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We study the quantum dynamics in tight-binding approximation (TBA) of an electron interacting with a clas-
sical nonlinear lattice of atoms. By computer simulations we show the existence of fast and nearly loss-free
motions of electrons along crystallographic axes of a two-dimensional dynamic triangular lattice. Moving
bound states between electrons and lattice solitons are formed. These so-called solectrons allow to transfer
charge which initially is localized at certain site to a different place along the same crystallographic axis, with
negligible spreading of probability density. The relation to experimental findings about controlling electrons by
surface acoustic waves (SAW) in piezoelectric materials is pointed out.

c© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

The electron circuits of the future may consist of networks of quantum dots. This structure will require a mecha-
nism to transport electrons from one node to another distant node. In practice this is done at present by imprinting
certain wafer masks prescribing the way along which the electrons can go. Several teams of researchers have suc-
ceeded in transporting a single electron from one quantum dot at solid interfaces like GaAs-layers to another dot
using a surface acoustic wave [1, 2, 3].
For the one-dimensional case analytical results for the problem of supersonic charge transfer in anharmonic
chains were obtained first by Davydov [4, 5]. Since for the two-dimensional case no analytical solutions for this
problem are available, we decide to carry out computer simulations. Here we formulate the Hamiltonian, classical
dynamical equations for a nonlinear lattice of Morse atoms as well as Schrödinger equations for the electron in
tight-binding approximation (TBA) [6]. Then we provide numerical evidence that appropriately shaped nonlinear
waves on a twodimensional lattice are indeed able to transfer electrons in a controlled way and without dispersion
over distances of a few hundred lattice sites.
In earlier work we studied finite temperatures and used kinetic approximations (Pauli equations) for the electron
motion [7, 8, 9]. Here we consider similar as in the mentioned experiments the region of very low temperatures.
We solve directly the Schrödinger equations in the framework of TBA and apply an electronic Hamiltonian with
distance-dependent transition probabilities [6] .

2 Hamiltonian and dynamic equations

We consider a system consisting of atoms arranged initially on a triangular lattice and additional excess electrons
moving from site to site and interacting with the atoms. In order to study the evolution of the quantum states of

∗ Dedicated to the 100th birthday of Alexander S. Davydov
∗∗ E-mail: ChetverikovAP@info.sgu.ru
∗∗∗ Corresponding author. E-mail: werner-ebeling@web.de
† E-mail: gerd.roepke@uni-rostock.de
‡ E-mail: mgvelarde@pluri.ucm.es.de

c© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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the additional electrons, we assume a standard TBA [4, 6, 7, 8, 9]. Let n, m denote the internal quantum numbers
of the states of electrons bound to the corresponding atoms at sites rn and rm, respectively. We will assume, for
simplicity, that there is only one quantum state per atom with Gaussian shape, which can be occupied by the
added electron. The internal state that characterizes the orbit as well as spin, can be included in the quantum
number n. We set the electron wave function and Hamiltonian as follows

ψ(r) =
∑

n

cnψn(r); He =
∑

e

Enc
+
n cn +

∑

n,m

tn,mc
+
mcn (1)

The energy levels En will be approximated by constant values En = E0. The coupling to the lattice is given by
the transition matrix elements tn,m, which depend on the atomic distances, tn,m = t(rm − rn). Following Slater
we take an exponential dependence

tn,m = V0 exp[−α|rn − rm|] . (2)

The range parameter α can be related to the tunneling probability. For the atomic lattice part, the Hamiltonian
with Morse interactions reads

Ha =
M

2

∑

k

v2k +
D

2

∑

k,l

{exp[−2b(rkl − σ)]− 2 exp[−b(rkl − σ)]} . (3)

The subscripts locate the atoms all with equal mass, M , at lattice sites and the summations run from 1 to N . We
shall assume that the lattice units repel each other with exponentially repulsive forces of range 1/b (b-stiffness) and
binding energy strength D and attract each other with weak dispersion forces. The characteristic distance of our
initially equilateral triangular lattice σ is used as length unit. Time is measured in units of the reciprocal frequency
of oscillations around the minimum of the Morse potential 1/ω0 =

√
M/2Db2. Note that the 1dsound velocity

is vs = σω0. We limit the interaction to nearest-neighbors only using the relative distance with rkl = |rkrl|.
By imposing the cut-off of the forces at 1.5σ, we exclude unphysical cumulative interaction effects arising from
the influence of lattice units outside the first neighborhood of each atom [9]. Introducing complex coordinates
Zn = xn + iyn we write the Newton equations for the atoms and the Schrödinger equation in TBA for the
electrons on the lattice in the form:

d2Zn

dt2
=

∑

m

[exp(bσ − |Zn − Zm|)(1− exp(bσ − |Zn − Zm|))

+2αV0 exp(bσ − |Zn − Zm|)Re(c∗ncm)]
Zn − Zm

|Zn − Zm| (4)

dcn
dt

= E0cn − i
V0
�
τ exp(αbσ)

∑

m

cm exp(−α|Zn − Zm|), τ = V0/�ω0 . (5)

Strictly speaking our numerical algorithm for the motions of the atoms models a Langevin equation including
also a weak white noise source corresponding to a weak heat bath which can be switched on or off [9]. Here
we study very low temperatures so that these terms do not play an essential role except in creating the initial
velocities.

3 Simulations

In the initial state the atoms are positioned at the nodes of an equilateral triangular lattice. Note that we use in
the figures the characteristic distance of the lattice σ as the length unit, and the reciprocal frequency 1/ω0 of the
oscillations around the potential minimum of atom-atom interactions as the time unit. The initial velocities are
generated by a short but strong contact to a heat bath at very low temperature T � 1 K. Then the heat bath is
switched off, so that the atoms start with a thermal distribution of the velocities. In order to generate a soliton,
one of the lattice units gets a kick along the x-axis which is a crystallographic axis which generates an initial
velocity of about two times the sound velocity. Then the atoms are left free and move according to the dynamical
equations (4). The excited atoms kicks the next neighbor along the axes and generates a solitonic excitation as
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seen in Fig. 1. For purpose of a better visualization we replace all points resulting from the simulations by small
Gaussian distributions.

The simulations are carried out by solving numerically the set of equations given above for 400 atoms and 1
electron starting at the center. We use for the dimensionless parameters the values bσ = 4, (V0/�) = 20 D. The
noise strength in the Langevin equation corresponds to a a rather small temperature T � 0.002D (whereD is the
depth of the Morse well). The initial electron density is set as a narrow Gaussian distribution around the center of
the lattice. In the first time period up to t � 0.5 we see the typical spreading of free wave functions (see Figs. 2
and Fig. 3). In Fig. 2 the interaction with the atoms is switched off and we see a continuation of free spreading
including some structures reflecting the triangular lattice symmetry and the periodic boundary conditions.

Fig. 1 Triangular Morse lattice without electrons: A supersonic soliton is created moving along the x-axis which is a crys-
tallographic axis. The moving compression density is shown at time t = 0 and at time t = 1 (N = 400, bσ = 4).

Fig. 2 Density distribution of a free excess electron starting at t = 0 near the center of the triangular lattice evolving according
to the Schrödinger equation in tight-binding approximation. The interaction with the atoms is switched off. We show the fast
spreading of the density at the times t = 0; 0:2; 0:8; 1:0. Beside the typical spreading of the wave function, we see some
structure due to the symmetry of the triangular lattice with 3 crystallographic axes and in part also due to the periodic b.c.
(N = 400).

www.cpp-journal.org c© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



358 A.P. Chetverikov et al.: Electron transport mediated by nonlinear excitations in atomic layers

In Fig. 3 we demonstrate the effect of the electron - lattice interaction. At the times t > 0.5 when the soliton
crosses the center of the lattice, we observe some effects of structuring of the electron density. Finally we see for
larger times t > 0.8 that the electron density is catched by the soliton forming a moving quantum bound state
(the solectron). The supersonic velocity is in physical units around Å = ps which corresponds to km/s. This is a
rather fast electron motion in comparison to the standard velocity of conducting electrons which is usually in the
range of cm/s or m/s. We are well aware that simulations for a matrix of 400 lattice sites still needs a careful
check to rule out size effects. Preliminary tests have shown that the basic effect demonstrated here, the formation
of moving bound states between lattice excitations and electrons is only weakly size-dependend. We note that
on real time and length scales we work in the region of ps and nm, in the SAW experiments the scales are about
thousand times larger, i.e. on scales of ns and μm [1, 2, 3]. Thus a direct comparison of our simulations for small
lattices on the nanometer and picosecond scale with the experiments performed on larger scales is not possible.
However one may assume that the basic effects are scale-independent and remain the same. Indeed in both cases
is the electrical polarization field associated to the mechanical wave (soliton or SAW) the responsable carrier of
the electron.

Fig. 3 Electron density on a Morse triangular lattice: We show the evolution of the density of an electron interacting with a
soliton moving as in Fig. 1. After switching on in eqs. (4 - 5) the interaction terms electron - lattice we show the mean electron
density at the times (τ = 0, 0.2, 0.8, 1.0). The electron density remains nearly unchanged for small times (in comparison to
Fig. 2, but then the electron feels the compressions created by the soliton and starts to concentrate around the peaks of the
compression density of the soliton. With increasing time (in particular from t = 0:8 on) the electron density is more and more
concentrated around the compression density leading to the formation of a moving solectron.

4 Discussion and Conclusion

We study the electron transfer mediated by solitons at low, near to zero, temperatures. In difference to previous
work carried out for finite temperatures [8, 9] the main factor influencing the transfer is at low temperatures the
distance-dependence of hopping modelled by the Slater factor. In the computer simulations we launched an elec-
tron at rest at the center of the sample and started on the same axis by a kick a soliton which passes the electron
position. Electrons are guided by the moving amplitude of the soliton-like acoustic excitations and follow their
path. This way electrons introduced into a triangular lattice can be transported at least a few hundred lattice sites
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Fig. 4 Electron density on a Triangular Morse lattice: At long
times t = 6.0, still more electron density is collected around the
peak and the electron - soliton bound state is quite clearly seen.
The quasiparticle called solectron is rather stable and moves with
supersonic velocity along the selected crystallographic axes.

along crystallographic axes. This is qualitatively the same picture observed on a larger spatial scale in the exper-
iments with surface acoustic waves. We expect that corresponding computer simulations for pairs of electrons
[10] will be ready soon.
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