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Abstract 
Reported here are salient features of soliton-mediated electron transport in anharmonic crystal lattices. After 
recalling how an electron-soliton bound state (solectron) can be formed we comment on consequences like 
electron surfing on a sound wave and ballistic transport, possible percolation in 2d lattices, and a novel form 
of electron pairing with strongly correlated electrons both in real space and momentum space. 
 
 
1.  Introduction 
Electrons, holes, or their dressed forms as “quasiparticles”, in the approach introduced by Landau 
(Landau 1933, Kaganov 1979), play a key role in transferring charge, energy, information or 
signals in technological and biological systems (Slinker 2011). Engineers have invented ingenious 
methods for, e.g., long range electron transfer (ET) such that an electron and its “carrier”, forming a 
quasiparticle, go together all along the path hence with space and time synchrony. Fig. 1 illustrates 
the simplest geometry between a donor (D) and an acceptor (A). Velocities reported are in the 
range of sound velocity which in bio-systems or in GaAs layers are about Angstrom/picosecond 
(Km/s). Such values are indeed much lower than the velocity of light propagation in the medium. 
Thus at first sight, leaving aside a deeper discussion concerning specific purposes (Pomeau 2007, 
Chetverikov 2012a), controlling electrons seems to be more feasible with sound (or even 
supersonic) waves than with photons. Electron surfing on an appropriate highly monochromatic, 
quite strong albeit linear/harmonic wave has recently being observed (Hermelin 2011, McNeil 
2011). Earlier the present authors have proposed the solectron concept as a new “quasiparticle” 
(Velarde 2005, 2006, 2008a, 2008b, 2010a, 2010b, Chetverikov 2006a, 2009, 2010, 2011a, 
2011b, Cantu Ros 2011, Hennig 2006, 2007, Ebeling 2009) encompassing lattice anharmonicity 
(hence invoking nonlinear elasticity beyond Hooke’s law) and (Holstein-Fröhlich) electron-lattice 
interactions thus generalizing the polaron concept and quasiparticle introduced by Landau and 
Pekar (Landau 1933, Pekar 1954, Devreese 1972). Anharmonic, generally supersonic waves are 
naturally robust due to, e.g., a balance between nonlinearity and dispersion (or dissipation). In the 
following Sections we succinctly describe some of our findings and predictions for one-dimensional 
(1d) crystal lattices for which exact analytical and numerical results exist (Section 2) and, 
subsequently, for two-dimensional (2d) lattices for which only numerical results are available 
(Sections 3, 4 and 5). Comments about theory and experiments are provided in Section 6 of this 
text. 
 
 

 
 

Figure 1: Electron transfer from a donor (D) to an acceptor (A) along a 1d crystal lattice. The springs mimic 
either harmonic interactions or otherwise. In this text they are assumed to correspond to (anharmonic) Morse 
potentials. The figure also illustrates the electron-soliton bound state (solectron) formation. Depending on the 

material ways other than photoexcitation at the donor site could lead to the same consequences. 

 
2.  Soliton assisted electron transfer in 1d lattices 

  



Although the basic phenomenological theory exists (Marcus 1985) yet long range ET (beyond 20Å) 
in biomolecules is an outstanding problem (Gray 2003, 2005). Recent experiments by Barton and 
collaborators (Slinker 2011) with synthetic DNA show an apparent ballistic transport over 34 nm for 
which no theory exists. Let us see how we can address this question building upon our solectron 
concept (Fig. 1). 
We consider the 1d-crystal lattice with anharmonic forces described by the following Hamiltonian 
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where , , M, D, B and nx nv   denote, respectively, space lattice coordinates/sites, lattice 

particle/unit velocities, unit masses (all taken equal), the potential depth or dissociation energy of 
the Morse potential (akin to the 12-6 Lennard-Jones potential), lattice stiffness constant and 
interparticle equilibrium distance or initial lattice spacing. For our purpose here we introduce 
suitably rescaled relative lattice displacements,  nxBq nn  . Around the minimum of the 
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If an excess electron is added to the lattice we can take it in the tight binding approximation (TBA) 
and hence 
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with n denoting the lattice site where the electron is placed (in probability density, 
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). We want to emphasize the significance of hopping in the transport process 

relative to effects due to onsite energy shifts and hence we assume 0EEn   for all  save those 

referring to D and A. The quantities  belong to the transfer matrix or overlapping integrals. 

They depend on actual relative lattice displacements, and we can set (Slater 1974) 
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where  and 0V   account for the electron-lattice coupling strength. Accordingly, 00  V  

provides the ratio of the two dynamical time scales (electronic over mechanical/sound). 
From (1)-(3) follow the equations of motion in suitable dimensionless form: 
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It is worth recalling that if rather than the Morse potential (1) we use a similar potential introduced 
by Toda the lattice dynamic problem defined by Eqs. (4) in the absence of the added electron 
 0  is exactly solvable (Toda 1989, Chetverikov 2006b). Thus we know analytical expressions 
for lattice motions and, moreover, for the thermodynamics/statistical mechanics (including specific 
heats, dynamic structure factor, etc.) of such 1d many-body problem. For the Morse potential (1) it 
has been numerically shown that no significant differences exist for lattice motions and other 
physical quantities (Dancz 1977, Rolfe 1979). Temperature can be incorporated in the dynamics by 
adding to Eqs. (4) Langevin sources by using an appropriate heat bath (delta-correlated Gaussian 

  



white noise) and using Einstein’s relation between noise strength and temperature. To avoid 
redundancy we illustrate this point in Sect. 3. 
The implementation of the scheme shown in Fig. 1 is one prediction with velocities in the sonic and 
supersonic range. Fig. 2 illustrates the possibility using Eqs. (4)-(5) of extracting an electron placed 
in a potential well in the 1d Morse lattice by a generally supersonic soliton. For the geometry of Fig. 
1 we can use it to estimate the ballistic process time lapse to go from the donor to the acceptor. 

For the computation with a lattice of 100N  units the well is assumed Gaussian of depth E  (in 

units of 0 ) with  localized at site 50. The soliton initially spans a few lattice sites (two or 

three) excited at site 40. If the well depth is shallow enough the extraction is ensured up to 100% 
whereas if the well is too deep no extraction occurs. Needless to say extraction is possible with 
probability varying from zero to unity as the well depth is decreased. Time lapse from D to A is 
obtained by simply dividing length over soliton speed. Illustration is provided in Fig. 3 where “ ” 
(see Fig. 1) accounts for the distance travelled (in principle from D to an appropriately placed 
acceptor A). Comparison is provided between the ballistic case and other possibilities like 
diffusion-like transport with thermally (hence randomly) excited solitons (Chetverikov 2010) and 
tunneling transport (Chetverikov 2012b). 
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Figure 2: Extraction of an electron from a potential well (a donor) and ballistic transport to an acceptor 

observed using the electron probability density
2

nC . Left panel: shallow well 10E , extraction 100%. 

Right panel: deep well 18E  , no extraction. Parameter values: α = 1.75, V0 = 0.35 and  = 10. 

 

 
 

Figure 3: Logarithm of reciprocal time lapse (in seconds) which an electron bound to a soliton needs to travel 
a distance l (in Angstrom) for the geometry of Fig. 1. The upper dotted (blue) curve corresponds to a sound 

velocity of 17 Angstrom/ps, illustrating a ballistic transport. The second dotted (green) curve from above 
shows the reciprocal time needed if the electron hops stochastically between thermally excited solitons. The 
bottom solid line embraces data illustrating a tunneling process. The dots are reciprocal times measured for 

natural bio-molecules (Gray 2003, 2005). The transfer times found for synthetic DNA are much shorter 
(Slinker 2011) bearing similarity to our model findings –upper dotted (blue) line– for solectron transfer. 

  



 
 
3.  Two-dimensional crystal lattices 
Recently, two groups of experimentalists have observed how an electron can “surf” on a suitably 
strong albeit linear, highly monochromatic sound wave (in GaAs layers at 300 mK). Sound 
demands lattice compressions and hence is accompanied by electric/polarization fields which for 
piezoelectric crystals integrate to macroscopic level. Our theoretical solectron approach targets 
sound-wave electron surfing due to nonlinear soliton excitations in 2d-anharmonic crystal lattice 
layers, with velocities ranging from supersonic to sub-sonic (Chetverikov 2006b, Hennig 2006, 
Makarov 2006). We do not pretend here to explain the GaAs experimental results. We simply wish 
to point out that appropriate sound waves in suitable nonlinear crystalline materials, could provide 
long range ET in 2d, with sonic or supersonic velocities for temperatures much higher than that so 
far achieved in experiments. 
In 2d the Morse potential needs to be truncated to avoid overcounting lattice sites. Then using 
complex coordinates , where x and y are Cartesian coordinates, the equations of motion 
replacing Eqs. (4) are 
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with    
nkZrnknk drdVZF  ,   knknnk ZZZZz  . In Eqs. (6) we have incorporated 

thermal effects. The quantities   (friction coefficient),  (diffusion coefficient) and the D s  (noise 

generators) characterize the Gaussian noise. MTkBDv   is Einstein’s relation with , 

Boltzmann constant. 
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To illustrate lattice motions we consider each lattice unit as a sphere representing the core electron 

Gaussian distribution at the corresponding site:    
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a parameter. Thus overlapping of two such Gaussians permit to “detect” the expected “mechanical” 
compression of two lattice units as Fig. 4 illustrates (Chetverikov 2011c, 2011d). The evolution of 
the electron follows Eq. (5) for the 2d lattice geometry. 
 
 

       
 

Figure 4: Cumulative sequence of snapshots using  tZ ,  to track a soliton running along the x-axis of a 

triangular lattice using Eqs. (4), (6). Parameter values: B = 4, T = 0.001. 

 
 
4.  Two-dimensional crystal lattices. Pauli’s master equation approach 
Continuing with the 2d case, we now consider an alternative approach to using the Schrödinger 
equation (5). We shall consider how transport is achieved following Pauli’s master equation 
approach (Ebeling 2009). Eq. (2) is now considered with  ',nnnn ZV  . The energy levels are taken in 
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potential strength and h  defines the range of the electric field polarization interaction. Rather than 
relying on the Schrödinger description of the TBA we follow Pauli’s master equation approach with 
transition probabilities 

eU
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    'exp;, nn EEnnE    if , where   1;,  nnE  if  and nn E E nn EE  TkB1 . Eqs. 

(7)-(8) are solved with Eqs. (6) to obtain the electron probability density  neglecting the 

feedback of the electron on the lattice dynamics. 

 tnw

Figs. 5 and 6 illustrate electron and solectron evolution along a 2d lattice. Fig. 5 refers to electron 
taken alone while Fig. 6 illustrates how, after switching-on the electron-lattice interaction, the 
soliton from Fig. 4 is able to trap the electron from Fig. 5 and after forming the solectron transports 
charge along the lattice (see also Velarde 2008a). 
 

      
 

Figure 5: An electron alone placed at a given lattice site (left panel). The quantity  here accounts for the 

probability density (otherwise 

w
2

 T .0
nC  in Fig. 3). As time progresses the electron spreads over the slightly 

heated lattice  following Pauli’s equation from the initial condition (left panel) to a subsequent 

time instant (right panel). 
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Figure 6: Solectron formation and eventual evolution when the electron-phonon (here electron-soliton) 
interaction is switched-on ( 0  in the corresponding to Eqs. (4) for the 2d case). We see that the electron 
is trapped by a soliton (like that of Fig. 4) thus forming the solectron which transfers the electron probability 

density without spreading at variance with the result illustrated  in Fig. 5 (right panel). 

 

  



 
5. Percolation and other features in 2d-lattices 
Solitons can be excited in a crystal lattice by several actions. One is to add finite momentum to a 
group of nearby lattice units, another is by heating the crystal all-together. Then one expects quite 
many excitations including phonons and solitons randomly appearing along the 2d lattice and 
having finite life times thus leaving finite-length traces. Fig. 7 illustrates thermal excitations leading 
to spots of instant electron density  tyxne ;,  due to higher than equilibrium electric/polarization 

field maxima. Here in the simplest Boltzmann approximation 

      0,exp;, elBel nTktZUtyxZn  , (9) 

With  the normalizing factor, 0
eln   dZTktZUn Bel   ,exp0 . 

Only at temperatures high enough one expects a distribution of “local” spots permitting in kind of 
zig-zag the occurrence of an “infinite” path thus percolating from side to side of the 2d lattice 
(Chetverikov 2009, 2011a). Indeed by increasing temperature one increases the significance as 
well as the “density” of soliton excitations/traces. If percolation does occur by adding an excess 
electron and playing with an external field we have a novel way of one-sided electric conduction 
mediated by the solitons. We have just explored this possibility but have not yet been able to draw 
conclusions about the scaling laws of the process. On the other hand since percolation is expected 
as a second-order phase transition it seems worth investigating the possible connection with the 
pseudo-gap transition observed in such superconducting materials as cuprates. 
 
 

          
 

Figure 7: Towards percolation. Instantaneous space distribution of electron probability density  yxn ,  

associated to lattice solitons (sound) in a triangular Morse lattice (N = 100) at, respectively, low (T = 0.02 D) 
(left panel) and high (T = 0.4 D) (right panel) temperatures. The latter exhibits an almost percolating path. 

Parameter values: B = 3, Ue = 0.4D, h = 0.7. 

 
 
6. Concluding remarks 
We have illustrated how lattice solitons arising from finite amplitude compression-expansion 
longitudinal motions bring sound and also create electric polarization fields (Landau 1933). The 
latter are able to trap charges and provide long-range ET in a wide range of temperatures (up to 
e.g. 300K for bio-molecules). Such “sound” waves could exhibit subsonic, sonic or supersonic 
velocity, whose actual value depends on the strength of the electron-phonon/soliton interaction. 
Noteworthy is that such interaction and subsequent electric transport, in the most general case, 
embraces a genuine polaron effect (Pekar 1954, Devreese 1972) and also a genuine 
soliton/solectron effect (Cantu Ros 2011). For piezoelectric materials like GaAs that sound waves 
can transport electrons there is now experimental evidence (Hermelin 2011, McNeil 2011). This 
was achieved by means of strong albeit linear/infinitesimal, highly monochromatic waves 
appropriately creating the electric/polarization field that due to the specificity of the crystal 
symmetry and other features integrate to macroscopic level. These experiments done at 300 mK 
due to quantum limitations imposed to the set-up provide hope for similar long-range ET at “high” 
temperatures. Indeed the limitations are only due to the electron entry and exit/detector gates. The 
solectron theory predicts such a possibility in appropriate non-linearly elastic crystal materials 

  



capable of sustaining lattice solitons. Recent experiments using synthetic DNA (Slinker 2011) show 
a kind of ballistic ET over 34 nm which as Fig. 3 illustrates bears similarity with a prediction of our 
solectron theory (Velarde 2008a). 
In 2d crystal lattices the solectron theory predicts the possibility of percolation as a way of long 
range charge transport when the material is heated up to the range of robustness/stability of lattice 
solitons, as Fig. 7 illustrates. Work remains to be carried out to assess the corresponding 
percolation scaling laws. 
Finally, we have recently shown that the solectron theory offers a new way of electron pairing by 
having two electrons strongly correlated (both in real space and in momentum space with due 
account of Pauli’s exclusion principle and Coulomb repulsion using Hubbard’s local approximation) 
due to their trapping by lattice solitons (Velarde 2006, 2008c, 2011a, 2011b, 2011c, Hennig 2008, 
Brizhik 2012). This feature shows the quite significant role played by the lattice dynamics well 
beyond the role played in the formation of Cooper pairs (in momentum space) underlying the BCS 
theory (Cooper 2011) or in the bipolaron theory (Alexandrov 2007) and much in the spirit of 
Fröhlich approach to the problem unfortunately using a harmonic lattice Hamiltonian at a time 
before (lattice) solitons were known (Fröhlich 1952, 1954a, 1954b, Zabusky 1965, 2005, Toda 
1989; see also Nayanov 1986). Incidentally, Einstein (1922) was the first who used the concept of 
molecular conduction chains trying to understand superconduction. Thus it is reasonable to expect 
that a soliton-mediated Bose-Einstein condensation could take place in appropriate 2d anharmonic 
crystal lattices well above absolute zero. This is yet to be shown. 
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