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Soliton-mediated electron pairing (both in real space and in momentum space) is shown to occur
in heated one-dimensional (1D) molecular anharmonic systems with Morse interactions.
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Solitons in molecular systems are local compres-
sions due to the interaction between the molecules
or atoms which typically have a strongly repul-
sive part and a weakly attractive one. Approximat-
ing this interaction by Morse exponential potentials
(akin to Lennard–Jones power laws) it has been
shown that, in an appropriate temperature range,
solitons may be excited (for biomolecules this corre-
sponds to room temperature/physiological region)
[Christiansen & Scott, 1990]. Adding an excess elec-
tron to the system, it has also been shown that
solectrons, i.e. traveling bound states of the elec-
tron to solitons, may be formed (by adding the
lattice nonlinear elasticity, i.e. the lattice anhar-
monicity, the solectron is a generalization of the
polaron [Velarde, 2010]). It has also been shown that
both electron trapping by solitons and a new form
of (generally supersonic) electric conduction medi-
ated by solitons are possible in such anharmonic
one-dimensional (1D) lattice [Velarde et al., 2005,
2008b; Velarde et al., 2006; Velarde et al., 2008a;

Velarde et al., 2010; Chetverikov et al., 2006a,
2006b, 2009, 2010; Ebeling et al., 2009a; Hennig
et al., 2006; Hennig et al., 2007; Makarov et al.,
2006].

As solectrons are a new kind of single-charge
quasi-particle in the anharmonic system, the ques-
tion arises of whether such quasi-particle may form
bound states with spin-up+ spin-down electron
pairs. In earlier work, the existence of such quasi-
particle was shown based on simulations using the
corresponding Schroedinger equation [Velarde &
Neissner, 2008]. Several estimates of the binding
energy of solectron pairs have been given in [Ebeling
et al., 2009b]. Indeed the potential well created by a
soliton may in principle be occupied by pairs of elec-
trons with opposite spins satisfying Pauli’s exclu-
sion principle. At first sight, these electron pairs,
which are bosons, appear like “bipolarons” [Alexan-
drov, 2007]. Yet the solectron pair is something new
as it implies the lattice anharmonicity not consid-
ered with polarons.
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The problem of pairs or clusters of quantum
electrons in a parabolic trap is not new and plays a
significant role in modern microelectronics [Bonitz
et al., 2002]. In the case of solectrons, the width of
the potential well is of the order of a few equilib-
rium inter-atomic lattice distances. Assuming that
the depth of a well is U0 and the frequency of oscil-
lations around the minimum is ωmin, an estimate
for the energy of a pair located at the minimum is

εp0 = 2U0 + 3�ωmin + ∆εqm, (1)

corresponding to twice the ground state energy of a
solectron plus the energy of the repulsion between
the electrons. An estimate for the mean energy of
repulsion is [Ebeling et al., 2009b]

∆εqm =
〈

e2

ε0r

〉
≈ e2

3ε0r0
, (2)

where r0 is the Bohr radius or “size” of the wave
function width,

r2
0 =

(
�

mω0

)
. (3)

The above given estimate was done by assuming
hydrogen ground state wave functions for both elec-
trons. The Coulomb repulsion is weakened by the
quantum effects, with the spreading of electron den-
sity, thus leading to the mean distance between the
electrons in a solectron pair around three times the
Bohr radius. In order to find solectron pairs we need
conditions where the Coulomb shift is much smaller
than the gap to the next level which is 3�ωmin per
electron in the pair. Under these conditions, the for-
mation of a solectron pair is favored. In other words,
the solectron pairs will be more favorable than clus-
ters of electrons at the minimum. In spite of the fact
that these quantum mechanical estimates do not
prove the existence of solectron pairs in potential
minima formed by strong solitons, this claim is not
final and we decide to test it for pair formation in
computer simulations. Necessarily such simulations
have to include the spin of the electrons and the
Coulomb repulsion. Generally, this is a rather diffi-
cult task and we better add further simplifications.
One is to use the Coulomb repulsion in the Hubbard
local form which is a rather crude albeit useful and
currently used approximation in condensed matter
physics [Montorsi, 1992].

Recently, pairing effects has been analyzed
using the Hubbard local Coulomb repulsion
[Cruzeiro et al., 2004; Hennig et al., 2008]. Within

this model several configurations of soliton-electron
pairs have been found. In both cases as here,
a mixed classical-quantum problem was consid-
ered. Thus we consider a 1D anharmonic lattice
with nearest-neighbor (n.n.) dynamics described by
the (Morse–Hubbard) Hamiltonian H = Hlattice +
Helectron, with

Hlattice

=
∑
n

{
p2

n

2M
+ D(1 − exp[−B(qn − qn−1)])2

}
,

(4)

and

He� = −
∑
n,σ

(Vnn−1a
+
nσan−1σ + Vnn+1a

+
nσan+1σ)

+ U
∑
n

a+
n↑an↑a+

n↓an↓. (5)

The index nε [1, . . . , N ] denotes the site of the nth
lattice particle and σε[↑, ↓] determines the spin of
an electron which can be up or down. The Fermion
operators a+

nσ, anσ create or annihilate, at site n,
an electron with spin ↑ or ↓, respectively. The fac-
tor Vnn−1 accounts for the transfer matrix element
(its value is determined by an overlap integral)
being responsible for the nearest-neighbor hopping
of the electron along the lattice in the tight binding
approximation (TBA). The second term in Eq. (5)
represents the on-site electron-electron interaction
due to Hubbard–Coulomb repulsion whose strength
is estimated with the positive parameter U . A rea-
sonable and much used choice for Vnn−1 is

Vnn−1 = V0 exp[−α(qn − qn−1)], (6)

where the parameter α accounts for the strength
of the electron-lattice coupling. We shall measure
all energies in units 2D, except for the electron
energy levels scaled by �ω0 which is the quantum of
the oscillations around the minimum of the Morse
potential. For the sake of universality, it is best
to rescale quantities and consider a dimensionless
problem. We take as unit of time ω−1

0 . For displace-
ments we take B−1 as the unit.

Note that the parameter τ = V0/�ω0 gives
the ratio of the two time scales involved in the
dynamics which, in frequency terms, refer to ultra-
violet/electronic versus infrared/acoustic processes
for electrons and phonons (solitons), respectively.
The existence of bound states between electrons
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and lattice deformations in 1D lattices was studied
in the continuum case by Davydov and collabora-
tors [Brizhik & Davydov, 1983; Cruzeiro-Hansson &
Takeno, 1997]. Clearly, in our discrete lattice case,
we can have a polaron-like effect due to the
electron–phonon (or soliton) interaction augmented
with the influence of the dynamics of the lattice
solitons. This permits soliton rather than phonon-
assisted hopping. In the computer simulations, a
significant role is played by temperature. Indeed,
for solitons to be sustained moving unaltered along
the lattice the temperature must be high enough.
This follows from inspection of the specific heat
characteristics and the dynamic structure factor of
the lattice. The solitons are expected beyond the
Dulong–Petit plateau before the transition to the
gas-like regime [Chetverikov et al., 2006a]. All our
simulations refer to the same value of repulsion
strength, U = 1, which is a moderate one, and to the
same value of the time scales parameter τ = 10. Our
strategy is to vary from simulation to simulation
the value of both V and α. The numerical proce-
dure is as follows: first we construct Langevin equa-
tions corresponding to the classical Hamiltonian (4)
including white noise corresponding to the chosen
temperature of the “heat bath”. Then we “heat
up” the system up to thermal equilibrium. After
switching-off the “heat bath” we solve simultane-
ously the classical mechanical equations of lattice
motions and the discrete Schröedinger equations
resulting from the quantum Hamiltonian (5) which
are coupled to the former.

Figure 1 illustrates the time evolution of the
probability distribution for the spin-up electron (↑)
and the velocity of particles of the 1D lattice when
exciting two solitons but there is no coupling of elec-
trons to the lattice excitations. One may observe the
evolution of the initial form of a wave function cor-
responding to excitations of some eigen functions of
the system with periodic boundary conditions con-
sidered. On the other hand, two traveling identical
solitons are observed as well.

In the case of interaction of electrons with soli-
tons (Fig. 2), with α = 1 and a moderate value
of V (V = 0.1), both electrons are trapped by a
pair of solitons. The formed soliton-electron pair
moves as a stable nonlinear structure in spite of the
high repulsion strength chosen (U = 1). A paired-
solectron travels with constant velocity just below
the velocity of noninteracting solitons because now
they carry electrons and hence the mass of the
newly formed bound state is larger for the same
momentum initially given.

Illustration of the case when both electrons,
albeit with opposite spins, occupy the potential well
of a single soliton, is provided in Fig. 3. In this case,
both electrons (in probability density) are centered
at site n = 50 where the soliton is placed. One may
conclude that this solectron is as stable as that with
two solitons and a pair of spatially separated elec-
trons.

Also possible is the case when a pair of sub-
sonic solectrons (initially, for time ∼100, the results
look like in Fig. 2) is at a high value V = 0.5

(a) (b)

Fig. 1. Morse–Hubbard 1D lattice of N = 100 particles. (a) Evolution of the probability distribution for the spin-up (↑)
electron (a distribution for the spin-down (↓) electron looks exactly the same). (b) Velocity vn(t). Two solitons have been
excited in the lattice (centered initially at sites n = 45 and n = 55, respectively) in the absence of coupling to the electrons
(α = 0). The two solitons in the lattice are taken identical and both have velocity about 1.25 of the sound velocity hence both
are chosen supersonic. The initial form of the wave function corresponds to a pair of electrons centered at the same sites where
the solitons are. They are described by narrow Gaussian functions. Parameter values: τ = 10 and U = 1.
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(a) (b)

Fig. 2. Morse–Hubbard 1D lattice. The same as in Fig. 1 but electrons are coupled to the lattice solitons. Parameter values:
α = 1, V = 0.1, τ = 10 and U = 1.

(a) (b)

Fig. 3. Morse–Hubbard 1D lattice. The same as in Fig. 2 but both electrons “sit” on a single soliton from the beginning.
Parameter values: α = 1, V = 0.1, τ = 10 and U = 1.

though seem to be unstable (Fig. 4). The energy
of one of the electrons transfers to the other via
electron interactions and a bisolectron (one soli-
ton with two electrons of opposite spins as shown

in Fig. 3) is formed. One soliton starts at site
n = 50 and the other at site n = 60. The latter
after losing an electron is transformed in a “soliton
wave-train”.

(a) (b)

Fig. 4. Morse–Hubbard 1D lattice. The same as in Figs. 2 and 3 but here an initially excited paired-solectron as in Fig. 2
transforms to the configuration as in Fig. 3. Parameter values: α = 1, V = 0.5, τ = 10 and U = 1.
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(a) (b)

Fig. 5. Morse–Hubbard 1D lattice. The same as in Fig. 3 but the lattice is adiabatically “heated” to a temperature that at
t = 200 is about T = 0.04 in our dimensionless units. The initial mean value of energy per particle due to a soliton excited is
about 0.01. Parameter values: α = 1.5, V = 0.3, τ = 10 and U = 1.

It is interesting to study the stability of the
paired-solectron to thermal heating. The computer
simulation has been performed for the case when a
lattice with a solectron like that shown in Fig. 3 is
adiabatically heated via a Langevin equation for the
lattice particle [Ebeling et al., 2009]. Earlier com-
puter simulations [Hennig et al., 2006; Chetverikov
et al., 2009, 2010] have shown that the solectron
is destroyed when the temperature exceeds a cer-
tain value Tdestr ∼ 0.1D. New computer simula-
tions for the present work in the case illustrated
in Fig. 3 but with α = 1.5 and V = 0.3 confirm
the earling findings. One may observe (Fig. 5) that
the solectron is destroyed when the temperature
exceeds Tdestr ∼ 0.1D and hence the electron proba-
bility density either starts spreading over the lattice
at small V [Fig. 5(a)] or goes to form a polaron at
large V. For D = 0.1 eV, Tdestr ∼ 100K when also
other isolated freely moving thermally excited soli-
tons are clearly seen in the lattice [Fig. 5(b)]. Such
a value may be inferred from the curve of the adi-
abatic temperature increasing in time not shown
here. Another possible configuration of the elec-
tron pair at high values of the Hubbard–Coulomb
local repulsion strength looks like a pair of two
solitons sharing the probability density of the two-
electron state, one with spin-up and the other with
spin-down.

In conclusion, the solectron quasiparticle is a
new charge carrier that generalizes the polaron due
to the added lattice anharmonicity. Pairs of solec-
trons form a boson. We have considered here only
individual solectron pairs embedded in a 1D lattice.
The question of whether high density of (boson)

solectron pairs may be created and may lead to
a boson conduction phase requires further research
work. In fact, as the n.n. lattice dynamics used pre-
cludes long range order in 1D (at nonzero absolute
temperature) we must consider 2D lattices. Accord-
ing to our preliminary numerical findings we fore-
see that such a new conduction phase is stable only
in a bracketted finite range of temperatures, cer-
tainly limited from above due to possible lattice
melting and metastable at low temperatures, when
not enough number of thermal solitons and solec-
tron pairs are excited.
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