Towards atheory of degenerated solectronsin
heavily doped lattices. properties and
per spectives

Alexander P. Chetverikov, Werner Ebeling, Manuel G. Vetard

Abstract The theory of solectrons is restricted so far to one, or twarghs em-
bedded into a chain or a layer of atoms. We discuss here thegrpblems arising
by adding excess charges into a chain or a layer when geziegathe existing
theory of individual solectrons to many-body thermal systeSeveral methods to
include degeneration effects and interactions of the swlies are discussed in order
to extend the theory to finite densities and to discuss derestwell as temperature
effects. In the present model the charges are embeddediet@otwo-dimensional
systems of atoms which are treated by classical embeddegklzemnequations. By
nonlinear interactions between atoms and charges moviagj-garticles as solec-
trons or solectron pairs are formed which are treated irhststic tight-binding ap-
proximation based on Pauli-type kinetic equations. Wewisaesults for degen-
erated solectron systems with zero spin including spat#tibutions, and energy
distributions. We notice interesting structures of thergyelistribution including
the Fermi edge and the possible existence of gaps in thergpedtinally we dis-
cuss the perspectives of many-body systems and give are¢stofithe phase plane
temperature against density of doping charges - discugsisgibilities to create
degenerate solectron systems in heavily doped lattices.
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1 Introduction

In the polaron theory developed by Landau, Pekabhkch, Holstein and others,
and successfully used in the study of biomolecules by Dawydolotaryuk and
Scott and others [1, 2, 3, 4, 5, 6, 7] the self-trapping of tketeons interacting with
linear lattice oscillations (phonons) dominates. Davyeploited the possibility of
soliton excitations suitably using the above mentionedinearity. He then identi-
fied quasiparticles (“electrosolitons”) which move in geatevith subsonic veloc-
ity. Davydov in collaboration with Zolotaryuk also treatd case when the lattice
bears a cubic or quartic nonlinearity [3, 5, 7]. This leadsstgpersonic electrosoli-
tons”, or otherwise “lattice polarons”; excitations grogifrom the nonlinearity of
the lattice itself.

Starting first from semiclassical considerations in sdveraks [8, 9, 10, 11,
12, 13, 14, 15, 16, 17, 18] a closely related soliton-medidtem of supersonic
charge transfer and electric conduction has been propgsadrbducing the con-
cept of “solectron” as a natural extension of both the paiaand the electrosoli-
ton quasipatrticles. In the solectron theory the solitomiearis obtained before an
excess electron is added to the system. Classical modelplasiha-type Hamil-
tonians [8, 9, 10, 11, 12, 13] and quantum-mechanical mduale been studied
[14, 18, 19, 20, 21, 22]. The quantum theory was developdumibe tight-binding
approximation (TBA). Besides the general methods which exelbped in some
earlier work [11, 14, 15, 16, 18] the quantum theory has beptfied to two differ-
ent kinds of systems:

(i) Conductiing polymers, studies of hopping processeslymers based on a TBA
Hamiltonian [14, 18, 20, 21, 22, 23, 24, 25, 26].

(i) One- and two-dimensional plasmas and solid state pddsiyers, studies of the
diffusivity and the conductivity by using a plasma Hamiltmm and Pauli-type ki-
netic equations [12, 27].

The first line of research was developed in collaboratior warissa Brizhik,
Leonor Cruzeiro, Dirk Hennig, John Kozak, Oliva Cantu Ros] &erd Rpke con-
centrating on analytical and numerical studies of soledtimund states and recently
also on bisolectron bound states [21, 22, 25, 26]. The plagmpeoach was devel-
oped with Gerd Rpke [27, 28]. Here we will study hopping transfer of charges
and hopping conductivity in plasma layers. We are using iquéar method which
has been developed recently in the context of applicatioqdasmas and charged
layers in solids [19, 27, 29, 30, 31]. This approach is based generalization of
the kinetic equations developed already in 1928 by PauligB@ the more recently
developed Monte Carlo procedures of doing simulations afyrgarticle systems
[33]. As we have shown in [27] by using a particular genegdion of the kinetic
equations of Pauli-type, the excitations and transporégses based on the coupling
of the nonlinear lattice excitations to the hopping tramspbthe charges may be
well described by this method. This procedure is partidulaseful for studying the
influence of nonlinear excitations of the lattice on electransfer, conduction and
other transport properties.

Let us succintly summarize the state of art and discuss s tasks:
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The solectron concept offers powerful methods to undedsaaua to control the
motion of charges in nonlinear atomic lattices. It is in facignificant generaliza-
tion of the polaron concept, extending the latter to normirattices. This is indeed
of some importance, since real atomic interactions arerrstrietly linear, there are
always some nonlinear contributions to the atomic intévast

In our view, so far the most important results with respeqbdssible practical
applications are:
1. Development of tools to manipulate and control the pathhafrges, including
the so-called vacuum-cleaner effect [20, 23, 31]. This i&at a new way of con-
trolling charges providing a method to overcome the spreadf probability due
Schiddinger evolution and bring electrons in a controlled wayrfrpoint A to point
B in a lattice.
2. Studies of pair formation. It was shown that under appadg@iconditions solec-
tron pairs may be formed [21, 22, 23, 25, 26, 34].
3. Extension of the one-dimensional solectron concept todimensions, i.e. the
step from chains to layers [28, 30, 31]. One of the resultstvasletection of high
energetic quasi one-dimensional solectrons running ihdrigimensional systems
along the crystallographic axes [31].

Problems not yet treated include:
- studying the influence of density of doping on physical gries,
- the study of nonideality effects in diffusion and conduvityj,
- the quantitative treatment of percolation effects,
- the study of the influence of Fermion and Boson effects aaddle of the Fermi
edge (Fermi net in 2d),
- the investigation of Bose-Einstein condensation in sobeébisolectron systems
and their role in eventual superconducting systems.

As far as we can see, all known systems with high conductarmeging from
usual metals to superconducting materials - operate on dlé lof degenerate
charges. For this reason we will discuss here the problenishvarise in gener-
alizing the existing theory of individual solectrons andddectrons to many-body
thermal systems.

2 Thetemperature-density phase plane and solectronic
degener ation effects

Our aim is to extend the existing theory at first in a quali&atvay to finite densities
and to discuss density- as well as temperature effects.d stant with some esti-
mates for the relative number of thermal solitons perSi#\N as a function of tem-
perature. There are several theoretical theoretical atgrfor Toda lattices [35, 36]
as well as estimates from computer simulations for Morgeés [19]. According
to the existing estimates the soliton fraction increases W4/3 and has maximum
at certain temperatur® which may be in the range of a few hundred Kelvin for
biomolecules [19]. For estimates we fitted the existing dath the formula
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whereN is the total number of sites,= kgT /2D and whereA ~ 0.5 andB ~ 0.1
are two fitting constants. For fitting we used the results fedmulations showing
clearly the existence of optimal temperatures for solitenegation [19, 23]. Let us
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Fig. 1 Estimates of the soliton fraction per site (upper pink curve wigximum) and of the
solectron fraction for 3 given values of the solectron bindamgrgy (lower three curvese ~
0.001,0.005,0.01 eV). Left panel: a doping of 20 percent, right panel: agattigh doping of 50
percent. The magenta lines going up as temperature increasegtehd@order of degeneration
effects which are to be expected only above them.

now study the role of electron density. The electron dersity be given in several
units, the simplest is the so-called relative occupatidnamtion ve which is defined
as the number of sites occupied by an electron relative ttotaénumber of sites

N
Ve: Ne.

Note that in the simplest model, the electrons are alwayscéged to one of the
sites. The relative occupation is denoted as doping.

In real systems the fraction or doping may vary within widaits, however
the fraction/doping will in general not exceed the valug, 0.e. not more than 20
percent of sites are occupied (doping fraction). The nundeesity in charges per
unit volume

Ne = V7
whereV is the volume may depend on the dimension and the latticeeptiep. In

1d the density is given by
Ne

ﬁv

Ne =
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whereN is again the total number of lattice sites amds the equilibrium lattice
spacing. In a 2d triangular quadratic or triangular lattlee density is given by

N N
CN2T T N2(2/4/3)

Let us denote the number of solectronsNay We assume that the number of solec-
trons and the number of free solitoNs- Nge are related by a Boltzmann factor.

Nse Ese
NG~ exp[kﬂ} : 2)

Ne

Here &s¢ is the energy gain in forming a solectron. This energy depesrd the
specific physical conditions. Following Davydov [3], theognd state energy of a
strongly supersonic solectron can be estimated at

o Vse Me
Ese ™ —
Vsound Mse

eV], 3)

wheremge andvge are the mass and velocity of the solectron. For appropriate p
rameter values, this energy could possibly readhe/, which is a very high value.
Presumably the above given estimate is an upper bound. Inamputer simula-
tions with Morse lattices having a potential well of valDeve observe solectrons
in a temperature range oflD- 1 D. Assuming wells of order.@ — 0.5 eV we arrive

at temperature intervals of@ — 0.1 eV. In the following we will assume that the
ground state energy is aroundQ@ eV. By using this and two smaller values for the
binding energy we can estimate the fraction of solectroresfasction of tempera-
ture and density. The result is shown graphically in Fig. at that by using higher
values for the binding energy, the densities of solectroasrereasing.

We will now estimate the effects of degeneration assumiagttie charges are
electrons or holes and are, as well as the correspondingtsnis, Fermions. Sys-
tems of Fermions show degeneration effects, if the therm@rdglie wave length
of the charges is about the distance between them. That nieargegeneration
effects of the charges will begin to play a role at densitagsg/ing the condition

h
2MMsdkg T

wheremgeis the effective mass of solectron amd as before is the solectron density.
The condition of degeneracy provides us a line in the deftsityperature plane

nse/\s?’e ~1,; Nse= 4)

Nse = CONStT¥/2, (5)

which is displayed in Fig. 1. In the left panel we show the aafsa quite an usual
doping of 20 percent, the right panel we have the case of ahighydoping of 50
percent. Only above the magenta lines the effects of deggoemay be expected.
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Let us succintly explain what we mean with a Fermi surfacecihs in 2d a
Fermi net. The Fermi net (Fermi surface in 3d) is defined bycthelition that the
energy equals the Fermi energy. This corresponds to thsitianto degeneration
which happens atsAS, ~ 1.

If the degeneration parameter crosses unity, we expechdeafion effects (Fig.
1). The Fermi net is a set of lines on the plane where, the tfermiresponds to the
degeneration density at the corresponding given temperdtbe electron density in
the field of atoms is in our case nonuniform and may have a qaitglex structure
and net structure schematically shown in Fig. 2. As well knésom plasma physics

Fig. 2 The Fermi surface (Fermi net in 2d) is defined by the conditiohtti@energy equals the
Fermi energy. In other words, the density corresponds to thenéegion density at the given
temperature.

and solid state physics most relevant processes, includingitions, diffusion and
conductivity occur at the Fermi surface. Therefore it is iapry task, to explore
the structure of the Fermi surface. In particular we havaudysquestions like: Is
the Fermi surface connected (percolated) or consistingopfaonnected pieces of
density regions corresponding to solectrons at the Ferarggn

Our estimates show that it is not easy the cross the bordesgerration. We
need strong doping or low temperatures. As far as we cantdeeyuite difficult to
have conditions for creating degenerate solectrons irReat 3d systems. Probably
we need high doping for temperatures beyond 100 K. Howeverstrould note
that these estimates are conservative, the solectron nesstaken as equal to the
electron mass. In reality solectrons are heavier thanrelesior holes and tends to
behave more classically than electrons. This question wasogriately raised by
Alexandrov [37].

3 The Hamiltonian of our model and the equations of motion

We consided-dimensional lattices of atomsl & 1,2, 3) and (added, excess) free
electrons which may carry electrical currents. In appiaret we restrict in most
cases to 1d -, or 2d- lattices in order to assess the influenuentinear excitations
on the electrical properties. The system consistdl efassical atoms and one ore
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several electrons. For tlieavyatoms we assume that they obey classical Langevin
dynamics. We include a phenomenological dampjnin the numerical simulations
we consider the lattice units with mass The atomic particles are described by
coordinates j(t) and velocitiesyj(t), j = 1,...,N. We assume periodic boundary
conditions. The Hamiltonian consists of three parts, thesital atom/ion Hamilton
functionH;, the electron ion interaction functid#e and the resHe, accounting for
the electrons.

H = Ha + Hie + He. (6)

The atomic part is
H . m , 1 Vo(r 7
a_izvj+§§ Ij(rlj)~ (7)

The atoms repel each other by strong repulsive forces. Tigcapt ‘i” denotes the
number of the atom. Let us assume that the characterisgoo$ithe atoms in the
lattice isrg. In general we will approximate the potential of the forcesaeen two
atoms by the Morse-potential

VM(r) = D[exp(2B(r — 0)) — 2exd—B(r — 0))]. (8)
We note that the characteristic frequency of oscillatiasiad the minima is
ma =VM(a)". 9)

We introduce now an electron e.g. by doping, and define in TigAamplitude for
being at sitej in staten by cj, and the probability to find the electron at the lattice
site or atom located & in staten denoted agj, by

Pn = CnCp. (10)

We will show that any displacement of the atoms changes teegetic situation
of the electrons, the eigenvalues as well as the transitiolpgbilities. The electron
dynamics is influenced by the lattice dynamics and as a réssuétlectron will try to
follow up these changes. This is the basic effect leadingéasblectron formation.
So the essential point is the running local compressionsiwiénerate a complex
landscape. As shown already by Davydov [3] there exist rathep potential wells
moving (right to left or left to right) along the lattice thstrongly influence the local
dynamics of the electrons and are able to capture the lightreihs. In the TBA the
electron Hamiltonian is of hopping type [20, 21, 22]

He = Z Ean};Cjn + Z tjj/nCT,ann. (12)
;n i’

Here j denotes the number of the atom amthe quantum numbers of the atomic

states. In our adiabatic approach the atomic and the idtpositions are assumed

to be fixed atR;. The representation is based on a linear combination ofiatom
orbitals (LCAO):|jn > which are approximately given by the wave functions of a
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free atom at position;. The matrix elements are related to the operators of kinetic
and potential energy. The energy levelg fluctuate around the levels of the free
atoms. The transition matrix is also a fluctuating quantipehding on the time
varying atomic distances; —rj. In a simplified version we neglect the electron-
electron interaction. Hence (11) is in fact

He = ZEanECjn-l-Zt“/n(Rj/ —Rj)C]tann, (12)
In 1)

with the matrix elements
Ejn =< jn|Ho+ Vejljn >; tjjn =< j'n|Ho+Vejjn > . (13)

We may simplify this expression assuming that the inadlariquely defines the state
and set [20, 21, 22]

He = ZEncn’”cn+r%tnﬂ(rn/ —In)CCn. (14)

In order to estimate the influence of the lattice on the enkenggls we consider now
the electron-atom interaction.

For 1d-lattices one may consider only nearest neighborlomupnd simplify
[20, 21, 22]. In the general case the energy landscape sha@emplex structure
and the dependence of the energy levels on the position testéken into account
[18, 20]. In the 1d-case the linear Holstein model is

En~ Er? + X0On + X1 [On+1 — On-1] - (15)

Here, for convenience in notatiogy, denotes a lattice site spatial vibration (relative
displacement) coordinate defined Ry = no + qg,/B. There is the problem that
for some values of the deviations (and typical parameteregmbr = 1— 1.75) the
exponents may take on very large values. The tEfrdenotes on-site energy levels
of the unperturbed lattice an®E, is the perturbation due to the lattice vibrations
(harmonic as well as anharmonic modes may contribute).drstmplest case the
shift is linear in the deformations [38, 39]

8En = X(an/B). (16)

where the “electron-phonon coupling constant,’jndicates that the on-site energy
level By, i.e. the local site energy, depends on the displacemehtafibving unit;

On is dimensionless (unit: /B). As shown e.g. in [38, 39], this coupling between
lattice deformations and electronic states, leads forel@mpugh values of the pa-
rametery to the formation opolarons In view of the above given parameter values,
the value of the coupling constant is in the range 0.1 — 1eV/,&. Adapting these
assumptions to our model without onsite contributions weehta recall that our
model is translationally invariant and we are considerielgtive lattice displace-
ments.



Title Suppressed Due to Excessive Length 9

Recall also that the probability to find the electron at theda site or atom lo-
cated aky, i.e. the occupation numbey, is given by (10). The discrete Scidinger
equation for the components of the wave functigiis then

ich = [E+ X1(Gn+1— Gn-1)]Cn
—Vo Z {exp—a(ani1—0an)lCns1

+ exg—a(On—On-1)]Cn-1}, (17)

where an over-dot denotes time derivative; the energiediarensionless (unit: 2D).
The corresponding equations for the lattice particles are n

Gn = X1[Pn+1— Pn-1]
+ {1—exp—(Gn+1—0n)] } €XP[—(CUn+1— Gn) ]
—{1—exp—(th — an-1)]} €XP— (0 — On-1) ]
— aVo {exp—a(n — gn-1)](C, 1Cn + CnyaCy)
+ expl—a (01— On)](Ch Ch1+CnCh_1) } - (18)

The problem reduces, in principle, to solving coupled tbgeboth Egs. (17) and
(18).

Let us study now the two-dimensional case. A standard assomig, that the
interaction is described by a pseudo-potential of poléinnaype. We assume that
the total potential acting on an electron in the field of at@ngositiong 1, ...ry is

Ue
Vell) == 2 iy fr—ry 2 /rep

(19)

Hereh is a characteristic cut-off distance add the maximal polarization energy
of the electron. As an estimate we may assWwee~ 0.1 eV. In earlier work we
used also a different pseudopotential approach [27]. lero@ be consistent with
the pseudopotential formula used above to quadratic ternsaw make the choice
h~0.70.

The eigenvalue problem is in general very complicated aadtjmally unsolv-
able, so we will use the simple assumption that the eigeagade shifted like the
polarization potential

Ue

E,~E%— .
T At (r—ry)2/h2?

(20)

M z

The discrete Scldinger equation for the components of the wave functipn
assumes now the form [28, 30]

N Ue
iCn - Z } n
= [1+ (R — RJ)2/h2]
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— Vog{exp[—a|Rk—Rn|]ck. (21)

As before the forces between particles are supposed to beed¥ibrse kind and
the friction and random forces accounting for a Langevin ehdwhth in the case
of a heated lattice. For convenience in the 2d lattice dynamie use complex
coordinatesZ, = X, + iyn, wherex, andy, are Cartesian coordinates of theh
particle. Then the Langevin model provides the equationaation for the lattice
units

d?z
Tzn = Z [Fol (Znk) + Fi(Znk) ] Zok— oV Z exp[—a/|Zq/] (¢ o+ ccyy)

+ {—Virt]-i- 2Dv(Enx+iEny) , (22)

where indexh identifies a particle among al particles of the atomic ensemble,

is a friction coefficientD, defines the intensity of stochastic forcégs,y denotes
statistically independent generators of the Gaussiarengig = Z, — Zx. Further
Znk = (Zn— Zk)/|Zn — Zk] is a unit vector defining the direction of the interaction
force Fn'\ﬁ, corresponding to the Morse potential, dﬁﬁg corresponding to the po-
larization interaction, between timeth and thek-th particles. The Morse interaction
force Ry is here given by

Fak = 2B[exp(—2B|Zu) — exp(—B|Zux], (23)
and the polarization interaction force by

PnlZok| = Pl Zinl

Fh=4u .
nk ek [1+ \an|2/h2}3

(24)
Note that to have dimensionless variables we may consi@esghtial coordi-
nates normalized to the lengthused in the Morse potential. Time may be normal-

ized to the inverse frequency of linear oscillations nearrttinimum of the Morse
potential well,w,f. The energy is usually scaled witib2whereD is the depth

of the Morse potential well, a different possibility is toeug as the unit of en-
ergy. Further the stiffness parameBedefines the strength of the repulsion between
particles. In view of the above only those lattice units witlordinatesZy, satisfy-

ing the conditionZ, — Z| < 1.5, are taken into account in the sum in Eq. (41). In
computer simulations the interaction of particles is cdesgd to take place inside a
rectangular celly x Ly with periodic boundary conditions.

In practice some open problems remain, in particular thetbeé compatibility
between the quantum-mechanical and the classical paré afythamics. Due to the
Langevin sources of noise and friction in the classical parthe dynamics, the
dynamics is irreversible. However so far there is no proat the final distribu-
tion corresponds to the correct Gibbs-von Neumann meaduaréi®e following we
assume a kinetic description which is irreversible fromv@rs/ beginning and con-
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verges to the correct distributions. The idea we follow is tuWolfgang Pauli who
focused onp, and notc, hence disregarding phases. Thus the Pauli averaging ex-
cludes a complete description of coherent states hencgyrolit a proper treatment

of superconducting states.

4 Pauli kineticsfor nondegener ate solectrons on nonlinear
heated nonlinear lattices

So far our analysis has been based on the &lihger equation for the free elec-
trons in the TBA which is coupled to the Langevin equationtfor classical lat-
tice particles. This tacitly assumed the existence of a batt in which the lattice
particles are embedded. In principle this picture providesomplete description
of the coupled lattice-electron dynamics. The irreveligjbis guaranteed by the
friction-noise terms in the Langevin-equations (23). Adieashown [14, 18, 20]
we may describe this way also irreversible solitonic exictes at finite temperature.
However, a serious problem here is the very long relaxatioeg of the electrons
due to the large differences between the time scales of dutrehs and the lattice
particles. This leads to some difficulties in extensive comapsimulations. In the
standard theory of electronic transport this problem iseblby Boltzmann-type
descriptions or by Fokker-Planck-type equations, whidhootuce an irreversible
behavior [32, 41, 42, 43, 44]. The main problem is here to giw®rrect descrip-
tion of the coupling to the heat bath [42, 43, 44]. In the TBAe&athe situation is
somehow simpler due to the discrete character of the eld@ctstates, which allows
a description by discrete Markov chain equations [29, 46 Markov approach
to electron dynamics goes back to the seminal work of Paalman, van Hove
and others [32, 41, 42, 43, 44]. Pauli started from the &tihger equation and
derived by perturbation theory a Markov chain descriptiad an expression for
the transition probabilities. He introduced an irrevesimaster equation express-
ing the balance between the transitions in an ensemblePagliation is valid for
amicrocanonicakensemble and neglects symmetry effects. Further extensok
into account the symmetry of the wave functions and offerddsription compat-
ible with the statistics of Bose-Einstein and Fermi-Diraater generalizations are
connected with the development of Metropolis algorithnmrscEmonicalensembles
[33]. Applications to hopping conduction in solids wereegivsince the 70s of last
century by several authors [46]. First applications of thestar equation formal-
ism to electron transfer in macromolecules appear in R&f. [Bhe system we are
studying here is rather difficult and seems to be too comtglitto be treated in full
detail. We have:

(i) guantum electrons located in discrete states, whiclc@upled to a heat bath and
to the classical lattice,

(ii) classical lattice particles coupled to the heat batth @rthe quantum electrons.
(iii) the heat bath with an unspecified nature.
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Simplifying this situation we postulate here that the tharelectrons allow a
Markov description. Thus we proceed from tlegersibleSchibdinger equation for
the tight-binding model to ainreversiblePauli master equation description [32, 41,
42, 43, 44]. Following Pauli's method [19, 29] we use here ateraequation for the
occupation probabilities of electromg in a system with the energy level:

d
TT = z (War Prv —WiynPn] - (25)

The transition probabilities were derived by Pauli usingymbation theory for
microcanonical ensembles (transitions in a narrow enengyl)s Applications of
this formalism to our Sclidinger equation confronts us with the problem of appli-
cability of the perturbation approach to our basic equatidote that the diagonal
part of the interaction operator may not be small in compari® the nondiago-
nal elements. We neglect here this problem and assume thadweefound already
an appropriate unitary transformation which makes the raguhal elements suf-
ficiently small to satisfy the conditions of Pauli’s pertation approach. With this
assumption the transition probabilities for the 1d-tighiteding model read in a mi-
crocanonical ensemble according to Pauli [19, 29, 32] is

Vi
Whicro(n, 1) = FO exp— 20t |Gy — On|]27VoS (En — ), (26)

wheren’ = n+1 andd(x) is Dirac’s delta function. The transitions from statéo
a staten’ at one of the nearest-neighbor sites should correspone teatime energy
level (or to a level within a narrow shell). In the case of asifiative embedding, the
situation is more complicated due the interaction of thetedes with the dissipative
heat bath. For a canonical ensemble we assume the trarmitibabilities

W(n’ n/) = Vﬁozexq_zalqn_qn'HE(n’ n/vﬁ)' (27)

Instead of a delta-like shell we have now a Lorentz-like peadround it. In in the
limit of narrow profiles these expressions converge to theéi Reemula with a delta-
factor. Temperature effects are to be included. When thdretezare embedded
into a heat bath together with the heated lattice partithestemperature-dependent
thermal factor€ (n,n’, B) are not symmetric with respect to the arguments but they
are subject to the condition of detailed balance

W(n',n)

Winm) ~ ©PB(En— EL). (28)

In other words, the relation of the thermal factors shouldtespond to the relation
of Boltzmann factors. The property (28) suggests the symymet

B

E(n,n) = exp[—E(En— E})]F(n,n), (29)
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F(n.n') =F((En—EY), (30)

where F(n,n’) is an even function. There are several vagiémt this even func-
tion F(x) which we will discuss. The simplest is defined by the phenmtogical
“ansatz” of the Monte-Carlo procedure, where downhill siinons are weighted
with E = 1 and uphill transitions with a factor less than unity [33pi§ corresponds
to theF-function.

F(En— Ex) = exii— 5 B0~ B3], 31)

Proper statistical derivations of the thermal factors mayased on certain micro-
scopic models of the heat bath. Assuming that the heat batleasrier of phonons
which drive transitions by a one-phonon mechanisitt@er and Bryksin [46] stud-
ied hopping systems starting from the von Neumann equaticthé density matrix.

The authors give the following general expression

® i
F(En—En) :/ exXplLT/En — Ex[JK([T))dT, (32)
whereK(|1|) is a rapidly decaying memory kernel. The decay of these lztivaes
is connected with the damping of lattice-particle motiamthe simplest case we
may assume here an exponential decay with the same dampistpnbas appears
in the above introduced Langevin dynamics. This leads td.gnentz profile

A Y2+ (|[En—Eyl)/h)?

In the limit of small damping we come back to the delta-fumetin the Pauli ex-
pression for the transition probabilities.

The master equation is a useful tool for computer simulatiofnelectron hop-
ping processes. Since the detailed balance is obeyed uiaiagteed that in thermal
equilibrium the canonical distribution is solution of thester equation. In order to
simplify our computer simulations we used so far only thepdest “ansatz”, the
Monte Carlo procedure. Our basic system of equations auhsEveral approxima-
tions, however it provides a rather fast and therefore lige@l for the computer
simulations of the electron-lattice dynamics in thermateyns. Fig. 3 illustrates
results of computer simulations based on this approach.tBdiee way we treat
electron relaxation effects there are differences betwleemethodology using the
coupled Schidinger equation and Langevin equation system (23) andusiag
Pauli’s approach albeit they are minor differences at lastmall and for interme-
diate values of adiabaticity ~ 1. For largert , the electron relaxation in the heat
bath is very fast and the distribution may be approximatea lycal Boltzmann-
or Fermi distribution as shown in ref. [23]. For small anceimediate values of the
T-parameter, say for ~ 10— 20, the approach based on the Pauli equation (25) is
most useful, since it provides informations on deviatiaosfthe adiabatic approx-
imation. Our approximation based on the Pauli method eq. ¢@&s beyond the
adiabatic approximation since the lattice dynamics andethetron dynamics are

F(En—Ev) (33)
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treated independently including their coupling. Recadittim a strict adiabatic ap-
proximation one assumes that the electron adapts “insteotesly” to any change
in the lattice. In other words one assumes that the electalwsv in a very fast

way to the new lattice configuration and may be describedatiare by the canon-
ical distribution [47]. In the new approach based on Paulisthod we take into
account that the electrons need time to follow the latticéions what leads to cer-
tain delay in their response and to some deviations from tdwgosary solution.

Qualitatively however the picture remains similar to theules obtained in adia-
batic approaches. Figure 3 illustrates how the spreadirijeo€lectron density in

pn,
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0.01/ |
o
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Fig. 3 Time evolution of one-dimensional probability distributiorcaading to Pauli’s equation.
In the upper panel we see the evolution of an initial reactimglistribution, into a uniform dis-
tribution without any coupling to the latticé = 0, thus illustrating an H-theorem. In the center
panel and in the lower panel two temperatures different fremo zare considered: upper case:
T = 0.01: an initially rectangular distribution tends irrevergiltbwards homogeneous spreading
along the lattice, the wave is weakly structured due to thé&atians along the lattice; and lower
caseT = 0.5: the initial rectangular distribution is spreading but & same time becomes local-
ized around a few peaks thus illustrating the correspondicg formation of solectrons.

the 1d case is diffusion-like and strongly influenced by tkatations of solitons in
the lattice.
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5 Kinetic equationsfor Fermi solectronswith zero spin

An advantage of the Pauli approach is, that it can be easiigrgdized to include
the influence of spin and symmetry effects which we have éggieso far, except
when using the Hubbard approximation. Following Pauli anbiin [32, 41] now
we take into account that the electrons are Fermions whehatrallowed to occupy
a quantum state with more than one particle. In principlegiexist the possibility
to form bosons by pairing of two electrons but this effect vl @onsidered later
on. In a first approach we study electrons without spin, ortvidh@quivalent we
consider the case of very low density, where double occopatannot occur due
to the low probability that two electrons meet at the sameeldaking into ac-
count symmetry effects for (non-interacting) Fermionshwiit spin the Boltzmann
equilibrium distributions are to be replaced by Fermi disttions

ph = : :
" expB(En—p)]+1

Here the “plus one” in the denominator expresses the Ferafiaracter. The chem-
ical potentialu marks the border between the occupied and the non-occupies s
Following a procedure described by Tolman and van Hove [2]1438, 44] the mas-
ter equation equation may be generalized in such a way thedrBo or Fermionic
symmetry effects are included. The idea is to change thaitian probabilities in
dependence on the occupation of the target state. Let uaiexpls procedure for
Fermions with zero spin. In order to include the Fermi piheiwe introduce the
modified transition probabilities

(34)

Wohry = (17 pn)WnrY- (35)

The prefactor reduces the probability of the transitionfamation of the occupation
of the target state. This way we get a nonlinear master emjuati

dpn

dt = z ann’ Pr _Wn’n pn] ) (36)

incorporating the Fermion character. If the spin is difféeom zero, the prefactor
appears only for transitions to states with the same spactian. The appearance
of products like(1— pn)py leads to the fact that effective hopping is restricted to
transitions between states near to the Fermi surface. Theingeis the following:
Consider the transitions — n. These transitions occur with the weighy: if and
only if the staten is free as expressed by the weight fadtbr p,). In Fig. 4 it is
demonstrated that according to this weight factor. Thesstaéar to the Fermi sur-
face are the major contributors to transport. The new pridibab are still between
zero and one i.e. & pp < 1 but they are normalized in a different way namely

N
> Pn=Ne (37)
n=1
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1
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-4 -2 0 2 4 6 8 E

Fig. 4 The Fermi distributiorp(E) (upper sharply decreasing red curve) and the weight for tran-
sitionsn’ to n (green curve with maximum) which is depicted by the functg)(1— p(E). The
maximum corresponds to the Fermi surface on which transitionsthavgighest weight.

whereNe: < N is the total number of free electrons in the system. Accalgin
pn expresses the probability to find one electron in the staterl< N. Recall
that we assume here one state per atom. This one electrateqp&r atom may be
occupied or not. The prefactors on the r.h.s. of eq. (36) nsake the probabilities
pn cannot grow larger than unity. The transition probabgitremain the same as
for the Boltzmann case discussed above. The only generditmmnthey have to
satisfy is

W(n',n) _ exp—BEj

W(n,n")  exp—BEn|

In equilibrium the normalization defines the chemical ptaioy

(38)

1
Y OB E W1

Ne. (39)

Clealrly the state&, = u play a very special role not only in equilibrium but also
for transport.

By taking into account the spin we may easily modify the dsiion in such a
way that two electrons may occupy the same site. This casraispto the formation
of a (small) bipolaron. However it is not trivial to take th@@omb repulsion into
account, which is significant for the formation of bipolason

The master equations are not closed, they still depend quettiiele coordinates.
The corresponding equations for the lattice particlesratieé 1d case given by [29]

d2
W‘i" = X1[Pn+1— Pn-1] + {1 —exp—an+1.n] } €XP—Cn+1,n]

—{1—expP—Gnn-1]} €XP—Gnn-1] — 20Vo(eXP— A Gnn-1]\/Pn_1Pn
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+exp—a0ni1nly/PaPni1.  (40)

which are phase-averaged modifications of egs. (18).

In the 2d case the equations of motion are more complicatesliing the same
model about forces and friction as earlier done and usirg@mplex coordinates
Zn = Xy +1yn, Wherex, andy, are Cartesian coordinates of theh particle we get
the Langevin equations

d?z, /
gt = 3 [Pk (Zn) & FidZn] 20— 20" 5 exp[—a R~ Ry /Pubiv
n

+{_y‘{jztn+ 2Dy (Enx+i&ny) | (41)

where as above the indexidentifies a particle among all N particles of the atomic
ensembley is a friction coefficientD, defines the intensity of stochastic forces,
énxy denotes statistically independent generators of the Gaussise. Note that
the new Langevin equations (41) are different from the presiones (22), since
due to the phase averaging only the varialggsand not thec, appear. Further we
note that in the classical equations of motion (40) and (ppear two terms which
couple the classical dynamics to the quantum master eqsati@ne is due to the
dependence of the energy levels on the coordinates of thesatod the other on the
dependence of the transition probabilities on the atonstadces. Furthermore let
us insist on that the description by Pauli TBA equations amstless information
than the standard TBA since all phases are lost and only ti®apilitiesp, appear

in the dynamics equations.

6 Spatial distributions, energy spectrum and energy
distributions

Numerical simulations of our systems of equations (kinetid dynamic equa-
tions ) provide snapshots of the spatial distribution offiesolectrons on a square
of 20 x 20 triangular lattice al = 0.01. We studied 3 electron numbekg =
16,200 300 on a triangular lattice of 400 sites, whose fractionaisitees are, re-
spectively,ve = 0.04, 0.5, 0.75. Results are shown in Figs. 5 and 6. The corre-
sponding probability and energy distributions are showrrigs. 7 and 8. Note
that the solectrons inside the clusters, stripes or permbl@gions are degenerated.
Investigating the spatial distributions shown in Figs. 8l &9, we see interesting
structures. We see clustering at the lowest density, sgipit the moderate den-
sity and a kind of percolation at the highest density. Theeganrend is that the
solectrons tend to cluster rather than remaining isoldthts means that there is a
tendency to cluster, hence to pairing in space. This is atpaiich also needs a
further analysis. We have to find the radial distributiondiion and expect to see a
peak at small distances. This would confirm predictions ntdalexandrov [37].
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p
0.8

0.6
0.4
0.2
0

Fig. 5 Snapshot of the spatial distribution of Fermi solectrons @eraussites 20x 20 triangular
lattice at a low temperaturé = 0.01. We study 2 electron numbekxg = 16,200 on a triangular
lattice of 400 sites. This corresponds to the (fractional) dgmensities/e = 0.04,0.5. We see
clustering at the lowest density and striping on the moderatetgensi

From the informations we have on the energies of the Ferntickes we calculated
the distributions by averaging.

Investigating the energy distributions shown in Figs. 7@ see also interesting
structures. The general trend is that the probabilitiesedese with energies. The en-
ergies are given here relative to the minimal energy andraered in a way that on
the left are the lowest energies for a given snapshot. Atémperatures and higher
densities (region of degeneracy) a typical Fermi distidsuppears which trans-
forms at higher temperatures into a Boltzmann distributibinis transition from
degeneration to Boltzmann behavior occurs at

2mmekaT ° 7 Na2/2’

NAS~1,  Ne=

Besides this general trend we see an interesting fine steuttaluding steps
and gaps. This is a point which needs a further analysis. Waateexclude the
possibility that the gap-like phenomena are connected tvélexistence of pseudo
gaps, but this needs more accurate computer simulations.
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Fig. 6 Probability distribution of Fermi solectrons ornvarsussites 20x 20 triangular lattice at a
very low temperaturd = 0.001 for two extreme cases. Left panel fér= 1 shows the expected
equal distribution of quantum probability. In the right pafee N = 395 we see a nearly equal
distribution for the case of a near to full occupation.
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Fig. 7 Snapshot of the probability distribution of Fermi solectrona@ersussites 20x 20 trian-
gular lattice at a very low temperatufe= 0.001 for two intermediate densities. Left pahek 16
and right paneN = 200.

Our approximations provide a rather fast and thereforeulisedl for the com-
puter simulations of the electron-lattice dynamics in bdaystems. Figures 3 and 5
illustrate results based on this approach. Due to the wayeaéthe electron dynam-
ics, there are differences between the methodology usmgdhpled Sclidinger
equation and Langevin equation system and that using Paproach albeit they
are minor differences. An advantage of the Pauli approadhasit can be general-

ized to include the influence of spin, and Bose effects whiethave neglected so
far.
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Fig. 8 Probability distribution forve = 300/400= 0.75 at a low temperatur& = 0.001. First
we seeversussites and then the distributiorersusenergies (energy distribution). In the latter we
observe (the lowest energies are left) the formation of a Ferge eshd may identify the Fermi
energy.

0 02 04 06 08 IE

Fig. 9 Typical probability distributiorversusenergies (energy distribution) of Fermi solectrons at
a low temperaturd = 0.001 for the moderate doping density = 200/400= 0.5. We observe
again the formation of a Fermi edge and may identify the Fermiggner
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Fig. 10 Another example for the probability distributiamersusenergies (energy distribution) of
Fermi solectrons at an intermediate temperafure 0.5 for the moderate doping density =
200/400= 0.5. We observe that the Fermi distribution tends to a Boltzmannildision. In the
left panel we see a snapshot of the corresponding spatial eletstoibution.
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The qualitative difference between the Boltzmann distidns and the Fermi
distributions is that Fermi distributions distinguish gtig between electrons below
and above the Fermi leval. The chemical potential (Fermi level) may be estimated
from our energy distributions.

The states below the Fermi level are occupied and the sthte® are empty or
weakly occupied. This way the Fermi level acts as the sed ile\ae country with
many mountains. Lowering the sea level decreases the acapied by the sea and
increasing the sea level increases the area of the sea amcksethe part of the
mountains. Note that transfer and transport happens ortlyeaFermi level (Fig.
2). Finally the “land” consists of separated islands. Whes liappens we have a
percolation transition as seen in Fig. 11. The possible Hefrals are given here by
the colors. Clearly, for the given potential landscape taeft levelu ~ —1 hints
at percolation. We see that the regidhsc u ~ —1 are connected, this is what we
mean by percolation. With increasing density the Fermilleaises, and increas-
ing Fermi levels may lead to percolation of the electroninsiy corresponding to
a sudden increase of diffusion, conductivity and other wsawpic transport prop-
erties, from side to side of the system like, indeed, in thédh coffee percolator
when making expresso (Fig. 11). In this respect the 2d- akasahe 3d-systems
are fundamentally different from the 1d-systems.

By analyzing the Pauli equation we see that due to the existeha factor(1 —
pn) Py Only the states near to the Fermi level the regiBpsz 1 may contribute to
transport.

Fig. 11 Percolation is illustrated by a snapshot for a rather high le¥eloping density of 75
percent and a rather low temperatiire- 0.01.

7 Discussion and outlook

We have investigated the role of Fermi degeneration for gesysvith nonlinear
anharmonic excitations. This may be significant for a thedrgonducting lattices.
Solitons are hard excitations of the lattice which have g lasting time and influ-
ence the local density and this way the Fermi level. Solitmedocal deformations
- peaks of the density - propagating witrsapersonicsoliton velocityvsy which
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Fig. 12 The case of high temperatures: Snapshots of the electron demsit2d Fermi system
with zero spin andN = 400 sites at the temperatufe= 2.5 for two different doping situations
Ne = 250;ve = 0.625 andNe = 300;ve = 0.75.

strongly increases with the increase in the stiffness oflalttece. As the soliton
velocity is much smaller than the thermal velocity of thectlens, the interaction
between soliton-like waves and electrons is weak, sinceffantige interplay re-
quires that the concentration of electron in the region efdbliton velocity is suffi-
ciently high. In fact electrons captured certain time bytsalc excitations are only
weakly affected by scattering processes. We have usedrtiyery for estimating
the contribution of solitonic excitations to the collisitrequency in [31].

An evaluation of the influence of solitons predicts for 1tlit®s a conductivity
increase in the temperature region where most thermabselire excited. For 2d-
lattices we find an eventual percolation transition to cetee conducting regions.
We have shown that the Fermi level of the electrons detesnihe percolation
effects.

A few remarks are worth recalling:

(i) As our simulations show, there is a general tendency damétion of pairs. In
recent work [25, 26, 34] we have shown that the soliton medigiair formation
is energetically favorable. However as well known this g®wnly, that pairs will
form atT = 0; at highefT one has to estimate the thermodynamic probability. This
is done for example by our simulations which clearly show #tanoderatd’, pairs
can be formed. According to Alexandrov [37] the existencéoofl pairs is rele-
vant for highTe superconductors. Therefore the present study may be ueefiart
solving this question. However the proper treatment ofspairfinite temperatures
requires first an extension of the theory to Bose systems.

(i) if solectrons (polarons) are dominant, the Fermi scefaf the solectrons deter-
mines the electrical conductivity. That means that in otdeget high conductivities,
we need high enough densities of solectrons near to the Beinfiaice.

(iii) In certain regions (Fig. 3) bi-solectrons may be mareguent than solectrons.
Note that what matters for Bose condensation is not the Hexmis but the lowest
energy levels. Since bisolectrons are bosons, Bose coatitemss then at least in
principle possible. However a problem in this respect isréhatively large mass of
solectrons and bisolectrons, which make it difficult to fedee conditions for Bose
condensation.
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