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Abstract. We present computational evidence of the possibility of fast, supersonic or subsonic, nearly
loss-free transport of electrons bound to lattice solitons along crystallographic axes in two-dimensional
anharmonic crystal lattices.

1 Introduction

In the present work we discuss the problem of control of
electrons by acoustic lattice soliton excitations, a form of
electron surfing, which may have different origin such as
e.g. mechanical or electrical shocks generated by contacts
of the tip of an electron field microscope with a suitable
anharmonic crystal lattice layer. We consider systems of a
few hundred atoms on a plane interacting with one or a few
added, excess electrons. The quantum dynamics of those
electrons is described by kinetic equations (Pauli approx-
imation) [1,2] what restricts our approach to moderately
albeit high enough temperatures where coherent phases
do not play a significant role. Earlier we have already dis-
cussed the interaction between electrons and strongly lo-
calized lattice excitations of soliton-type in one- (1d) and
two-dimensional (2d) lattices [3–5]. For the electron dy-
namics we used the tight-binding approximation (TBA)
and for the lattice particles a classical Hamiltonian albeit
with the quantum Morse interactions [6]. As a result of
this mixed anharmonic classical-quantum TBA dynamics
we could show that the electrons “like” to follow the tra-
jectories of soliton-like excitations. In the 1d case we have
predicted several interesting phenomena, in particular the
“vacuum-cleaner” effect, i.e., the electron probability den-
sity is gathered by solitons which along their trajectory act
as long range correlators [7,8]. Noteworthy is that these
excitations move in general with supersonic velocity, vs,
or velocities a bit below the sound velocity depending on
the parameter values, on the initial conditions and on the
electron-lattice interaction [9,10]. This means that elec-
trons bound to lattice solitons (in short called solectrons)
can move with quite high velocities of more than 1000 m/s
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in a solid medium, faster than the drift velocities of “free”
electrons, which usually do not exceed 1–100 cm/s.

Let us consider the anharmonic lattice with an added,
excess electron with charge e hopping from site to site
along the lattice. The electron interacts with the initially
neutral lattice atoms, shifts their energy levels and locally
induces electric polarization in neighboring lattice sites.
This is like an attractive interaction, therefore the elec-
tron tends to seat on such locally compressed regions of
the lattice. This is the Landau selftrappping or polaron
idea [11–14]. In 1d we can assume that the shift of the
energy of an atom at site n is given by

En = E0
n − 1

2
χ[qn+1 − qn−1], (1)

where the qn±1 denote the spatial displacements of the
nearest-neighbors. In the 2d case we can assume that the
energy shifts are proportional to the polarization field
strength. For large enough distances between atom and
electron r the polarization potential has the asymptotic
form αee

2/ε0r
4, with αe the electric polarizability of the

atom and ε0 the dielectric constant of the medium. Let
us assume now that the electron is located at the position
r and that the lattice atoms are located at the positions
= rj with j = 1, 2, . . .N . For example, in the case of hy-
drogen a bound state is found in the singlet channel, with
binding energy 0.754 eV. Because of the Pauli principle,
no bound state is observed in the spin triplet state. The
energy of induced polarization of an atom is

αe

2
E(rn)2. (2)

Note that αe = (9/2)a2
B for hydrogen atoms and about

the same order or even higher for other types of atoms.
According to this expression, an electron located at the

http://www.epj.org
http://dx.doi.org/10.1140/epjb/e2012-30276-x


Page 2 of 8 Eur. Phys. J. B (2012) 85: 291

origin generates together with an atom number j at the
place rj the polarization energy [5,15]

Uj(rj) = −Ue

[
h4

(r2
j + h2)2

]
, (3)

where h defines the characteristic cut-off distance of po-
larization interactions which may span a few atomic diam-
eters (h > aB where aB is the Bohr radius). The maximal
polarization energy, Ue, depends on the polarization con-
stant of the atom,

Ue =
αee

2

2ε20h
4
. (4)

For our computer simulations we truncate the polariza-
tion potential at the cut-off distance r = 1.5σ (more on
this further below; σ is the equilibrium interatomic lattice
distance) and hence we set

Ue(rj) = −Ue

[
h4

(r2
j + h2)2

− h4

(r2
0 + h2)2

]
, (5)

U(rj) = 0 if rj > r0 r0 = 1.5σ. (6)

The overall electrical potential generated by all the atoms
on an electron placed at r is then given by

U(r) =
∑

j

Uj(r − rj), (7)

where we see the interaction with the lattice units. Clearly,
any cluster of atoms may generate a potential hole or trap
where the electron density might be concentrated. Any
displacement of the atoms changes the polarization energy
and the electron will try to follow these changes. This is
the basic “slaving” ingredient leading to the polaron (har-
monic case) [11,12] and to the solectron formation (anhar-
monic case) [13,14].

In the 2d-case we will use a simple generalization of
(1) based on the mean-field assumption that the energy
levels are shifted linearly with the mean polarization field.
This assumption is acceptable, if the amplitude of the po-
larization fields is large in comparison to the oscillation
energies around the potential minima �ω. In the TBA the
energy levels En are functions of the atomic configuration,
given by the coordinates {r1, . . . , rN}. Assuming that the
original atomic binding energy E0 eigenvalues are shifted
like the polarization potential we get

En � E0 +
∑

j

δUj(rn − rj). (8)

Consequently, the energies En form a rapidly evolving
landscape that is determined by the actual atom lattice
positions.

Let us estimate the effects of local lattice compressions
on the transition probabilities. The probability of hopping

between neighboring atoms i and j depends on the relative
distance between atoms r in an exponential way

Whop(i, j) � exp[−2αhr]. (9)

This follows from the fact that transitions are based on the
overlap of wave functions. In other words hopping along
the lattice, the electron moves faster in the compressed
parts.

Our idea of controlling electrons is to generate a trav-
eling pathway with locally compressed atoms, such that
an electron will form bound states with the local lattice
distortion, eventually being trapped and suitably guided
at our will. This is to be added to the Landau-Pekar po-
laron, where it is the moving electron that locally perturbs
a neighborhood of lattice atoms thus being self-trapped.
In the parameter range we shall consider here the latter
effect is assumed to weaker than the former. Thus the
solectron formation is controlled by two atomic constants
αe and αh determining polarization and hopping effects,
respectively. The constant αh is determined by the size of
the atoms and may be of the order of 0.5/σ. Accordingly,
transitions beyond more than two atomic diameters are
very unlikely to occur. Adding thermal effects to account
for moderate temperatures, the lattice atoms with Morse
interactions will be in the weakly nonlinear regime of os-
cillations [16], which can be treated by classical Langevin
equations. For visualizations, the atomic core electrons are
in a first approximation represented by Gaussian densities,
thus permitting to follow the underlying lattice compres-
sions shown by the excess density above initial equilibrium
level due to the overlapping of the Gaussian peaks.

After introducing in Section 2 the model for the de-
scription of 2d-lattices and solitons, we discuss in section
3 the stochastic evolution of the added, free electrons by
Pauli-type master equations, which allows us to follow the
motion of solectrons in the lattice. We also discuss several
examples of controlling the electron path in the lattice by
the excitation of solectrons. This way we show the possi-
bility to transfer electrons along one of the three crystal-
lographic axes in e.g. a triangular lattice over quite long
distances with negligible spreading of the electron prob-
ability densities. Finally in Section 4 we summarize our
findings and comment on the possible connection with old
and recent experiments on PDA polymer crystal layers
and electron surfing mediated by surface acoustic waves
(SAW) in piezoelectric GaAs layers.

2 Lattice dynamics, initial conditions
and methods of visualization of excitations

The Hamiltonian of our 2d lattice consists of a classical
lattice component Ha, and the contribution of the elec-
trons He, which includes the interactions with the lattice
deformations. For the lattice part, the Hamiltonian is

Ha =
m

2

∑
k

v2
k +

1
2

∑
k,j

V (rk, rj) −
∑

k

αe

2
E(rk)2. (10)
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The subscripts locate the atoms all with equal mass, m,
at lattice sites and the summations run from 1 to N . For
later convenience we introduce here a term which takes
into account the polarizability of the atoms αe in an ex-
ternal field E(rk). We have in mind a strong local field as
created e.g. by the tip of a field emission microscope. We
shall assume that the lattice units repel each other with
exponentially repulsive forces and attract each other with
weak dispersion forces. As earlier said the characteristic
length determining the repulsion between the particles in
the lattice is σ. We limit ourselves to nearest-neighbors
only using the relative distance r = |rn − rk|. The above
conditions are met by the Morse potential [6]. Thus we set

V (r) = D {exp[−2b(r − σ)] − 2 exp[−b(r − σ)]} . (11)

By imposing the cutoff of the potential at 1.5σ, we exclude
unphysical cumulative interaction effects arising from the
influence of lattice units outside the first neighborhood
of each atom [3,4]. To study, at varying temperature, the
nonlinear excitations of the lattice and the possible elec-
tron transport in a lattice in the simplest approximation it
is sufficient to know the coordinates of the lattice (point)
particles at each time and the interaction of lattice defor-
mations with electrons. Coordinates of particles are ob-
tained by solving the equations of motion of each parti-
cle under the influence of all possible forces. The latter
shall also include friction and random forces accounting
for a Langevin model bath in the heated lattice. For con-
venience in the 2d lattice dynamics rather than using r,
we use complex coordinates Z = x + iy, where x and y
are Cartesian coordinates. Then the initial classical New-
ton deterministic equations corresponding to the lattice
Hamiltonian (10) yields to a Langevin dynamics for the
lattice units

d2Zi

dt2
=

∑
k

Fik(Zik)zik +
[
−γ

dZi

dt
+

√
2Dv (ξix + iξiy)

]
,

(12)
where again an index i identifies a particle among all N
particles of the ensemble, γ is a friction coefficient, Dv

defines the intensity of stochastic forces, ξix,y denotes sta-
tistically independent generators of the Gaussian noise.
T = mDv/γ (Einstein’s relation). Zik = Zi − Zk and
zik = (Zi − Zk)/|Zi − Zk| is the unit vector defining the
direction of the interaction force Fik, corresponding to the
Morse potential, between the ith and the kth atoms in the
lattice. To have dimensionless variables we consider the
spatial coordinates rescaled with σ as unit length. Time
is normalized to the inverse frequency of linear oscilla-
tions near the minimum of the Morse potential well, ω−1

M ,
whereas energy is scaled with 2D, where D is its depth as
shown in (11). Further the stiffness parameter b (made di-
mensionless) defines the strength of the repulsion between
atoms. The interaction force Fnk is given by

Fik = Fik(|Zik|) = −dV (r)
dr

|r=|Zik|. (13)

In view of the above only those lattice units with coordi-
nates Zk, satisfying the condition |Zi−Zk| < 1.5, are taken

into account in the sum in equation (12). In computer sim-
ulations the interaction of lattice units is considered to
take place inside a rectangular cell Lx ×Ly with periodic
boundary conditions and depending on the symmetry of
an initial distribution of units and their number N . For
illustration = we consider a distribution corresponding to
the minimum of potential energy for an equilibrium state
of a triangular lattice 10σ × 10(

√
3/2)σ for N = 100 or

20σ × 20(
√

3 = /2)σ for N = 400.
As the repulsion part of the Toda interaction is about

the same as in the Morse case, in order to create lattice
deformations leading to lattice solitons one can assume
initially a compression and velocity profile corresponding
to the analytical form of a 1d Toda soliton [17–20] in a
given lattice row. The other lattice units remain at their
equilibrium positions on a triangular lattice at zero tem-
perature = [21,22]. As shown by Remoissenet [23], a broad
spectrum of initial excitations, as e.g. excitations of rect-
angular profiles of are able to create solitons or cnoidal
waves. For this reason we have experimented here with
a broad range of initial conditions. For example we gave
initially a suitable high momentum to one lattice site in
the direction of one of the crystallographic axes in such a
way that a successful start of a soliton was observed. This
way we found that not only Toda profiles but also simpler
initial conditions as pushing initially just one particle may
be sufficient to create a soliton due to the “efficiency” of
the Morse repulsion. For instance using the Toda profile
along x, one of the six crystallographic directions in the
triangular lattice, we can set

xn+1 − xn = σ − 1
beff

ln
[
1 +

sinh2(κ)
cosh2(κn)

]
(14)

� σ − 1
beff

sinh2(κ)
cosh2(κn)

,

with the corresponding velocities and x1 = 0. Here beff = b
is the dimensionless stiffness and κ is defined by the energy
of the soliton. Another choice could be beff = 1.5b which
in fact provides much longer life and better robustness of
the excited soliton.

For visualization and tracking the atomic electron den-
sities we modeled the atoms as little spheres with “core”
electrons represented by a Gaussian distribution centered
at each lattice site:

ρ(Z, t) =
∑

|Z−Zi(t)|<1.5σ

exp
[
−|Z − Zi(t)|2

2λ2

]
. (15)

Using data about trajectories of particles Zn(t) and their
velocities we can calculate the lattice atom distribution
ρ(Z, t). In Figure 1 we show a track of the running ex-
citation (in “bubble chamber representation”) which was
created by pushing just one atom in the direction of the
crystallographic axis x. We show the space and time evolu-
tion of the initial soliton density peak for the time interval
Δt = 3 (measured in units of 1/ωM , as earlier said). The
parameter values of the potential are bσ = 4, λ = 0.3σ.
The Langevin source corresponds to a rather low tempera-
ture, T = 0.001 (in dimensionless units). This corresponds
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Fig. 1. (Color online) Triangular Morse lattice. The density
of the core electrons of lattice atoms in the course of time. A
soliton is excited by a strong pulse velocity 2vs imposed to
one lattice particle located not far from the left border (site
4, row 10) along and a rather high energy 2mv2

0 to the 4th
atom in the row. A track of the excitation (in “bubble chamber
representation”) of the running soliton density is represented
for the time interval Δt = 3 (measured in units of 1/ωM ) in
a cumulative sequence as time proceeds. (Parameter values:
N = 400, bσ = 4, λ = 0.3σ, and T = 0.001.)

to the mean kinetic energy of a particle 〈Tkin〉 reaching the
value T . The soliton is moving along a crystallographic
axis and was excited by a strong pulse of velocity 2v0 im-
posed at t = 0 to the 4th atom n = 4 in the 10th row
with rather high energy 2mv2

0 . The high-energetic soli-
ton excited this way is quite long lasting in its motion
along the chosen crystallographic axis. Transverse excita-
tions and thermal collisions due to the source term in the
Langevin equation do not play a significant role in the
interval of observation (3 time units). From the length of
the cumulative path and the time interval we may estimate
the velocity. It appears that this strong local compression
moves with velocity about 1.2vsound with a lifetime of at
least several time units. In the 2d triangular Morse lattice
vsound is slightly above 1 in our units. These features point
to soliton-like behavior as for the 1d lattice [24]. Indeed,
they move a few picoseconds with nearly unaltered profile
and just this robustness is the reason that we can iden-
tify them with the proposed visualization method. Losses
due to scattering and radiation of linear waves are quite
low, due to the nearly integrable character of the prob-
lem. Note that the 2d solitons observed here, are similar to
the so-called lump solutions of the Kadomtsev-Petiashvili
equations [25]. We note further that including thermal ef-
fects due to our moderate temperatures, the lattice atoms
are moving still in the weakly nonlinear regime [16].

In the following section we will show that the nanosize
of our 2d-structure makes possible the existence of electric
structures due to the interactions of the electrons with
the nonlinear lattice deformations, similar to those seen in
the 1d-case. We underline, that we cannot expect to see
similar electric structures at large scales, due to screening
of the charges.

3 Dynamics of electrons embedded
into the 2d lattice and soliton-mediated
effects

Let us now focus on the role played by one or several
non-interacting electrons embedded into the atomic lat-
tice, maybe as a result of doping or injection. Following
Davydov [26], in 1d the deformation density created by a
supersonic lattice soliton along a coordinate z in direction
of the propagation can be approximated by

ρd(z, t) � ρ0sech2(κξ), ξ = (z(t)−z(0)−vst)/σ, (16)

where z(t) = z(0)±vst is the actual position of the soliton
at time t, vs the (supersonic) soliton velocity and κ the re-
ciprocal width of the soliton, which, in the strongly super-
sonic case, is proportional to the soliton velocity. Extend-
ing this formula to a 2d system, the z-coordinate has to be
oriented along one of the crystallographic axes. The elec-
tronic bound states may be analytically calculated in the
continuum (long-wave) approximation [26,27]. The ground
state in the well created by the deformation density is bell-
shaped and given by

Φ0(z, t) � Csech(κξ′), ξ′ = (z(t) − z(0) − vset)/σ,
(17)

where vse is the velocity of the electron bound to the lat-
tice soliton, i.e., the solectron velocity. In the case that vs

is only slightly above the sound velocity, the solectron ve-
locity is generally lower than the soliton velocity and may
be even below the sound velocity [3,4,27]. The solectron
density is the square of the wave function and has there-
fore the same shape as the soliton deformation which is
a continuum version of the Toda soliton (see Eq. (14)).
The corresponding density in the momentum space is the
square of the Fourier transform (pz = �kz). It is centered
around the solectron momentum pse = msevse where mse

is the effective mass of the solectron [26]. The ground state
probability density in momentum space is in first approx-
imation a Gaussian

P0(pz , t) � C exp
[
− (pz ± pse)2

(�κ/σ)2

]
. (18)

This is a local maximum near to the soliton momentum
±pse. The bound state energy increases for strongly super-
sonic solectrons with the square of the soliton velocity [26].
For appropriate parameter values, this estimate of the en-
ergy could possibly reach the order of 0.1–1.0 eV, what
seems to be a rather high value relative to other known
electronic binding energies. In earlier computer simula-
tions with 1d Morse lattices [3–5] we observed solectrons
in a temperature window of 0.1–1 D. Assuming poten-
tial wells of order 0.1–0.5 eV, the solectron ground state
appears in the range 0.01–0.1 eV. This justifies the ro-
bustness or stability of the supersonic solectrons against
thermal perturbations.

In order to study the evolution of the quantum states
of the additional electrons interacting with the atoms in
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Fig. 2. (Color online) Density of the solectron bound state
in momentum space for the cases of right- and left-running
solectrons (schematic representation with κ = 1 and pse = 1.5).

the 2d-lattice, we set [28]

Hel =
∑

n

Enc+
n cn +

∑
n,n′,m

tn,n′,m(rn′ − rn)c+
n′,mcn,m,

(19)
with the transition matrix

tn,n′,m = 〈n′, m|H0 + Vea|n, m〉. (20)

Here n, m denote the internal quantum numbers of the
states of electrons bound to the corresponding atoms at
sites rn and rm. The additional electrons can be in a local-
ized, bound state, but they can also form extended states
when they are excited above the edge of continuum. In the
following we will assume for simplicity, that there is only
one internal quantum state per atom and we will drop
the internal quantum number m. If necessary, the inter-
nal state that characterizes the orbit as well as spin, can
be included in the quantum number n. To further simplify
the problem, the feedback of the electron distribution on
the lattice dynamics (polaron-like effect) is neglected here.
We set

He =
∑

n

Enc+
n cn +

∑
n,n′

tn,n′c+
n′cn. (21)

The energy levels En may be approximated by the expres-
sions given above (5)–(8). Then assuming that the original
atomic binding energy E0 eigenvalues are shifted like the
polarization potential we get explicitely

En � E0 −
N∑

n′=1

Ueh
4

[(rn − rn′)2 + h2]2
, (22)

recalling that n denotes the internal quantum number of
the electron state that is bound to the atom at site Rn.

 0
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t
|c|2

Fig. 3. (Color online) 1d Morse lattice. The added free electron
probability density is carried with supersonic velocity along the
path of an excited soliton initially at lattice site n = 40. The
free electron is initially distributed in a Gaussian profile located
near to a small potential well (ε = −15D) at site n = 50. After
about 8–10 time units the electron is catched by the moving
potential well created by the soliton thus forming a solectron
which moves supersonically but around 5 percent slower than
the initial soliton, taken alone.

As a consequence, the energies En form a rather complex
and rapidly changing landscape that is determined by the
atomic positions {r1, . . . , rN}.

The transition matrix elements tn,n′ also depend on
the atomic distances, tn,n′ = t(rn′ − rn). Following
Slater [29] we take

tn,n′ = V0 exp[−αh|rn − rn′ |]. (23)

The range parameter αh can be related to the tunneling
probability that decreases exponentially with distance. In
a first, rough adiabatic approximation the electrons are
at any time in a local equilibrium distribution, we can
estimate the distribution of the free electrons in the po-
larization potential field by a (classical) Boltzmann law.
A full quantum mechanical description of the electrons
in the field of the fast changing lattice is rather diffi-
cult. To simplify this situation we postulate that the elec-
trons allow a Markov description. Thus we move from the
reversible Schrödinger equation for the occupation num-
bers in the TBA model to an irreversible description by a
Monte Carlo dynamics and the corresponding Pauli mas-
ter equation [1,2]. The basic assumption is that the elec-
trons follow a hopping dynamics with quantum mechan-
ical probabilities for the transition from site n to site n′
given by

W (n, n′) =
V 2

0

�
exp[−2αh|rn − rn′ |]E(n, n′, β). (24)

Here E(n, n′, β) is some symmetrical function which
in the Pauli approximation is a delta function E ∼
δ(En−En′) [1,2]. Several other approximations are known
which take into account the influence of the heat bath
as e.g. the Lorentz profile. We use her as in refer-
ences [3–5] a Monte Carlo approximation for the transition
probabilities

E(n, n′) = 1 if En < En′ , (25)

E(n, n′) = exp[−β(En − En′)] if En > En′ . (26)
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Fig. 4. (Color online) Evolution of the electron probability
density for a 1d heated lattice (N = 100) with two energy
wells at T = 0.01. Left panel: evolution according to the Pauli
equation (27) of an initial electron distribution concentrated
between two wells with depth En = −2 located at n = 30 and
n = 70. The irreversible dynamics of the electron density leads
to an equal distribution around potential wells (parameter of
the transitions τ = 10). Right panel: in the TBA-Schrödinger
evolution the electron density is oscillatory with αh = 0.1,
V0 = 0.1, with the two wells separated by a distance 10 and
with depths En = −5.

Then the Pauli master equation for the occupation prob-
abilities of electrons pn of the state n, given here by the
position rn with the energy En, is

dpn

dt
=

∑
n′

[Wnn′pn′ − Wn′npn]. (27)

Since the detailed balance is obeyed, it is guaranteed that
in thermal equilibrium an H-theorem is valid and any ini-
tial distribution tends to the canonical distribution, which
is the target distribution of the master equation. Figure 4
illustrates results of our computer simulations with two
fixed wells, depth 2 (in our units 2D), n = 30 and n = 70.
We have considered two different initial conditions. In
the first case the initial electron density is uniformly dis-
tributed. In the second case we initially have a delta-like
distribution at position n = 50 in between both wells. We
have seen that the relaxation to a canonical distribution
with two peaks around the positions of energy wells is
rather fast as in a few time units the final distribution is
reached. Clearly the Pauli equation describes a basically
different behavior from that of the Schrödinger equation.
In the latter we have a reversible description and see a
(quasi) periodic return to the initial state. In the Pauli de-
scription the irreversible behavior is due to the neglect of
the off-diagonal terms of the density matrix. The coupling
to a surrounding heat bath may be considered as the rea-
son for the decay of off-diagonal elements. The quasiperi-
odicity in the Schrödinger picture leads to the oscillatory
evolution (with an eventual small damping as shown in
the right panel of Fig. 4). Indeed the TBA-Schrödinger dy-
namics includes coherent motions of the electron density
between the two wells which is tunneling-like and leads to
oscillations. The small damping results from the transfer
of energy to the classical modes which are described by the
irreversible Langevin equation. In the Pauli dynamics the
coherence between the phases is destroyed thus leading
to the irreversible approach to distributions concentrated
around attracting potential wells. Note that in order to
get control over the dynamics of electrons an irreversible

Fig. 5. (Color online) 2d Morse lattice. Soliton and electron
initially placed at the same site in the same axis, x, subse-
quently travel together as a solectron along this same axis.
Upper panel: initial distribution of the electron probability
density. Center panel: time and space evolution according to
Pauli equation (27) the density after t = 3 units for an electron
interacting with an energetic soliton (the same excitation as in
Fig. 1) moving along the crystallographic axis x. Bottom panel:
quickly spreading corresponding electron distribution when the
interaction with the lattice is switched off, α = 0, as expected.
Parameter values: N = 400, bσ = 4 and T = 0.01.

dynamics which is characteristic for macroscopic thermal
systems may be of advantage. Interpreting these results in
other words, the mechanisms of controlling we are study-
ing here, would not work well at T = 0 due to the re-
versibility of quantum mechanics. Therefore our proposed
electron control will work at moderate albeit high enough
temperatures. For instance, T = 0.01 in our energy units
corresponds to about 150 K.

Figure 5 illustrates that in probability density free elec-
trons in a 2d lattice spread in rather short times over
the whole accessible space. In the presence of solitons ex-
cited on the lattice in an appropriate way, a bound state
is formed and the electron density is kept together and
largely follows the soliton in a narrow region of space. We
note that the shape of the bound state electron density
as well as the compression density is similar to the lump
solutions of the Kadomtsev-Petiashvili equation [25]; this
needs further studies.

Further results on representations of electron proba-
bility densities are shown in Figures 6 and 7. We note
that our electron – lattice dynamics is in a regime
were the lattice nonlinearity dominates in comparison
to self-trapping effects [26,27]. Further we note that the
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Fig. 6. (Color online) 2d Morse lattice. Soliton and electron
initially placed at different sites in the same axis x (electron is
placed at the center of the lattice and soliton slightly behind it)
subsequently travel together as a solectron bound state along
this same axis. The four pictures correspond to four successive
time instants. Parameter values: N = 400, bσ = 4, Ue = 0.1,
A = 2, κ = 2.5 and T = 0.01.

supersonic lattice polarons which are essentially due to
the lattice nonlinearities are more stable against pertur-
bations than the subsonic polarons [26,27].

4 Discussion

We have developed theoretical tools for the study of slaved
or otherwise said, controlled, individual electron evolution
by means of lattice soliton-like excitations acting as car-
riers along the crystallographic axes of a e.g. a triangular
lattice. For each crystallographic axis there exist two rela-
tively stable electron-soliton bound states (solectrons) cor-
responding to the two possible directions of motion. Our
computer simulations use Langevin equations for atoms
with Morse interactions and quantum kinetic equations
of Pauli-type for the electron evolution. We have shown
that with appropriate initial conditions, e.g. by a sudden
increase of the momentum of one atom, the above men-
tioned bound states can be created able to carry electrons
at near-to-sound velocity over a distance of a few hundred
sites with no significant loss of electron density and mo-
mentum. This appears as a clear case of electron surfing.
In the electron trapping process which we study, the lo-
cal lattice compressions significantly deform the potential
landscape acting on added, excess electrons and create a
moving guiding well or trap. There is also a feedback of
the concentration of electron density on the lattice defor-
mation which we have neglected in a first approximation.
Indeed, in the supersonic case, for the given parameter
values, this feedback is rather small, changing the results
by less than a few percent. Generally, the electrons tend
to be trapped in the regions of maximal density of lattice
points created by the local compressions and then forced
to move dynamically bound to the soliton-like compres-
sions which in 2d is favored along the crystallographic

Fig. 7. (Color online) 2d Morse lattice. Soliton and electron
placed near to each other but at different rows. The traveling
soliton along the crystallographic axis, x, interacts with the
electron being able to gather the electron probability density
around itself, in kind of “vacuum cleaning” process [8], even-
tually forming a solectron bound state and hence bringing the
electron to the boundary of the lattice. The four pictures corre-
spond to successive time instants. Parameter values: N = 400,
bσ = 4, Ue = 0.1, A = 2, κ = 2.5 and T = 0.01.

axes. This surfing effect is offering a novel way of con-
trolling and transporting electrons.

Save the scale, our results seem to agree well with find-
ings reported long ago by Donovan and Wilson [30,31]
in experiments with polydiacetylene (PDA) and other
derivatives. PDA can form perfect single crystals, in which
the polymer lattice rows are straight and parallel over
macroscopic (mm) distances. A conjugated π electron sys-
tem forms a semiconducting band system along the car-
bon backbone. The polymer side groups are large, and the
carbon backbones on adjacent chains are a long distance
apart, ca. 0.7 nm, so there is negligible overlap between
the π electron wave functions of adjacent chains. In the
experiments of Donovan and Wilson photo created carri-
ers were found to travel at room temperature at a field-
independent constant velocity, over several decades of the
applied field. The electron velocity of 2 km/s, was subsonic
as the estimated sound velocity was 3.6 km/s. Other re-
sults with crystals in which the TS group was replaced by
DCH, denoted PDADCH, provided supersonic velocities
of ca. 5 km/s [32]. Such free ride of the electron was ob-
served over mm before electron was trapped at a defect.
Wilson [33] argued that an electron in 1d, described in
the TBA, interacts via a deformation potential, with the
acoustic distortion of the harmonic 1d lattice. This re-
sulted in a large polaron, comprising an electron localized
in the deformation which it has caused. This theory was
further developed by Gogolin [34,35]. In both cases theory
allows subsonic motions only. At variance to the theoreti-
cal interpretation given by Wilson and Gogolin our view is
that anharmonic lattice oscillations leading to our solec-
tron may be a better suited interpretation as we predict
subsonic as well as supersonic electron motions.
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Let us conclude by commenting on some recent ex-
periments on electron surfing between quantum dots, a
mm apart, [36,37] using linear, highly monochromatic,
harmonic surface acoustic waves (SAW) [38,39] as carri-
ers along a piezoelectric GaAs layer. A kind of ping-pong
behavior was also reported between the entry and exit
gates. Due to experimental measurement constraints the
temperature was quite low (20 mK and 300 mK, respec-
tively).

Linear and nonlinear SAW propagating in a homo-
geneous elastic medium, piezoelectric, or otherwise, ex-
hibit no dispersion. If the medium is nonlinear, as e.g. in
anharmonic crystal lattices, an initial sinusoidal SAW can
create higher harmonics which may grow without being
inhibited by dispersion. Dispersion can be introduced by
coating the medium with a thin film of another material
with elastic and structural/mechanical properties differ-
ent from those of the substrate. On the other hand, by
an appropriate choice of the film thickness, the effects of
nonlinearity and dispersion can balance each other thus
sustaining solitons. Long ago Nayanov [40,41] was able
to observe, at room temperature, solitons (solitary and
cnoidal waves) on LiNbO3 layers covered by an SiO film
(obtained by evaporation) of appropriate thickness. Elec-
tron surfing with solitons at this macroscopic scale is yet
to be observed. Yet as high amplitude SAW tend to de-
form to sawtooh shape and eventually break, the sugges-
tion coming from our theory is that for electron surfing, no
matter the scale involved, solitons shoud be better carriers
than linear waves, even if highly monochromatic.
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