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In this study, it is shown that two added, excess electrons with

opposite spins in one-dimensional crystal lattices with quartic

anharmonicity may form a bisolectron, which is a localized bound

state of the paired electrons to a soliton-like lattice deformation.

It is also shown that when the Coulomb repulsion is included, the

wave function of the bisolectron has two maxima, and such a

state is stable in lattices with strong enough electron (phonon/

soliton)–lattice coupling. Furthermore, the energy of the

bisolectron is shown to be lower than the energy of the state

with two separate, independent electrons, as even with account

of the Coulomb repulsion the bisolectron binding energy is

positive.VC 2011 Wiley Periodicals, Inc.
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Introduction

In a previous publication,[1] we have considered soliton-medi-

ated electron pairing in anharmonic lattices endowed with

cubic interparticle interaction. The latter is of mathematical in-

terest, as it underlies as a dynamical system the soliton-bearing

Boussinesq–Korteweg-de Vries equation governing wave propa-

gation along the lattice in the continuum approximation.[2–4]

Noteworthy is that due to the electron–lattice interaction, the

soliton arising from the cubic interaction is able to trap an elec-

tron, thus, leading to a solectron[5–7] in a way that generalizes

the polaron concept long ago proposed by Landau and Pekar

to describe electron self-trapping leading to a dressed electron

(or, more generally, a quasiparticle).[8–11] In Ref. [1], it was shown

that when two excess electrons are added the corresponding

electron–lattice interaction also facilitates electron pairing lead-

ing to a bisolectron, that is, the localized bound state of the

paired electrons and a soliton-like lattice deformation (otherwise

said strongly correlated electrons in real space and momentum

space). Here, we study this problem for a lattice with the appa-

rently more physically appealing quartic particle interaction.

In Hamiltonian and Evolution Equations section, we pose

the problem, introduce the Hamiltonian and the evolution

equations of the system. Localized Solutions section is devoted

to the search of localized, soliton-like traveling solutions. Then,

in Energy of the Bisolectron and Role of the Coulomb Repul-

sion section, we asses the role of repulsive Coulomb interac-

tion between the two added, excess electrons, satisfying Pauli’s

exclusion principle. Finally, in Conclusions section, we briefly

recall the major results found.

Hamiltonian and Evolution Equations

We consider a one-dimensional (1D) model, infinitely

long crystal lattice with electrons and lattice particles

of equal masses M, describable by the following

Hamiltonian:[10,11]

Ĥ ¼ Ĥel þ Ĥlat þ Ĥint; (1)

with

Ĥel ¼
X
n;s

½E0B̂þn;sB̂n;s � JB̂þn;sðB̂nþ1;s þ B̂n�1;sÞ�; (2)

Ĥlat ¼
X
n

p̂2n
2M

þ Û

� �
; (3)

Ĥint ¼ v
X
n;s

ðb̂nþ1 � b̂n�1Þ B̂þn;sB̂n;s: (4)
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Note that we have two added excess electrons with oppo-

site spins, s ¼ :,;. The quantity E0 denotes the on-site electron

energy, J denotes the electron exchange interaction energy,

B̂þn;s and B̂n;s are creation and annihilation operators of an elec-

tron with spin s on the lattice site n, respectively, b̂n is the dis-

placement operator of the nth atom from its equilibrium posi-

tion, p̂n is the operator of the canonically conjugated

momentum, v accounts for the electron–lattice interaction

strength, and Û ¼ Ûðfb̂ngÞ is the operator of the potential

energy of the lattice, yet to be specified. Only nearest neigh-

bor interactions will be considered, and therefore, the lattice

potential energy depends on their relative displacements:

U bnf gð Þ ¼ U bn � bnþ1

� � � U qnð Þ; (5)

where qn � bn � bnþ1. We take into account only the longitudi-

nal displacements of atoms from their initial equilibrium posi-

tions (the acoustic mode) and consider that the dependence of

the on-site electron energy on lattice atom displacements is

much stronger than that of the exchange interaction energy.

Further, the electron–lattice interaction is taken strong enough

so that the electron self-trapping leads to a bound state whose

length extends over several lattice sites. The Coulomb repulsion

between the electrons will be included later on.

For two electrons with opposite spins, the antisymmetry of

the two-electron spin function permits representing the two-

electron spatial wave-function as a symmetrized product of

one-electron wave-functions, wj,n, j ¼ 1,2. The evolution equa-

tions for wj,n and for the lattice deformation, bn, follow from the

variational minimization condition of the Hamiltonian functional

obtained from Hamiltonian Eq. (1). This functional depends on

the canonical variables wj,n and bn, and their canonically conju-

gate momenta. In the continuum approximation, defining z ¼
na, with a being the initial equilibrium lattice interparticle spac-

ing we have:

i�h
@Wjðz; tÞ

@t
þ Ja2

@2Wjðz; tÞ
@z2

� va2
@bðz; tÞ

@t
Wjðz; tÞ ¼ 0; (6)

@2bðz; tÞ
@t2

� V2
ac

@2Uðz; tÞ
@q2

@2bðz; tÞ
@z2

¼ va
M

@

@z
W1ðz; tÞj j2þ W2j jðz; tÞ2

� �
;

(7)

where

qðz; tÞ ¼ �a
@bðz; tÞ

@z
; (8)

here, V2
ac ¼ a2w=M is the sound velocity in the lattice with w

being the lattice elasticity constant.

For the lattice interparticle interaction, U(q), we take:

UðqÞ ¼ 1

2
q2 þ c

4
q4: (9)

Here, we are only interested in the effect of the quartic cur-

vature of the potential relative to the harmonic case and not

on the possible influence of a double-well potential.

The one-electron wave functions in the system of coupled

nonlinear Eqs. (6) and (7) satisfy the normalization condition

1

a

Z1
�1

Wjðz; tÞ
�� ��2dz ¼ 1 j ¼ 1; 2ð Þ; (10)

and for the stationary states can be written in the form:

Wjðz; tÞ ¼ UjðnÞ exp i

�h
mVz � Ejt � 1

2
mV2t

� �
þ i/jðtÞ

� 	
j ¼ 1; 2ð Þ;

(11)

where Uj(n) is a one-electron envelope function in terms of

the running wave variable n ¼ ðz � z0 � VtÞ=a. Here, Ej is the

eigen-energy, uj(t) is the phase, and m ¼ �h2=ð2Ja2Þ is the

effective mass of an electron. Note that in the absence of extra

electrons in the lattice the wave velocity depends on the

actual lattice compression, q, determined by Eq. (8), and may

increase or decrease with amplitude, though for the Toda,

Morse, and Lennard–Jones potentials it is an always increasing

function of the wave amplitude. Note also that for steady

motions V is constant.

In 1D systems, the deformational potential has at least one

bound state, and the minimum of the energy of the system

corresponds to the state when both electrons occupy the

same level in the common potential well.[12] In the general

case, the maximum values of the electron wave functions are

shifted along the lattice at some value, la, which is determined

by the balance between the expected Coulomb repulsion

between the electrons and their lattice-mediated attraction,

similar to the case of binding of two extra electrons in a har-

monic lattice.[13] Therefore, we can write

UjðnÞ ¼ Uðn� l=2ÞfjðlÞ; (12)

where, we have considered that the functions fj(l) take into

account the modulation of one-electron wave functions due

to the Coulomb repulsion. If for localized states extending

over several lattice sites the repulsion is weak enough, then

fjðlÞ � 1þ e/jðlÞ where e is a smallness parameter, e � 1. In

the lowest order, approximation with respect to e the maxima

of both one-electron functions coincide at n ¼ 0 (this is always

possible by the appropriate choice of z0), and, correspondingly,

the two eigen-energies and eigen-functions are equal:

E1 ¼ E2 � E U1ðnÞ ¼ U2ðnÞ � UðnÞ: (13)

For universality in the argument, let us introduce the follow-

ing dimensionless parameters:

k ¼ � E

J
; r ¼ va

J
; D ¼ va

MV2
ac

: (14)

From Eqs. (6) and (8) using Eq. (9) follows:

d2UðnÞ
dn2

þ rqðnÞUðnÞ ¼ kUðnÞ; (15)
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U2ðnÞ ¼ 1

2D

dFðqÞ
dq

; (16)

where

FðqÞ ¼ UðqÞ � 1

2
s2q2 ¼ 1

4
cq2ðq2 þ 2dÞ: (17)

Here, s2 ¼ V2=V2
ac and

d ¼ 1� s2

c
(18)

is the dynamically modulated inverse anharmonic stiffness

coefficient.

Localized Solutions

From Eq. (15) we get

dU
dn


 �2

¼ kU2ðnÞ � rQðnÞ (19)

with

QðnÞ ¼
Zn

�1
qðxÞdU2ðxÞ: (20)

We search for localized solutions of Eqs. (15) and (16) which

exponentially decay in space and attain some maximum

values, which we denote by U0 and q0, for the wave-function

and corresponding deformation, respectively. From Eq. (19) we

get the electron eigen-energy:

k ¼ r
Qð0Þ
U2

0

: (21)

From Eq. (16) we get

dU2ðnÞ ¼ 1

2D
d

dF

dq


 �
; (22)

that substituted into Eq. (19) yields, after integration, the

following equation:

FðqÞ ¼ 1

2D

ZqðnÞ
0

q0d
dF

dq0


 �
¼ 1

2D

dF

dq
GðqÞ; (23)

where

GðqÞ ¼ q� FðqÞ
dF=dq

¼ q
4

3q2 þ 2d
q2 þ d

: (24)

Differentiating Eq. (15) with respect to n, we get

dUðnÞ
dn


 �2

¼ 1

8D

ðd2F=dq2Þ2
dF=dq

dq
dn


 �2

: (25)

Then, from Eq. (19) we have

dUðnÞ
dn


 �2

¼ 1

2D

dF

dq
ðk� rGÞ: (26)

Equations (25) and (26) yield the equation for the lattice de-

formation:

dq
dn

¼ �2
ffiffiffi
r

p dF=dq
d2F=dq2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gðq0Þ � GðqÞ

p
; (27)

where we have taken into account the relation

k ¼ rGðq0Þ; (28)

which follows from Eq. (21). Indeed to obtain Eq. (27), we first

get dq
dn from Eq. (25), take into account Eqs. (20) and (22), and

then integrate the result by parts:

Qð0Þ ¼
Z0

�1
qðxÞdU2ðxÞ ¼

Z0

�1
qðxÞ 1

2D
d

dF

dq


 �

¼ 1

2D

dF

dq
q� F

dF=dq


 �� �����q¼q0 ¼ U2
0Gðq0Þ: (29)

Then, integrating Eq. (3.9), we get

nðqÞ ¼ � 1

2
ffiffiffi
r

p
Zq0

qðnÞ

d2F=dq2

dF=dq
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Gðq0Þ � GðqÞp dq: (30)

The difference function in the kernel of Eq. (30) can be

rewritten as

Gðq0Þ � GðqÞ ¼ ðq0 � qÞHðq; q0Þ; (31)

with

Hðq;q0Þ ¼
3q2q20 þ dð3q2 þ qq0 þ 3q20Þ þ 2d2

4ðq2 þ dÞðq20 þ dÞ : (32)

Taking into account Eq. (31), Eq. (30) becomes

nðqÞ ¼ � 1ffiffiffiffiffiffi
2r

p
Zq0

qðnÞ

Kðq;q0Þ
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q0 � q

p dq; (33)

where

Kðq; q0Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Hðq; q0Þ
p 3q2 þ d

q2 þ d
: (34)

Then in view of Eq. (32), the expression Eq. (34) shows a

weak dependence of K on its variables. Practically, it remains

in value very close to a constant equal to unity. The quantity

K(q,q0) Eq. (34) is plotted in Figure 1 for d ¼ 0.5. Note that

K varies 4% only, from 1 to 1.04. Only the part of the plot for

q \ q0 has physical meaning as by definition q0 defines the

maximum value of q.
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Taking this into account, we can integrate Eq. (30), which

gives

qðnÞ ¼ q0Sech
2ðjnÞ; (35)

with

j ¼
ffiffiffiffiffiffiffiffi
rq0
2

r
(36)

defining the inverse width spanned by the lattice deformation.

The maximum value of the lattice deformation can be found

from the normalization condition Eq. (10), which takes the

form

1

D

Zq0
0

dF

dq
dnðqÞj j ¼ 1; (37)

from which we get

Zq0
0

d2F=dq2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gðq0Þ � GðqÞp dq ¼ 2D

ffiffiffi
r

p
: (38)

Substituting the relation Eq. (32) into Eq. (38) and using

Eq. (17), we get

Zq0
0

3q2 þ dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðq0 � qÞHðq; q0Þ
p dq ¼ 2D

c

ffiffiffi
r

p
: (39)

Function Hðq;q0Þ shows quite a weak dependence on q
and can be approximated by its value at q ¼ q0:

Hðq; q0Þ � Hðq0; q0Þ � #ðq0Þ ¼
3q40 þ 7dq20 þ 2d2

q40 þ 2dq20 þ d2
: (40)

Figures 2a and 2b illustrate the behavior of Eq. (32) and

Eq. (40), respectively.

Using Eq. (40), we get from Eq. (39) the equation for the

maximum value of deformation

q0
8

5
q20 þ d


 �2

¼ a2

4
#ðq0Þ: (41)

where a is the dimensionless electron–lattice coupling con-

stant:

a2 ¼ 4D2r
c2

: (42)

The maximum value of the lattice deformation in Eq. (41) as

function of the dynamically modulated inverse anharmonic

stiffness coefficient d, is depicted in Figure 3 for two values of

the electron–lattice coupling constant, a ¼ 0.05 and 0.2. It

appears that the faster is the bisolectron, the higher amplitude

it has, determined by q0, and the narrower its width is,

K ¼ 2pa=j. Nevertheless, it does not shrink completely, its am-

plitude and width maintain finite values even when the biso-

lectron approaches the sound velocity, V¼Vac (s ¼ 1 and d ¼
0). This result is at variance to the case of the harmonic

approximation in the lattice potential Eq. (8).[12,13] For

Figure 1. Dependence of K(q,q0) on the lattice deformation q, as function

of the maximum q0 for d ¼ 0.5. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]

Figure 2. (a): H(q, q0) versus lattice deformation, q, and the dynamically

modulated inverse stiffness parameter, d, for q0 ¼ 0.01. (b): H (q0, d) versus
q0 and d. [Color figure can be viewed in the online issue, which is available

at wileyonlinelibrary.com.]
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comparison, we also show the results of cubic anharmonicity

(thin line) for the same values of a in Figure 3. It appears that

the stronger is the electron–lattice coupling constant, the

bigger is the maximum value of the deformation. The quartic

anharmonicity is dominant at small values of d Eq. (18), which

is the velocity rescaled inverse anharmonic stiffness coefficient.

Substituting the result Eq. (36) into Eq. (16) and using

Eq. (17), we obtain the electron wave-function:

UðnÞ ¼
ffiffiffiffiffiffi
q0
2D

r
SechðjnÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2 þ cq20Sech

4ðjnÞ
q

; (43)

and the corresponding maximum of the wave function:

U0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2D

dF

dq


 �����
q¼q0

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c
2D

q0ðq20 þ dÞ
r

: (44)

Energy of the Bisolectron and Role of the
Coulomb Repulsion

Let us calculate the energy and momentum of the system. For

Eq. (1) with the solutions Eq. (35), Eq. (43) (without Coulomb

repulsion) we get

E
ðbsÞ
tot ðVÞ ¼ mV2 þ EðbsÞðVÞ þWðVÞ; (45)

where the bisolectron energy and energy of the lattice defor-

mation are, respectively, given by the expressions:

EðbsÞðVÞ ¼ �2kJ ¼ �2DGðq0ÞMV2
ac; (46)

WðVÞ ¼ 2MV2
ac

Z0

�1
ðFðqÞ þ s2q2Þdn

¼ MV2
acffiffiffi
r

p
Zq0
0

d2F=dq2

dF=dq
FðqÞ þ s2q2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gðq0Þ � GðqÞp dq: (47)

The total momentum of the system is

PðVÞ ¼ 2mþM

Z1
�1

q2dn

0
@

1
AV

¼ 2mþ Mffiffiffi
r

p
Zq0
0

d2F=dq2

dF=dq
q2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Gðq0Þ � GðqÞp dq

0
@

1
AV: (48)

Substituting here the explicit expressions of F given by Eq.

(17) and its derivatives, we get the bisolectron energy, energy

of the deformation, and momentum of the system, respec-

tively:

EðbsÞðVÞ ¼ � 1

2
DMV2

acq0
3q30 þ 2d
q20 þ d

: (49)

WðVÞ � MV2
ac

2
ffiffiffiffiffiffi
2r

p
Zq0
0

Kðq; q0Þq
cq2 þ 4 s2 þ 1

2
dc

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q0 � q

p dq

� 8
MV2

acffiffiffiffiffiffi
2r

p q3=20

1

3
s2 þ 1

2
dc


 �
þ 2

35
cq20

� �
: (50)

PðVÞ ¼ 2mþM

ffiffiffi
2

r

r Zq0
0

Kðq;q0Þ
qffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q0 � q
p dq

0
@

1
AV

� 2mþ 4

3
M

ffiffiffi
2

r

r
q3=20

" #
V: (51)

According to Eq. (11), the bisolectron moves along the lat-

tice with constant velocity V � Vac and momentum

P ¼ M
ðbisÞ
eff V; (52)

where M
ðbisÞ
eff is its effective mass, which, as it follows from the

expression Eq. (4.7), is given by the relation

M
ðbisÞ
eff � 2mþ 4

3
M

ffiffiffiffiffi
2J

va

s
q3=20 : (53)

It depends on both the velocity and lattice anharmonicity

parameter through the corresponding dependence of the

value of the maximum deformation, and, therefore, it attains

the maximum value at V ¼ Vac. It is the essential feature of

the anharmonic lattice that at the maximum value of the

Figure 3. Maximum value of the lattice deformation q0, as a function of

the dynamically modulated inverse anharmonic stiffness coefficient d, in
lattices with quartic (thick line) and cubic (thin line) anharmonicity for two

values of electron–lattice coupling constant. Upper figure: a ¼ 0.05, lower

figure: a ¼ 0.2. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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bisolectron velocity its effective mass and momentum are fi-

nite, hence, the effective mass approximation is valid in the

whole interval of bisolectron velocities. Moreover, according to

Eq. (54), the total energy of the system and the bisolectron

energy are also finite at V ! Vac. Accordingly, the lattice

anharmonicity favors electron pairing in the whole interval of

the bisolectron velocity.

Let us now take into account the Coulomb repulsion. We

consider the stationary case, V ¼ 0. Then the solution Eq. (43),

according to Eq. (12), takes the form

UiðnÞ �
ffiffiffiffiffiffi
q0
2D

r
Sech j n� l

2


 �� �

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cq20Sech

4 j n� l

2


 �� �s
; i ¼ 1; 2 ð54Þ

where l is the distance between the two maxima of the biso-

lectron function Eq. (12).

In Figure 4, we depict (upper figure) the one-electron

wave functions Eq. (52) and the bisolectron wave-function

which is proportional to the product of the latter two, and

(lower figure) the charge distribution function (in electron

charge units), that is, qðnÞ ¼ U2
1ðnÞ þ U2

2ðnÞ for two different

values of l, which correspond to the distance between the

two peaks in the bisolectron wave-function equal to two

and three lattice sites, respectively. Note that the lattice

deformation is proportional to q(n), as it follows from Eq. (8)

for the stationary case V ¼ 0. This is reminiscent of what is

detected with the scanning tunneling microscopy (STM). In

related publications,[5,14–16] we have made use of this

methodology for tracking soliton excitations both in 1D and

2D lattices.

As the bisolectron spans few lattice sites, we can use the

approximation

Ec � e2

4pe0la
; (55)

where e is the electron charge and e0 is the dielectric con-

stant. Then, to elucidate the role of the Coulomb repulsion,

we can approximate Eq. (54) by

UiðnÞ �
ffiffiffiffiffiffi
q0
2D

r
Sech j n� l

2


 �� �
: (56)

Comparison of plots of functions Eqs. (54) and (56) and their

corresponding charge distributions shows that for physically

relevant parameter values (not too high values of j to allow

the wave functions spanning several lattice sites) the differ-

ence is negligibly small.

Substituting now Eq. (56) into the Hamiltonian Eq. (1) and

expanding the wave functions and corresponding lattice defor-

mation with respect to l, we obtain after integration the total

energy of the system including the Coulomb repulsion Eq. (55):

EðbsÞ ¼ 2E0 þ 2

3
Jj2

q0
D

� 4

3

vaq20
jD

ð1� l2j2Þ

þ wa2q20
2

3
þ 1

2
cq20 � l2j2

1

3
þ 1

2
cq20


 �� �
þ e2

4pe0la
: (57)

Minimizing this expression with respect to the distance

between the maxima of one-electron functions, l, we get the

equilibrium distance

l0 � 1

2

e2

pe0a1


 �1=3

(58)

with

1 ¼ 4vaq20j
3D

� wa2q20j
2 1

3
þ 1

2
cq20


 �� �
: (59)

As q0�1, the equilibrium distance between the wave func-

tion peaks can be approximated as

l0 � 1

2

3De2

4pe0va2q20j


 �1=3

: (60)

Then with the Coulomb repulsion between the electrons, Ec,

the binding energy of the bisolectron is

Ebind ¼ 2EðsÞ � EðbsÞ � Ec: (61)

Figure 4. Upper figure: one-electron wave functions (thin lines) and biso-

lectron wave function (thick line) with account of Coulomb repulsion, for j
¼ 1 and l ¼ 1. Lower figure: charge distribution over the lattice sites in

the bisolectron state for j ¼ 1 for l ¼ 1 (thick line) and l ¼ 1.5 (thin line).

[Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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where EðsÞ is the energy of the system with a single added,

excess electron as obtained in Refs. [11,17]. Comparing EðbsÞfor
l ¼ l0 with EðsÞ it results that Ebind > 0. Thus, in spite of the

stronger Coulomb repulsion in the bisolectron state, with

spacing l0 between the wave-function maxima, there is gain of

energy due to pairing relative to the case of two separate

electrons, placed at very large distance from each other.

Conclusions

It has been shown that the quartic anharmonicity in lattice

interactions facilitates binding of two electrons in a singlet

spin bisolectron state, spanning a few lattice sites. Such a biso-

lectron can move along the lattice with finite effective mass

Eq. (53) and constant velocity. Moreover, the lattice anharmo-

nicity limits bisolectron energy and momentum up to the

sound velocity in the lattice whereas bisolitons in harmonic

lattices are unstable at velocities higher than some critical

value, V 	 Vcr, below the sound velocity, Vcr\Vac.
[13]

Because of the Coulomb repulsion between the electrons

the two-electron wave function may have a one-hump enve-

lope at not too strong repulsion or a two-hump envelope at

high enough repulsion strengths. In the latter case, the dis-

tance between the humps is determined by the balance

between the gain of energy due to the coupling of electrons

with the lattice and the lowering of energy due to the Cou-

lomb repulsion. In systems with moderate electron–lattice

interaction, the bisolectron wave function is spread over few

lattice sites and the distance between the two peaks of the

bisolectron wave function is 2–3 lattice sites or more. In such

a state the energy of the bisolectron is lower than the energy

of the state with two separate, independent solectrons, and

even with account of the Coulomb repulsion the bisolectron

binding energy Eq. (59) is positive. Thus, the bisolectron state

Eq. (43) is indeed a bound state of two added, excess elec-

trons with antiparallel spins in the common potential well

determined by the soliton-like lattice deformation Eq. (35). The

results here reported complement and confirm earlier fragmen-

tary results obtained by computer simulations using the Gaus-

sian approximation to the soliton excitation[18] and the

harmonic and Morse potentials.[19–21] For interesting related

work see the recent papers by Lyra and collaborators.[22,23]

In view of the above, it appears worth exploring the rela-

tionship of our bisolectron with Alexandrov’s bipolaron.[24] His

prediction was a finite small bipolaron bandwidth and a high

critical superconducting temperature in the crossover region

from the Bardeen-Cooper-Schrieffer (BCS) to bipolaronic super-

conductivity. What the bisolectron and a multipolaron and

multisolectron dynamics share in common supporting the

mentioned prediction?

Finally, let us give some examples of systems, in which biso-

lectrons can exist. The crucial reason for their existence is the

validity of the adiabatic approximation used in deriving the

equations of motion in the form Eqs. (6) and (7). According to

Refs. [25,26], this approximation is valid for quasi-1D systems,

whose dimensionless electron–phonon coupling constant

g ¼ v2=2Jw and nonadiabaticity parameter cnon�ad ¼ �hVac=2Ja

take values within certain intervals, which distinguish the re-

gime of spontaneous electron localization as the crossover

between the regimes of the formation of small polaron and

almost free electron, respectively. To systems with such values

of the electron–phonon coupling constant and nonadiabaticity

parameter belong polydiacetylene,[27–29] conducting platinum

chain compounds such as RbCP(FHF), RbCP(DSH), CsCP(FHF),

CsCP(Cl), KCP(Cl), CsCP(N3), KCP(Br), PbCP(Cl), GCP(Cl),

ACP(Cl).[30] There is also experimental evidence of the forma-

tion of large polarons in high-temperature superconducting

cuprates[31–36] and salts of transition metals, such as PbSe,

PbTe, and PbS,[37–40] at not too high values of the correspond-

ing doping. Hence, we expect formation of bisolectrons in all

the above cited materials. We plan to explore this issue in

future studies. The relation between the superconducting tran-

sition and the doping level in high-Tc superconductors points

to on the close relation of this phenomenon with the electron–

phonon (soliton) coupling strength.
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