK and Full BEKK are different from each other, and are also different from their univariate 

counterparts in Table 4. The QMLE of the elements of the weighting matrix A and stability matrix 

B, namely a11, a22, a33, b11, b22 and b33, respectively, are substantially different between both 

DBEKK (especially a22 and b33) and Full BEKK (especially a22, a33 and b33), and even more 

so in comparison with their univariate counterparts in Table 4. These results provide strong support 

for the theoretical analysis in Sections 2 and 3. 

 

The corresponding estimates for the DBEKK and Full BEKK models for US carbon, coal and oil 

spot returns are given in Tables 8 and 9, respectively. The QMLE of the conditional means for 

DBEKK and Full BEKK are different from each other, and are also different from their univariate 

counterparts in Table 5. The QMLE of the elements of the weighting matrix A and stability matrix 

B, namely a11, a22, a33, b11, b22 and b33, respectively, are substantially different between both 

DBEKK (especially a22, a33 and b33) and Full BEKK (especially a22, a33 and b33), which reflect 
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the findings in Tables 6 and 7, and even more so in comparison with their univariate counterparts 

in Table 4. These results also strongly support the theoretical analysis in Sections 2 and 3. 

 

5. Conclusion 

 

The Full BEKK model in Baba et al. (1985) and Engle and Kroner (1995), who do not derive the 

model from an underlying stochastic process, was presented as equation (6), with A and B given 

as full matrices, with no restrictions on the off-diagonal elements. The Full BEKK model is 

estimated almost exclusively in empirical practice, to the exclusion of Diagonal BEKK, despite 

the fact that Full BEKK has no underlying stochastic process that leads to its specification, 

regularity conditions, or asymptotic properties, as shown in the proposition and four corollaries. 

   

The full BEKK model can be replaced by the triangular or Hadamard (element-by-element 

multiplication) BEKK models, with similar problems of identification and (lack of) existence. The 

full, triangular and Hadamard BEKK models cannot be derived from any known underlying 

stochastic processes that lead to their respective specifications, which means there are no regularity 

conditions (except by assumption) for checking the internal consistency of the alternative models, 

and consequently no valid asymptotic properties of the QMLE of the associated parameters (except 

by assumption).  

 

Moreover, as the number of parameters in a full BEKK model can be as much as 3m(m+1)/2, the 

“curse of dimensionality” will be likely to arise, which means that convergence of the estimation 

algorithm can become problematic and less reliable when there is a large number of parameters to 

be estimated. As a matter of fact, estimation of the full BEKK can be problematic even when m is 

as low as 5 financial assets. Such computational difficulties do not arise for the diagonal BEKK 

model. Convergence of the estimation algorithm is more likely when the number of commodities 

is less than 4, though this is nevertheless problematic in terms of interpretation. 

 

The purpose of the paper was to show that univariate GARCH is not a special case of multivariate 

GARCH, specifically the Full BEKK model, except under parametric restrictions on a random 

coefficient autoregressive coefficient matrix that are not consistent with Full BEKK. The paper 



13 

provided the regularity conditions that arise from the underlying random coefficient autoregressive 

process, and for which the (quasi-) maximum likelihood estimates have valid asymptotic properties 

under the appropriate parametric restrictions, for the univariate and multivariate GARCH models.  

 

It was shown that the Full BEKK model has no underlying stochastic process that leads to its 

specification, regularity conditions, or asymptotic properties, as compared with the Diagonal 

BEKK (DBEKK) specification. It would seem that the purported statistical properties of Full 

BEKK exist by assumption. 

 

An empirical illustration for the financial returns on spot and futures prices of fossil fuels and 

carbon emissions for the European Union and USA showed the significant differences that can 

arise in the QMLE of the parameters of the conditional means and conditional variances for the 

univariate, DBEKK and Full BEKK specifications, which gave strong support for the theoretical 

analysis demonstrated in the paper. 
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Table 1  

 
Data Sources and Definitions 

 
Variable 

name 
Definitions Transaction market Description 

𝐄𝐔𝐜𝐚𝐫𝐛𝐨𝐧𝐟𝐫 
EU carbon futures 
return 

ICE-ICE Futures 
Europe Commodities 

ICE EUA Futures Contract 
EUR/MT 

𝐄𝐔𝐜𝐨𝐚𝐥𝐟𝐫 
EU coal futures 
return 

ICE-ICE Futures 
Europe Commodities 

ICE Rotterdam Monthly Coal 
Futures Contract 
USD/MT 

𝐄𝐔𝐨𝐢𝐥𝐟𝐫 
EU oil futures 
return 

ICE-ICE Futures 
Europe Commodities 

Current pipeline export 
quality 
Brent blend as supplied at 
Sullom Voe 
USD/bbl 

𝐔𝐒𝐜𝐚𝐫𝐛𝐨𝐧𝐬𝐫 
US carbon spot 
return 

over the counter 
United States Carbon Dioxide 
RGGI          Allowance 
USD/Allowance 

𝐔𝐒𝐜𝐨𝐚𝐥𝐬𝐫 US coal spot return over the counter 
Dow Jones US Total Market 
Coal Index 
USD 

𝐔𝐒𝐨𝐢𝐥𝐬𝐫 US oil spot return over the counter 
West Texas Intermediate 
Cushing Crude 
Oil USD/bbl 

Notes: ICE is the Intercontinental Exchange; EUA is the EU allowance; MT is metric ton; RGGI 
(Regional Greenhouse Gas  
Initiative) is a CO2 cap-and-trade emissions trading program comprised of ten New England and 

Mid-Atlantic States that  
will commence in 2009 and aims to reduce emissions from the power sector. RGGI will be the 

first government mandated  
CO2 emissions trading program in USA.
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Table 2  

Descriptive Statistics 

 

2 April 2008 – 19 May 2017 for EU 

6 January 2016 – 19 May 2017 for USA 

 

Variable Mean Median     Max    Min    SD Skewness Kurtosis  Jarque-Bera

𝐄𝐔𝐜𝐚𝐫𝐛𝐨𝐧𝐟 -0.078 -0.038 24.561 -42.457 3.349 -0.708 17.624 21434.2

𝐄𝐔𝐜𝐨𝐚𝐥𝐟𝐫 -0.022  0 17.419 -22.859 1.599 -1.268 44.924 175155.8

𝐄𝐔𝐨𝐢𝐥𝐟𝐫 -0.026 -0.015 12.707 -10.946 2.246 0.054 6.522 1232.8

𝐔𝐒𝐜𝐚𝐫𝐛𝐨𝐧𝐬 -0.248 0 13.937 -36.446 2.986 -5.236 66.269 61346.8

𝐔𝐒𝐜𝐨𝐚𝐥𝐬𝐫 0.177 0.104 17.458 -14.183 4.041 0.047 5.343 81.99

𝐔𝐒𝐨𝐢𝐥𝐬𝐫 0.094 0.037 11.621 -8.763 2.712 0.431 4.690 53.69
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Table 3  

Unit Root Tests 

 

2 April 2008 – 19 May 2017 for EU 

6 January 2016 – 19 May 2017 for USA 

 
Variables ADF DF-GLS KPSS 

𝐄𝐔𝐜𝐚𝐫𝐛𝐨𝐧𝐟𝐫 -37.79* -3.09* 0.05* 

𝐄𝐔𝐜𝐨𝐚𝐥𝐟𝐫 -35.48* -10.34* 0.12* 

𝐄𝐔𝐨𝐢𝐥𝐟𝐫 -51.97* -1.53 0.10* 

 𝐔𝐒𝐜𝐚𝐫𝐛𝐨𝐧𝐬𝐫  -10.64* -1.46 0.06* 

 𝐔𝐒𝐜𝐨𝐚𝐥𝐬𝐫 -19.30* -0.43 0.18* 

 𝐔𝐒𝐨𝐢𝐥𝐬𝐫 -20.96* -0.78 0.07* 

  __________________________________________________________ 
  Notes: * denotes the null hypothesis of a unit root is rejected at 1%. 
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Table 4  

 
Univariate GARCH for EU 𝐂𝐀𝐑𝐁𝐎𝐍𝐟𝐫, 𝐂𝐎𝐀𝐋𝐟𝐫, 𝐎𝐈𝐋𝐟𝐫 

 
2 April 2008 – 19 May 2017 

 

Explained variables CARBON୰ 
(1)

COAL୰ 
(2)

OIL୰ 
(3) 

Constant 
0.032 

(0.050) 
-0.040* 
(0.024) 

0.003 
(0.033) 

1  0.017 
(0.024) 

0.097*** 
(0.023) 

-0.039* 
(0.021) 

2  -0.090** 
(0.040) 

0.003 
(0.007) 

0.008 
(0.008) 

3  -0.055** 
(0.023) 

0.010 
(0.013) 

-0.008 
(0.028) 

 -0.116*** 
(0.037) 

0.009*** 
(0.002) 

0.020*** 
(0.007) 

GARCH  
0.101*** 
(0.015) 

0.016*** 
(0.002) 

0.060*** 
(0.010) 

GARCH  0.895*** 
(0.016) 

0.980*** 
(0.002) 

0.937*** 
(0.010) 

Log Likelihood -5874.33 -4030.45 -4872.13 
 

Notes: (1) : CARBON୰ ൌ ሺ 1 CARBON୰ሺെ1ሻ, 2 COAL୰ሺെ1ሻ, 3 OIL୰ሺെ1ሻሻ 

   (2): COAL୰ ൌ ሺ 1 COAL୰ሺെ1ሻ, 2 CARBON୰ሺെ1ሻ, 3 OIL୰ሺെ1ሻሻ 

 (3): OIL୰ ൌ ሺ 1 OIL୰ሺെ1ሻ, 2 CARBON୰ሺെ1ሻ, 3 COAL୰ሺെ1ሻሻ 

 
Standard errors are in parentheses, *** denotes significant at 1%, ** denotes significant at 5%,  
* denotes significant at 10%. 
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Table 5  

 
Univariate GARCH for US 𝐂𝐀𝐑𝐁𝐎𝐍𝐬𝐫, 𝐂𝐎𝐀𝐋𝐬𝐫, 𝐎𝐈𝐋𝐬𝐫 

 
6 January 2016 – 19 May 2017 

 

Explained variables CARBONୱ୰ 
(4)

COALୱ୰ 
(5)

OILୱ୰ 
(6) 

Constant 
0.049 

(0.096) 
0.029 

(0.174) 
0.074 

(0.116) 

1  0.100 
(0.100) 

0.020 
(0.058) 

-0.082 
(0.060) 

2  0.012 
(0.025) 

0.038 
(0.078) 

-0.097* 
(0.056) 

3  -0.081** 
(0.038) 

-0.238*** 
(0.080) 

0.038 
(0.038) 

 0.729*** 
(0.170) 

0.211 
(0.147) 

0.274* 
(0.147) 

GARCH  
0.462*** 
(0.091) 

0.073** 
(0.030) 

0.130** 
(0.044) 

GARCH  0.574*** 
(0.052) 

0.909*** 
(0.034) 

0.824*** 
(0.055) 

Log Likelihood -759.38 -952.67 -816.74 
 

Notes: (4) : CARBONୱ୰ ൌ ሺ 1 CARBONୱ୰ሺെ1ሻ, 2 COALୱ୰ሺെ1ሻ, 3 OILୱ୰ሺെ1ሻሻ 

   (5): COALୱ୰ ൌ ሺ 1 COALୱ୰ሺെ1ሻ, 2 CARBONୱ୰ሺെ1ሻ, 3 OILୱ୰ሺെ1ሻሻ 

 (6): OILୱ୰ ൌ ሺ 1 OILୱ୰ሺെ1ሻ, 2 CARBONୱ୰ሺെ1ሻ, 3 COALୱ୰ሺെ1ሻሻ 

 
Standard errors are in parentheses, *** denotes significant at 1%, ** denotes significant at 5%,  
* denotes significant at 10%. 
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Table 6  

DBEKK for EU Carbon, Coal, and Oil Futures 

2 April 2008 – 19 May 2017 

 

Mean equation CARBON୰ COAL୰ OIL୰ 
CARBON୰ 0.010 

(0.023) 
0.005 

(0.008) 
0.009 

(0.009) 
COAL୰ -0.078** 

(0.038) 
0.096*** 
(0.023) 

0.073 
(0.023) 

OIL୰ -0.057** 
(0.024) 

0.009 
(0.014) 

0.002 
(0.027) 

C 0.021 
(0.053) 

-0.034 
(0.024) 

-0.045* 
(0.022) 

 

DBEKK C A B 
CARBON୰ 0.379*** 

(0.055) 
0.024** 
(0.010) 

0.128***
(0.024) 

0.311***
(0.025) 

  0.947*** 
(0.009) 

  

COAL୰  0.088*** 
(0.010) 

0.022 
(0.075) 

 0.118***
(0.007) 

  0.991***
(0.001) 

 

OIL୰   0.000 
(0.077) 

  -0.205***
(0.013) 

  -0.977***
(0.003) 

Notes:   1. A ൌ 
𝑎ଵଵ 𝑎ଵଶ 𝑎ଵଷ
𝑎ଶଵ 𝑎ଶଶ 𝑎ଶଷ
𝑎ଷଵ 𝑎ଷଶ 𝑎ଷଷ

൩, B ൌ 
𝑏ଵଵ 𝑏ଵଶ 𝑏ଵଷ
𝑏ଶଵ 𝑏ଶଶ 𝑏ଶଷ
𝑏ଷଵ 𝑏ଷଶ 𝑏ଷଷ

൩,  C ൌ 
𝑐ଵଵ 𝑐ଵଶ 𝑐ଵଷ
𝑐ଶଵ 𝑐ଶଶ 𝑐ଶଷ
𝑐ଷଵ 𝑐ଷଶ 𝑐ଷଷ

൩ 

2. Standard errors are in parentheses, *** denotes significant at 1%, ** denotes significant at 5%,  
* denotes significant at 10%. 
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Table 7  

Full BEKK for EU Carbon, Coal, and Oil Futures 

2 April 2008 – 19 May 2017 

 

Mean equation CARBON୰ COAL୰ OIL୰ 
CARBON୰ 0.023 

(0.02) 
-0.003 
(0.007) 

0.013 
(0.011) 

COAL୰ -0.082** 
(0.039) 

0.086*** 
(0.023) 

0.005 
(0.031) 

OIL୰ -0.045* 
(0.023) 

0.016 
(0.015) 

-0.018 
(0.023) 

C 0.031 
(0.053) 

-0.016 
(0.023) 

-0.010 
(0.037) 

 

Full BEKK C A B 

   CARBONfr 0.435*** 
(0.055) 

-0.067* 
(0.038) 

0.077 
(0.072) 

0.331*** 
(0.023) 

-0.014*** 
(0.004) 

0.007 
(0.006) 

0.936*** 
(0.009) 

0.009 
(0.007) 

-0.005 
(0.010) 

COAL୰  0.000 
(0.068) 

0.000 
(0.103) 

0.037 
(0.029) 

-0.086*** 
(0.011) 

0.120*** 
(0.017) 

0.274*** 
(0.036)) 

0.737*** 
(0.015) 

 1.110*** 
(0.023) 

OIL୰   -0.000 
(0.101) 

-0.104*** 
(0.026) 

-0.032**
(0.013) 

-0.168*** 
(0.010) 

-0189*** 
(0.024) 

-0.052*** 
(0.011) 

0.054*** 
(0.015) 

 Notes : As in Table 4. 
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Table 8  

DBEKK for US Carbon, Coal, and Oil Spot 

6 January 2016 – 19 May 2017  

 

Mean equation CARBONୱ୰ COALୱ୰ OILୱ୰ 
CARBONୱ୰ 0.122 

(0.106) 
-0.010 
(0.078) 

-0.070 
(0.053) 

COALୱ୰ 0.034 
(0.024) 

0.037 
(0.057) 

0.050 
(0.041) 

OILୱ୰ -0.097*** 
(0.036) 

-0.235*** 
(0.083) 

-0.103* 
(0.060) 

C 0.085 
(0.090) 

0.048 
(0.170) 

0.010 
(0.122) 

 

   DBEKK C A B 
CARBONୱ୰ 0.854*** 

(0.105) 
-0.276 
(0.294) 

0.129 
(0.332) 

0.707***
(0.073) 

  0.757*** 
(0.038) 

  

COALୱ୰  0.256 
(0.314) 

0.299* 
(0.154) 

 -0.199***
(0.034) 

 0.972***
(0.008) 

 

OILୱ୰   0.000 
(1.029) 

  -0.222***
(0.0035) 

  -0.964***
(0.010) 

Note: As in Table 4. 
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Table 9   

Full BEKK for US Carbon, Coal, and Oil Spot 

6 January 2016 – 19 May 2017  

 

Mean equation CARBONୱ୰ COALୱ୰ OILୱ୰ 
CARBONୱ୰ 0.079 

(0.089) 
-0.027 
(0.074) 

-0.105** 
(0.049) 

COALୱ୰ -0.006 
(0.028) 

-0.012 
(0.060) 

0.022 
(0.039) 

OILୱ୰ -0.048 
(0.038) 

-0.231*** 
(0.087) 

-0.049 
(0.062) 

C 0.043 
(0.089) 

0.139 
(0.166) 

0.010 
(0.118) 

 
Full BEKK C A B 

CARBONୱ୰ 0.772*** 
(0.092) 

0.119 
(0.606) 

0.685*** 
(0.178) 

0.632***
(0.054) 

-0.023 
(0.089) 

-0.077 
(0.064) 

0.791*** 
(0.025) 

0.004 
(0.112) 

-0.034  
(0.063) 

COALୱ୰  0.000 
(0.528) 

0.000 
(0.715) 

0.002 
(0.033) 

-0.320*** 
(0.058) 

0.036 
(0.041) 

-0.042 
(0.046) 

0.900*** 
(0.056) 

0.578*** 
(0.044) 

OILୱ୰   0.000 
(0.721) 

-0.028 
(0.049) 

-0.072 
(0.092) 

-0.252*** 
(0.060) 

0.010 
(0.080) 

-1.267*** 
(0.074) 

0.140* 
(0.082) 

Note: As in Table 4. 
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