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Abstract The theory of solectrons is restricted so far to one, or two charges em-
bedded into a chain or a layer of atoms. We discuss here the open problems arising
by adding excess charges into a chain or a layer when generalizing the existing
theory of individual solectrons to many-body thermal systems. Several methods to
include degeneration effects and interactions of the solectrons are discussed in order
to extend the theory to finite densities and to discuss density- as well as temperature
effects. In the present model the charges are embedded into one- or two-dimensional
systems of atoms which are treated by classical embedded Langevin equations. By
nonlinear interactions between atoms and charges moving quasi-particles as solec-
trons or solectron pairs are formed which are treated in stochastic tight-binding ap-
proximation based on Pauli-type kinetic equations. We discuss results for degen-
erated solectron systems with zero spin including spatial distributions, and energy
distributions. We notice interesting structures of the energy distribution including
the Fermi edge and the possible existence of gaps in the spectrum. Finally we dis-
cuss the perspectives of many-body systems and give an estimate of the phase plane
temperature against density of doping charges - discussingpossibilities to create
degenerate solectron systems in heavily doped lattices.
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1 Introduction

In the polaron theory developed by Landau, Pekar, Fröhlich, Holstein and others,
and successfully used in the study of biomolecules by Davydov, Zolotaryuk and
Scott and others [1, 2, 3, 4, 5, 6, 7] the self-trapping of the electrons interacting with
linear lattice oscillations (phonons) dominates. Davydovexploited the possibility of
soliton excitations suitably using the above mentioned nonlinearity. He then identi-
fied quasiparticles (“electrosolitons”) which move in general with subsonic veloc-
ity. Davydov in collaboration with Zolotaryuk also treatedthe case when the lattice
bears a cubic or quartic nonlinearity [3, 5, 7]. This leads to“supersonic electrosoli-
tons”, or otherwise “lattice polarons”; excitations growing from the nonlinearity of
the lattice itself.

Starting first from semiclassical considerations in several works [8, 9, 10, 11,
12, 13, 14, 15, 16, 17, 18] a closely related soliton-mediated form of supersonic
charge transfer and electric conduction has been proposed by introducing the con-
cept of “solectron” as a natural extension of both the polaron and the electrosoli-
ton quasiparticles. In the solectron theory the soliton carrier is obtained before an
excess electron is added to the system. Classical models andplasma-type Hamil-
tonians [8, 9, 10, 11, 12, 13] and quantum-mechanical modelshave been studied
[14, 18, 19, 20, 21, 22]. The quantum theory was developed within the tight-binding
approximation (TBA). Besides the general methods which we developed in some
earlier work [11, 14, 15, 16, 18] the quantum theory has been applied to two differ-
ent kinds of systems:
(i) Conductiing polymers, studies of hopping processes in polymers based on a TBA
Hamiltonian [14, 18, 20, 21, 22, 23, 24, 25, 26].
(ii) One- and two-dimensional plasmas and solid state plasma layers, studies of the
diffusivity and the conductivity by using a plasma Hamiltonian and Pauli-type ki-
netic equations [12, 27].

The first line of research was developed in collaboration with Larissa Brizhik,
Leonor Cruzeiro, Dirk Hennig, John Kozak, Oliva Cantu Ros, and Gerd R̈opke con-
centrating on analytical and numerical studies of solectron bound states and recently
also on bisolectron bound states [21, 22, 25, 26]. The plasmaapproach was devel-
oped with Gerd R̈opke [27, 28]. Here we will study hopping transfer of charges
and hopping conductivity in plasma layers. We are using a particular method which
has been developed recently in the context of applications to plasmas and charged
layers in solids [19, 27, 29, 30, 31]. This approach is based on a generalization of
the kinetic equations developed already in 1928 by Pauli [32] and the more recently
developed Monte Carlo procedures of doing simulations of many particle systems
[33]. As we have shown in [27] by using a particular generalization of the kinetic
equations of Pauli-type, the excitations and transport pocesses based on the coupling
of the nonlinear lattice excitations to the hopping transport of the charges may be
well described by this method. This procedure is particularly useful for studying the
influence of nonlinear excitations of the lattice on electric transfer, conduction and
other transport properties.

Let us succintly summarize the state of art and discuss some open tasks:
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The solectron concept offers powerful methods to understand and to control the
motion of charges in nonlinear atomic lattices. It is in facta significant generaliza-
tion of the polaron concept, extending the latter to nonlinear lattices. This is indeed
of some importance, since real atomic interactions are never strictly linear, there are
always some nonlinear contributions to the atomic interactions.

In our view, so far the most important results with respect topossible practical
applications are:
1. Development of tools to manipulate and control the path ofcharges, including
the so-called vacuum-cleaner effect [20, 23, 31]. This is infact a new way of con-
trolling charges providing a method to overcome the spreading of probability due
Schr̈odinger evolution and bring electrons in a controlled way from point A to point
B in a lattice.
2. Studies of pair formation. It was shown that under appropriate conditions solec-
tron pairs may be formed [21, 22, 23, 25, 26, 34].
3. Extension of the one-dimensional solectron concept to two dimensions, i.e. the
step from chains to layers [28, 30, 31]. One of the results wasthe detection of high
energetic quasi one-dimensional solectrons running in higher-dimensional systems
along the crystallographic axes [31].

Problems not yet treated include:
- studying the influence of density of doping on physical properties,
- the study of nonideality effects in diffusion and conductivity,
- the quantitative treatment of percolation effects,
- the study of the influence of Fermion and Boson effects and the role of the Fermi
edge (Fermi net in 2d),
- the investigation of Bose-Einstein condensation in solectron/bisolectron systems
and their role in eventual superconducting systems.

As far as we can see, all known systems with high conductance -ranging from
usual metals to superconducting materials - operate on the basis of degenerate
charges. For this reason we will discuss here the problems which arise in gener-
alizing the existing theory of individual solectrons and bisolectrons to many-body
thermal systems.

2 The temperature-density phase plane and solectronic
degeneration effects

Our aim is to extend the existing theory at first in a qualitative way to finite densities
and to discuss density- as well as temperature effects. Let us start with some esti-
mates for the relative number of thermal solitons per siteNs/N as a function of tem-
perature. There are several theoretical theoretical estimates for Toda lattices [35, 36]
as well as estimates from computer simulations for Morse lattices [19]. According
to the existing estimates the soliton fraction increases with T1/3 and has maximum
at certain temperatureT0 which may be in the range of a few hundred Kelvin for
biomolecules [19]. For estimates we fitted the existing datawith the formula
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Ns

N
≃ Aτ1/3

1+Bτ5 , (1)

whereN is the total number of sites,τ = kBT/2D and whereA≃ 0.5 andB≃ 0.1
are two fitting constants. For fitting we used the results fromsimulations showing
clearly the existence of optimal temperatures for soliton generation [19, 23]. Let us
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Fig. 1 Estimates of the soliton fraction per site (upper pink curve withmaximum) and of the
solectron fraction for 3 given values of the solectron bindingenergy (lower three curves:εse≃
0.001,0.005,0.01 eV). Left panel: a doping of 20 percent, right panel: a rather high doping of 50
percent. The magenta lines going up as temperature increases show the border of degeneration
effects which are to be expected only above them.

now study the role of electron density. The electron densitycan be given in several
units, the simplest is the so-called relative occupation orfractionνe which is defined
as the number of sites occupied by an electron relative to thetotal number of sites

νe =
Ne

N
.

Note that in the simplest model, the electrons are always associated to one of the
sites. The relative occupation is denoted as doping.

In real systems the fraction or doping may vary within wide limits, however
the fraction/doping will in general not exceed the value 0.2, i.e. not more than 20
percent of sites are occupied (doping fraction). The numberdensity in charges per
unit volume

ne =
Ne

V
,

whereV is the volume may depend on the dimension and the lattice properties. In
1d the density is given by

ne =
Ne

aN
,
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whereN is again the total number of lattice sites anda is the equilibrium lattice
spacing. In a 2d triangular quadratic or triangular latticethe density is given by

ne =
Ne

Na2 , ne =
Ne

Na2(2/
√

3)
.

Let us denote the number of solectrons byNse. We assume that the number of solec-
trons and the number of free solitonsN−Nse are related by a Boltzmann factor.

Nse

N−Nse
= exp

[

− εse

kBT

]

. (2)

Here εse is the energy gain in forming a solectron. This energy depends on the
specific physical conditions. Following Davydov [3], the ground state energy of a
strongly supersonic solectron can be estimated at

εse≃
vse

vsound

me

mse
[eV], (3)

wheremse andvse are the mass and velocity of the solectron. For appropriate pa-
rameter values, this energy could possibly reach 0.1 eV, which is a very high value.
Presumably the above given estimate is an upper bound. In ourcomputer simula-
tions with Morse lattices having a potential well of valueD we observe solectrons
in a temperature range of 0.1−1 D. Assuming wells of order 0.1−0.5 eV we arrive
at temperature intervals of 0.01−0.1 eV. In the following we will assume that the
ground state energy is around 0.01 eV. By using this and two smaller values for the
binding energy we can estimate the fraction of solectrons asa function of tempera-
ture and density. The result is shown graphically in Fig. 1. Not that by using higher
values for the binding energy, the densities of solectrons are increasing.

We will now estimate the effects of degeneration assuming that the charges are
electrons or holes and are, as well as the corresponding solectrons, Fermions. Sys-
tems of Fermions show degeneration effects, if the thermal de Broglie wave length
of the charges is about the distance between them. That meansthe degeneration
effects of the charges will begin to play a role at densities satisfying the condition

nseΛ3
se≃ 1; Λse=

h√
2πmsekBT

, (4)

wheremse is the effective mass of solectron andnseas before is the solectron density.
The condition of degeneracy provides us a line in the density-temperature plane

nse= const.T3/2, (5)

which is displayed in Fig. 1. In the left panel we show the caseof a quite an usual
doping of 20 percent, the right panel we have the case of a veryhigh doping of 50
percent. Only above the magenta lines the effects of degeneration may be expected.



6 Alexander P. Chetverikov, Werner Ebeling, Manuel G. Velarde

Let us succintly explain what we mean with a Fermi surface which is in 2d a
Fermi net. The Fermi net (Fermi surface in 3d) is defined by thecondition that the
energy equals the Fermi energy. This corresponds to the transition to degeneration
which happens atnseΛ3

se≃ 1.
If the degeneration parameter crosses unity, we expect degeneration effects (Fig.

1). The Fermi net is a set of lines on the plane where, the density corresponds to the
degeneration density at the corresponding given temperature. The electron density in
the field of atoms is in our case nonuniform and may have a quitecomplex structure
and net structure schematically shown in Fig. 2. As well known from plasma physics

Fig. 2 The Fermi surface (Fermi net in 2d) is defined by the condition that the energy equals the
Fermi energy. In other words, the density corresponds to the degeneration density at the given
temperature.

and solid state physics most relevant processes, includingtransitions, diffusion and
conductivity occur at the Fermi surface. Therefore it is a primary task, to explore
the structure of the Fermi surface. In particular we have to study questions like: Is
the Fermi surface connected (percolated) or consisting of non-connected pieces of
density regions corresponding to solectrons at the Fermi energy.

Our estimates show that it is not easy the cross the border of degeneration. We
need strong doping or low temperatures. As far as we can see, it is quite difficult to
have conditions for creating degenerate solectrons in real2d or 3d systems. Probably
we need high doping for temperatures beyond 100 K. However one should note
that these estimates are conservative, the solectron mass was taken as equal to the
electron mass. In reality solectrons are heavier than electrons or holes and tends to
behave more classically than electrons. This question was appropriately raised by
Alexandrov [37].

3 The Hamiltonian of our model and the equations of motion

We considerd-dimensional lattices of atoms (d = 1,2,3) and (added, excess) free
electrons which may carry electrical currents. In applications we restrict in most
cases to 1d -, or 2d- lattices in order to assess the influence of nonlinear excitations
on the electrical properties. The system consists ofN classical atoms and one ore
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several electrons. For theheavyatoms we assume that they obey classical Langevin
dynamics. We include a phenomenological dampingγi . In the numerical simulations
we consider the lattice units with massm. The atomic particles are described by
coordinatesr j(t) and velocitiesv j(t), j = 1, . . . ,N. We assume periodic boundary
conditions. The Hamiltonian consists of three parts, the classical atom/ion Hamilton
functionHi , the electron ion interaction functionHie and the restHe, accounting for
the electrons.

H = Ha+Hie+He. (6)

The atomic part is

Ha =
m
2 ∑

j
v2

j +
1
2 ∑

i j
Vi j (ri j ). (7)

The atoms repel each other by strong repulsive forces. The subscript “i” denotes the
number of the atom. Let us assume that the characteristic size of the atoms in the
lattice isr0. In general we will approximate the potential of the forces between two
atoms by the Morse-potential

VM(r) = D [exp(2B(r −σ))−2exp(−B(r −σ))] . (8)

We note that the characteristic frequency of oscillations around the minima is

mω2
0 =VM(σ)′′. (9)

We introduce now an electron e.g. by doping, and define in TBA the amplitude for
being at sitej in staten by c jn and the probability to find the electron at the lattice
site or atom located atx j in staten denoted asp jn by

pn = cnc∗n. (10)

We will show that any displacement of the atoms changes the energetic situation
of the electrons, the eigenvalues as well as the transition probabilities. The electron
dynamics is influenced by the lattice dynamics and as a resultthe electron will try to
follow up these changes. This is the basic effect leading to the solectron formation.
So the essential point is the running local compressions which generate a complex
landscape. As shown already by Davydov [3] there exist rather deep potential wells
moving (right to left or left to right) along the lattice thatstrongly influence the local
dynamics of the electrons and are able to capture the light electrons. In the TBA the
electron Hamiltonian is of hopping type [20, 21, 22]

He = ∑
jn

E jnc+jnc jn + ∑
j j ′n

t j j ′nc+j ′nc jn. (11)

Here j denotes the number of the atom andn the quantum numbers of the atomic
states. In our adiabatic approach the atomic and the internal positions are assumed
to be fixed atRj . The representation is based on a linear combination of atomic
orbitals (LCAO):| jn > which are approximately given by the wave functions of a
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free atom at positionr j . The matrix elements are related to the operators of kinetic
and potential energy. The energy levelsE jn fluctuate around the levels of the free
atoms. The transition matrix is also a fluctuating quantity depending on the time
varying atomic distancesr ′j − r j . In a simplified version we neglect the electron-
electron interaction. Hence (11) is in fact

He = ∑
jn

E jnc+jnc jn +∑
j j ′

t j j ′n(Rj ′ −Rj)c
+
j ′nc jn, (12)

with the matrix elements

E jn =< jn|H0+Ve j| jn >; t j j ′n =< j ′n|H0+Ve j| jn > . (13)

We may simplify this expression assuming that the indexn uniquely defines the state
and set [20, 21, 22]

He = ∑
n

Enc+n cn+∑
nn′

tnn′(rn′ − rn)c
+
n′cn. (14)

In order to estimate the influence of the lattice on the energylevels we consider now
the electron-atom interaction.

For 1d-lattices one may consider only nearest neighbor coupling and simplify
[20, 21, 22]. In the general case the energy landscape shows acomplex structure
and the dependence of the energy levels on the position has tobe taken into account
[18, 20]. In the 1d-case the linear Holstein model is

En ≃ E0
n + χ0qn+ χ1 [qn+1−qn−1] . (15)

Here, for convenience in notation,qn denotes a lattice site spatial vibration (relative
displacement) coordinate defined byxn = nσ + qn/B. There is the problem that
for some values of the deviations (and typical parameter values,α = 1−1.75) the
exponents may take on very large values. The termE0

n denotes on-site energy levels
of the unperturbed lattice andδEn is the perturbation due to the lattice vibrations
(harmonic as well as anharmonic modes may contribute). In the simplest case the
shift is linear in the deformations [38, 39]

δEn = χ(qn/B), (16)

where the “electron-phonon coupling constant”,χ , indicates that the on-site energy
level En, i.e. the local site energy, depends on the displacement of the moving unit;
qn is dimensionless (unit: 1/B). As shown e.g. in [38, 39], this coupling between
lattice deformations and electronic states, leads for large enough values of the pa-
rameterχ to the formation ofpolarons. In view of the above given parameter values,
the value of the coupling constant is in the rangeχ ≃ 0.1−1eV/Å. Adapting these
assumptions to our model without onsite contributions we have to recall that our
model is translationally invariant and we are considering relative lattice displace-
ments.
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Recall also that the probability to find the electron at the lattice site or atom lo-
cated atxn, i.e. the occupation numberpn is given by (10). The discrete Schrödinger
equation for the components of the wave functioncn is then

iċn = [E0
n + χ1(qn+1−qn−1)]cn

− V0∑
k

{exp[−α(qn+1−qn)]cn+1

+ exp[−α(qn−qn−1)]cn−1} , (17)

where an over-dot denotes time derivative; the energies aredimensionless (unit: 2D).
The corresponding equations for the lattice particles are now

q̈n = χ1[pn+1− pn−1]

+ {1−exp[−(qn+1−qn)]}exp[−(qn+1−qn) ]

− {1−exp[−(qn−qn−1)]}exp[−(qn−qn−1) ]

− αV0
{

exp[−α(qn−qn−1)](c
+
n+1cn+cn+1c+n )

+ exp[−α(qn+1−qn)](c
+
n cn−1+cnc+n−1)

}

. (18)

The problem reduces, in principle, to solving coupled together both Eqs. (17) and
(18).

Let us study now the two-dimensional case. A standard assumption is, that the
interaction is described by a pseudo-potential of polarization type. We assume that
the total potential acting on an electron in the field of atomsat positionsr1, ...rN is

Ve(r) =−∑
j

Ue

[1+(r− r j)2/h2]2
. (19)

Hereh is a characteristic cut-off distance andUe the maximal polarization energy
of the electron. As an estimate we may assumeUe ≃ 0.1 eV. In earlier work we
used also a different pseudopotential approach [27]. In order to be consistent with
the pseudopotential formula used above to quadratic terms we can make the choice
h≃ 0.7σ .

The eigenvalue problem is in general very complicated and practically unsolv-
able, so we will use the simple assumption that the eigenvalues are shifted like the
polarization potential

En ≃ E0
n −

N

∑
j=1

Ue

[1+(rn− r j)2/h2]2
. (20)

The discrete Schrödinger equation for the components of the wave functioncn

assumes now the form [28, 30]

iċn = [E0
n −

N

∑
j=1

Ue

[1+(Rn−Rj)2/h2]2
]cn
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− V0∑
k

{exp[−α|Rk−Rn|]ck. (21)

As before the forces between particles are supposed to be of the Morse kind and
the friction and random forces accounting for a Langevin model bath in the case
of a heated lattice. For convenience in the 2d lattice dynamics we use complex
coordinatesZn = xn + iyn, wherexn and yn are Cartesian coordinates of then-th
particle. Then the Langevin model provides the equations ofmotion for the lattice
units

d2Zn

dt2
= ∑

k

[

FM
nk(Znk)+FP

nk(Znk)
]

znk−αV0∑
k

exp[−α|Znk|] (c+n ck+ckc
+
n )

+

[

−γ
Zn

dt
+
√

2Dv (ξnx+ iξny)

]

, (22)

where indexn identifies a particle among allN particles of the atomic ensemble,γ
is a friction coefficient,Dv defines the intensity of stochastic forces,ξnx,y denotes
statistically independent generators of the Gaussian noise; Znk = Zn −Zk. Further
znk = (Zn −Zk)/|Zn −Zk| is a unit vector defining the direction of the interaction
forceFM

nk , corresponding to the Morse potential, andFP
nk, corresponding to the po-

larization interaction, between then-th and thek-th particles. The Morse interaction
forceFnk is here given by

FM
nk = 2B[exp(−2B|Znk|)−exp(−B|Znk|], (23)

and the polarization interaction force by

FP
nk = 4Uek

pn|Znk|− pk|Zkn|
[1+ |Znk|2/h2]3

. (24)

Note that to have dimensionless variables we may consider the spatial coordi-
nates normalized to the lengthσ used in the Morse potential. Time may be normal-
ized to the inverse frequency of linear oscillations near the minimum of the Morse
potential well,ω−1

M . The energy is usually scaled with 2D, whereD is the depth
of the Morse potential well, a different possibility is to use V0 as the unit of en-
ergy. Further the stiffness parameterB defines the strength of the repulsion between
particles. In view of the above only those lattice units withcoordinatesZk, satisfy-
ing the condition|Zn−Zk| < 1.5, are taken into account in the sum in Eq. (41). In
computer simulations the interaction of particles is considered to take place inside a
rectangular cellLx×Ly with periodic boundary conditions.

In practice some open problems remain, in particular there is the compatibility
between the quantum-mechanical and the classical part of the dynamics. Due to the
Langevin sources of noise and friction in the classical partof the dynamics, the
dynamics is irreversible. However so far there is no proof that the final distribu-
tion corresponds to the correct Gibbs-von Neumann measures. In the following we
assume a kinetic description which is irreversible from thevery beginning and con-
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verges to the correct distributions. The idea we follow is due to Wolfgang Pauli who
focused onpn and notcn hence disregarding phases. Thus the Pauli averaging ex-
cludes a complete description of coherent states hence ruling out a proper treatment
of superconducting states.

4 Pauli kinetics for nondegenerate solectrons on nonlinear
heated nonlinear lattices

So far our analysis has been based on the Schrödinger equation for the free elec-
trons in the TBA which is coupled to the Langevin equation forthe classical lat-
tice particles. This tacitly assumed the existence of a heatbath in which the lattice
particles are embedded. In principle this picture providesa complete description
of the coupled lattice-electron dynamics. The irreversibility is guaranteed by the
friction-noise terms in the Langevin-equations (23). As earlier shown [14, 18, 20]
we may describe this way also irreversible solitonic excitations at finite temperature.
However, a serious problem here is the very long relaxation times of the electrons
due to the large differences between the time scales of the electrons and the lattice
particles. This leads to some difficulties in extensive computer simulations. In the
standard theory of electronic transport this problem is solved by Boltzmann-type
descriptions or by Fokker-Planck-type equations, which introduce an irreversible
behavior [32, 41, 42, 43, 44]. The main problem is here to givea correct descrip-
tion of the coupling to the heat bath [42, 43, 44]. In the TBA case, the situation is
somehow simpler due to the discrete character of the electronic states, which allows
a description by discrete Markov chain equations [29, 46]. The Markov approach
to electron dynamics goes back to the seminal work of Pauli, Tolman, van Hove
and others [32, 41, 42, 43, 44]. Pauli started from the Schrödinger equation and
derived by perturbation theory a Markov chain description and an expression for
the transition probabilities. He introduced an irreversible master equation express-
ing the balance between the transitions in an ensemble. Pauli’s equation is valid for
a microcanonicalensemble and neglects symmetry effects. Further extensions took
into account the symmetry of the wave functions and offered adescription compat-
ible with the statistics of Bose-Einstein and Fermi-Dirac.Later generalizations are
connected with the development of Metropolis algorithms for canonicalensembles
[33]. Applications to hopping conduction in solids were given since the 70s of last
century by several authors [46]. First applications of the master equation formal-
ism to electron transfer in macromolecules appear in Ref. [45]. The system we are
studying here is rather difficult and seems to be too complicated to be treated in full
detail. We have:
(i) quantum electrons located in discrete states, which arecoupled to a heat bath and
to the classical lattice,
(ii) classical lattice particles coupled to the heat bath and to the quantum electrons.
(iii) the heat bath with an unspecified nature.



12 Alexander P. Chetverikov, Werner Ebeling, Manuel G. Velarde

Simplifying this situation we postulate here that the thermal electrons allow a
Markov description. Thus we proceed from thereversibleSchr̈odinger equation for
the tight-binding model to anirreversiblePauli master equation description [32, 41,
42, 43, 44]. Following Pauli’s method [19, 29] we use here a master equation for the
occupation probabilities of electronspn in a system with the energy levelsEn:

dpn

dt
= ∑ [Wnn′ pn′ −Wn′npn] . (25)

The transition probabilities were derived by Pauli using perturbation theory for
microcanonical ensembles (transitions in a narrow energy shell). Applications of
this formalism to our Schrödinger equation confronts us with the problem of appli-
cability of the perturbation approach to our basic equation. Note that the diagonal
part of the interaction operator may not be small in comparison to the nondiago-
nal elements. We neglect here this problem and assume that wehave found already
an appropriate unitary transformation which makes the nondiagonal elements suf-
ficiently small to satisfy the conditions of Pauli’s perturbation approach. With this
assumption the transition probabilities for the 1d-tight-binding model read in a mi-
crocanonical ensemble according to Pauli [19, 29, 32] is

Wmicro(n,n
′) =

V0

h̄
exp[−2α|qn′ −qn|]2πV0δ (En−En′), (26)

wheren′ = n±1 andδ (x) is Dirac’s delta function. The transitions from staten to
a staten′ at one of the nearest-neighbor sites should correspond to the same energy
level (or to a level within a narrow shell). In the case of a dissipative embedding, the
situation is more complicated due the interaction of the electrons with the dissipative
heat bath. For a canonical ensemble we assume the transitionprobabilities

W(n,n′) =
V2

0

h̄
exp[−2α|qn−qn′ |]E(n,n′,β ). (27)

Instead of a delta-like shell we have now a Lorentz-like profile around it. In in the
limit of narrow profiles these expressions converge to the Pauli formula with a delta-
factor. Temperature effects are to be included. When the electrons are embedded
into a heat bath together with the heated lattice particles,the temperature-dependent
thermal factorsE(n,n′,β ) are not symmetric with respect to the arguments but they
are subject to the condition of detailed balance

W(n′,n)
W(n,n′)

= exp[β (En−E′
n)]. (28)

In other words, the relation of the thermal factors should correspond to the relation
of Boltzmann factors. The property (28) suggests the symmetry

E(n,n′) = exp[−β
2
(En−E′

n)]F(n,n
′), (29)
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F(n,n′) = F((En−E′
n)), (30)

where F(n,n’) is an even function. There are several variants for this even func-
tion F(x) which we will discuss. The simplest is defined by the phenomenological
“ansatz” of the Monte-Carlo procedure, where downhill transitions are weighted
with E = 1 and uphill transitions with a factor less than unity [33]. This corresponds
to theF-function.

F(En−En′) = exp[−β
2
|En−E′

n|]. (31)

Proper statistical derivations of the thermal factors may be based on certain micro-
scopic models of the heat bath. Assuming that the heat bath isa carrier of phonons
which drive transitions by a one-phonon mechanism Böttger and Bryksin [46] stud-
ied hopping systems starting from the von Neumann equation for the density matrix.
The authors give the following general expression

F(En−En′) =
∫ ∞

−∞
exp[

i
h̄

τ |En−En′ |]K(|τ|)dτ , (32)

whereK(|τ |) is a rapidly decaying memory kernel. The decay of these correlations
is connected with the damping of lattice-particle motion. In the simplest case we
may assume here an exponential decay with the same damping constant as appears
in the above introduced Langevin dynamics. This leads to theLorentz profile

F(En−En′) =
V0

h̄
γ

γ2+(|En−En′ |)/h̄)2 . (33)

In the limit of small damping we come back to the delta-function in the Pauli ex-
pression for the transition probabilities.

The master equation is a useful tool for computer simulations of electron hop-
ping processes. Since the detailed balance is obeyed, it is guaranteed that in thermal
equilibrium the canonical distribution is solution of the master equation. In order to
simplify our computer simulations we used so far only the simplest “ansatz”, the
Monte Carlo procedure. Our basic system of equations contains several approxima-
tions, however it provides a rather fast and therefore useful tool for the computer
simulations of the electron-lattice dynamics in thermal systems. Fig. 3 illustrates
results of computer simulations based on this approach. Dueto the way we treat
electron relaxation effects there are differences betweenthe methodology using the
coupled Schr̈odinger equation and Langevin equation system (23) and thatusing
Pauli’s approach albeit they are minor differences at leastfor small and for interme-
diate values of adiabaticityτ ∼ 1. For largeτ , the electron relaxation in the heat
bath is very fast and the distribution may be approximated bya local Boltzmann-
or Fermi distribution as shown in ref. [23]. For small and intermediate values of the
τ-parameter, say forτ ≃ 10−20, the approach based on the Pauli equation (25) is
most useful, since it provides informations on deviations from the adiabatic approx-
imation. Our approximation based on the Pauli method eq. (25) goes beyond the
adiabatic approximation since the lattice dynamics and theelectron dynamics are
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treated independently including their coupling. Recall that in a strict adiabatic ap-
proximation one assumes that the electron adapts “instantaneously” to any change
in the lattice. In other words one assumes that the electronsfollow in a very fast
way to the new lattice configuration and may be described at any time by the canon-
ical distribution [47]. In the new approach based on Pauli’smethod we take into
account that the electrons need time to follow the lattice motions what leads to cer-
tain delay in their response and to some deviations from the stationary solution.
Qualitatively however the picture remains similar to the results obtained in adia-
batic approaches. Figure 3 illustrates how the spreading ofthe electron density in
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Fig. 3 Time evolution of one-dimensional probability distribution according to Pauli’s equation.
In the upper panel we see the evolution of an initial reactangular distribution, into a uniform dis-
tribution without any coupling to the latticeT = 0, thus illustrating an H-theorem. In the center
panel and in the lower panel two temperatures different from zero are considered: upper case:
T = 0.01: an initially rectangular distribution tends irreversibly towards homogeneous spreading
along the lattice, the wave is weakly structured due to the excitations along the lattice; and lower
case:T = 0.5: the initial rectangular distribution is spreading but at the same time becomes local-
ized around a few peaks thus illustrating the corresponding local formation of solectrons.

the 1d case is diffusion-like and strongly influenced by the excitations of solitons in
the lattice.
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5 Kinetic equations for Fermi solectrons with zero spin

An advantage of the Pauli approach is, that it can be easily generalized to include
the influence of spin and symmetry effects which we have neglected so far, except
when using the Hubbard approximation. Following Pauli and Tolman [32, 41] now
we take into account that the electrons are Fermions which are not allowed to occupy
a quantum state with more than one particle. In principle there exist the possibility
to form bosons by pairing of two electrons but this effect we will considered later
on. In a first approach we study electrons without spin, or what is equivalent we
consider the case of very low density, where double occupation cannot occur due
to the low probability that two electrons meet at the same place. Taking into ac-
count symmetry effects for (non-interacting) Fermions without spin the Boltzmann
equilibrium distributions are to be replaced by Fermi distributions

p0
n =

1
exp[β (En−µ)]+1

. (34)

Here the “plus one” in the denominator expresses the Fermioncharacter. The chem-
ical potentialµ marks the border between the occupied and the non-occupied states.
Following a procedure described by Tolman and van Hove [41, 42, 43, 44] the mas-
ter equation equation may be generalized in such a way that Bosonic or Fermionic
symmetry effects are included. The idea is to change the transition probabilities in
dependence on the occupation of the target state. Let us explain this procedure for
Fermions with zero spin. In order to include the Fermi principle we introduce the
modified transition probabilities

W̃nn′ = (1− pn)Wnn′ . (35)

The prefactor reduces the probability of the transition as afunction of the occupation
of the target state. This way we get a nonlinear master equation

dpn

dt
= ∑

[

W̃nn′ pn′ −W̃n′npn
]

, (36)

incorporating the Fermion character. If the spin is different from zero, the prefactor
appears only for transitions to states with the same spin direction. The appearance
of products like(1− pn)pn′ leads to the fact that effective hopping is restricted to
transitions between states near to the Fermi surface. The meaning is the following:
Consider the transitionsn′ → n. These transitions occur with the weightpn′ if and
only if the staten is free as expressed by the weight factor(1− pn). In Fig. 4 it is
demonstrated that according to this weight factor. The states near to the Fermi sur-
face are the major contributors to transport. The new probabilities are still between
zero and one i.e. 0< pn < 1 but they are normalized in a different way namely

N

∑
n=1

pn = Ne (37)
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Fig. 4 The Fermi distributionp(E) (upper sharply decreasing red curve) and the weight for tran-
sitionsn′ to n (green curve with maximum) which is depicted by the functionp(E)(1− p(E). The
maximum corresponds to the Fermi surface on which transitions havethe highest weight.

whereNe < N is the total number of free electrons in the system. Accordingly,
pn expresses the probability to find one electron in the state 1≤ n ≤ N. Recall
that we assume here one state per atom. This one electronic state per atom may be
occupied or not. The prefactors on the r.h.s. of eq. (36) makesure the probabilities
pn cannot grow larger than unity. The transition probabilities remain the same as
for the Boltzmann case discussed above. The only general condition they have to
satisfy is

W(n′,n)
W(n,n′)

=
exp[−βE′

n]

exp[−βEn]
. (38)

In equilibrium the normalization defines the chemical potential by

∑
n

1
exp[β (En−µ)]+1

= Ne. (39)

Clealrly the statesEn = µ play a very special role not only in equilibrium but also
for transport.

By taking into account the spin we may easily modify the distribution in such a
way that two electrons may occupy the same site. This corresponds to the formation
of a (small) bipolaron. However it is not trivial to take the Coulomb repulsion into
account, which is significant for the formation of bipolarons.

The master equations are not closed, they still depend on theparticle coordinates.
The corresponding equations for the lattice particles are in the 1d case given by [29]

d2qn

dt2
= χ1[pn+1− pn−1]+{1−exp[−qn+1,n]}exp[−qn+1,n]

−{1−exp[−qn,n−1]}exp[−qn,n−1]−2αV0(exp[−αqn,n−1]
√

pn−1pn
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+exp[−αqn+1,n]
√

pnpn+1. (40)

which are phase-averaged modifications of eqs. (18).
In the 2d case the equations of motion are more complicated. Assuming the same

model about forces and friction as earlier done and using also complex coordinates
Zn = xn+ iyn, wherexn andyn are Cartesian coordinates of then-th particle we get
the Langevin equations

d2Zn

dt2
= ∑

k

[

FM
nk(Znk)+FP

nk(Znk)
]

znk−2α ′∑
n′

exp
[

−α ′|Rn−Rn′ |
]√

pnpn′

+

[

−γ
dZn

dt
+
√

2Dv (ξnx+ iξny)

]

, (41)

where as above the indexn identifies a particle among all N particles of the atomic
ensemble,γ is a friction coefficient,Dv defines the intensity of stochastic forces,
ξnx,y denotes statistically independent generators of the Gaussian noise. Note that
the new Langevin equations (41) are different from the previous ones (22), since
due to the phase averaging only the variablespN and not thecn appear. Further we
note that in the classical equations of motion (40) and (41) appear two terms which
couple the classical dynamics to the quantum master equations. One is due to the
dependence of the energy levels on the coordinates of the atoms and the other on the
dependence of the transition probabilities on the atomic distances. Furthermore let
us insist on that the description by Pauli TBA equations contains less information
than the standard TBA since all phases are lost and only the probabilitiespn appear
in the dynamics equations.

6 Spatial distributions, energy spectrum and energy
distributions

Numerical simulations of our systems of equations (kineticand dynamic equa-
tions ) provide snapshots of the spatial distribution of Fermi solectrons on a square
of 20× 20 triangular lattice atT = 0.01. We studied 3 electron numbersNe =
16,200,300 on a triangular lattice of 400 sites, whose fractional densities are, re-
spectively,νe = 0.04, 0.5, 0.75. Results are shown in Figs. 5 and 6. The corre-
sponding probability and energy distributions are shown inFigs. 7 and 8. Note
that the solectrons inside the clusters, stripes or percolated regions are degenerated.
Investigating the spatial distributions shown in Figs. 5 and 10, we see interesting
structures. We see clustering at the lowest density, striping at the moderate den-
sity and a kind of percolation at the highest density. The general trend is that the
solectrons tend to cluster rather than remaining isolated.This means that there is a
tendency to cluster, hence to pairing in space. This is a point which also needs a
further analysis. We have to find the radial distribution function and expect to see a
peak at small distances. This would confirm predictions madeby Alexandrov [37].
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Fig. 5 Snapshot of the spatial distribution of Fermi solectrons on aversussites 20×20 triangular
lattice at a low temperatureT = 0.01. We study 2 electron numbersNe = 16,200 on a triangular
lattice of 400 sites. This corresponds to the (fractional) doping densitiesνe = 0.04,0.5. We see
clustering at the lowest density and striping on the moderate density.

From the informations we have on the energies of the Fermi particles we calculated
the distributions by averaging.

Investigating the energy distributions shown in Figs. 7-10, we see also interesting
structures. The general trend is that the probabilities decrease with energies. The en-
ergies are given here relative to the minimal energy and are ordered in a way that on
the left are the lowest energies for a given snapshot. At low temperatures and higher
densities (region of degeneracy) a typical Fermi distribution appears which trans-
forms at higher temperatures into a Boltzmann distribution. This transition from
degeneration to Boltzmann behavior occurs at

neΛ3
e ≃ 1, Λe =

h√
2πmekBT

, ne =
Ne

Na2/2
.

Besides this general trend we see an interesting fine structure including steps
and gaps. This is a point which needs a further analysis. We cannot exclude the
possibility that the gap-like phenomena are connected withthe existence of pseudo
gaps, but this needs more accurate computer simulations.
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Fig. 6 Probability distribution of Fermi solectrons on aversussites 20×20 triangular lattice at a
very low temperatureT = 0.001 for two extreme cases. Left panel forN = 1 shows the expected
equal distribution of quantum probability. In the right panel for N = 395 we see a nearly equal
distribution for the case of a near to full occupation.

Fig. 7 Snapshot of the probability distribution of Fermi solectrons ona versussites 20×20 trian-
gular lattice at a very low temperatureT = 0.001 for two intermediate densities. Left panelN = 16
and right panelN = 200.

Our approximations provide a rather fast and therefore useful tool for the com-
puter simulations of the electron-lattice dynamics in heated systems. Figures 3 and 5
illustrate results based on this approach. Due to the way we treat the electron dynam-
ics, there are differences between the methodology using the coupled Schr̈odinger
equation and Langevin equation system and that using Pauli’s approach albeit they
are minor differences. An advantage of the Pauli approach is, that it can be general-
ized to include the influence of spin, and Bose effects which we have neglected so
far.
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Fig. 8 Probability distribution forνe = 300/400= 0.75 at a low temperatureT = 0.001. First
we seeversussites and then the distributionversusenergies (energy distribution). In the latter we
observe (the lowest energies are left) the formation of a Fermi edge and may identify the Fermi
energy.

Fig. 9 Typical probability distributionversusenergies (energy distribution) of Fermi solectrons at
a low temperatureT = 0.001 for the moderate doping densityνe = 200/400= 0.5. We observe
again the formation of a Fermi edge and may identify the Fermi energy.

Fig. 10 Another example for the probability distributionversusenergies (energy distribution) of
Fermi solectrons at an intermediate temperatureT = 0.5 for the moderate doping densityνe =
200/400= 0.5. We observe that the Fermi distribution tends to a Boltzmann distribution. In the
left panel we see a snapshot of the corresponding spatial electrondistribution.
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The qualitative difference between the Boltzmann distributions and the Fermi
distributions is that Fermi distributions distinguish sharply between electrons below
and above the Fermi levelµ . The chemical potential (Fermi level) may be estimated
from our energy distributions.

The states below the Fermi level are occupied and the states above are empty or
weakly occupied. This way the Fermi level acts as the sea level in a country with
many mountains. Lowering the sea level decreases the area occupied by the sea and
increasing the sea level increases the area of the sea and reduces the part of the
mountains. Note that transfer and transport happens only atthe Fermi level (Fig.
2). Finally the “land” consists of separated islands. When this happens we have a
percolation transition as seen in Fig. 11. The possible Fermi levels are given here by
the colors. Clearly, for the given potential landscape the Fermi levelµ ≃ −1 hints
at percolation. We see that the regionsE < µ ≃ −1 are connected, this is what we
mean by percolation. With increasing density the Fermi level raises, and increas-
ing Fermi levels may lead to percolation of the electronic density corresponding to
a sudden increase of diffusion, conductivity and other macroscopic transport prop-
erties, from side to side of the system like, indeed, in the Italian coffee percolator
when making expresso (Fig. 11). In this respect the 2d- as well as the 3d-systems
are fundamentally different from the 1d-systems.

By analyzing the Pauli equation we see that due to the existence of a factor(1−
pn)pn′ only the states near to the Fermi level the regionsEn ≃ µ may contribute to
transport.

Fig. 11 Percolation is illustrated by a snapshot for a rather high levelof doping density of 75
percent and a rather low temperatureT = 0.01.

7 Discussion and outlook

We have investigated the role of Fermi degeneration for a system with nonlinear
anharmonic excitations. This may be significant for a theoryof conducting lattices.
Solitons are hard excitations of the lattice which have a long lasting time and influ-
ence the local density and this way the Fermi level. Solitonsare local deformations
- peaks of the density - propagating with asupersonicsoliton velocityvsol which
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Fig. 12 The case of high temperatures: Snapshots of the electron density in a 2d Fermi system
with zero spin andN = 400 sites at the temperatureT = 2.5 for two different doping situations
Ne = 250;νe = 0.625 andNe = 300;νe = 0.75.

strongly increases with the increase in the stiffness of thelattice. As the soliton
velocity is much smaller than the thermal velocity of the electrons, the interaction
between soliton-like waves and electrons is weak, since an effective interplay re-
quires that the concentration of electron in the region of the soliton velocity is suffi-
ciently high. In fact electrons captured certain time by solitonic excitations are only
weakly affected by scattering processes. We have used this property for estimating
the contribution of solitonic excitations to the collisionfrequency in [31].

An evaluation of the influence of solitons predicts for 1d-lattices a conductivity
increase in the temperature region where most thermal solitons are excited. For 2d-
lattices we find an eventual percolation transition to connected conducting regions.
We have shown that the Fermi level of the electrons determines the percolation
effects.

A few remarks are worth recalling:
(i) As our simulations show, there is a general tendency for formation of pairs. In
recent work [25, 26, 34] we have shown that the soliton mediated pair formation
is energetically favorable. However as well known this proves only, that pairs will
form atT = 0; at higherT one has to estimate the thermodynamic probability. This
is done for example by our simulations which clearly show that at moderateT, pairs
can be formed. According to Alexandrov [37] the existence oflocal pairs is rele-
vant for highTc superconductors. Therefore the present study may be usefulto start
solving this question. However the proper treatment of pairs at finite temperatures
requires first an extension of the theory to Bose systems.
(ii) if solectrons (polarons) are dominant, the Fermi surface of the solectrons deter-
mines the electrical conductivity. That means that in orderto get high conductivities,
we need high enough densities of solectrons near to the Fermisurface.
(iii) In certain regions (Fig. 3) bi-solectrons may be more frequent than solectrons.
Note that what matters for Bose condensation is not the Fermilevels but the lowest
energy levels. Since bisolectrons are bosons, Bose condensation is then at least in
principle possible. However a problem in this respect is therelatively large mass of
solectrons and bisolectrons, which make it difficult to reach the conditions for Bose
condensation.
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