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We investigate the stochastic dynamics and the hopping transfer of electrons embedded into two-dimensional
atomic layers. First we formulate the quantum statistics of general atom - electron systems based on the tight-
binding approximation and express - following linear response transport theory - the quantum-mechanical time
correlation functions and the conductivity by means of equilibrium time correlation functions. Within the
relaxation time approach an expression for the effective collision frequency is derived in Born approximation,
which takes into account quantum effects and dynamic effects of the atom motion through the dynamic structure
factor of the lattice and the quantum dynamics of the electrons. In the last part we derive Pauli equations
for the stochastic electron dynamics including nonlinear excitations of the atomic subsystem. We carry out
Monte Carlo simulations and show that mean square displacements of electrons and transport properties are in
a moderate to high temperature regime strongly influenced by by soliton-type excitations and demonstrate the
existence of percolation effects.
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1 Introduction

In preceding works [1–8] a soliton-mediated new form of non-Ohmic fast electric conduction has been proposed
and studied in detail albeit mostly for one-dimensional (1d-) systems. In recent work we extended these studies
to two-dimensional systems of electrons and atoms using adiabatic semi-classical approximations [4, 5, 7–11].
Here we formulate the quantum statistics based on the tight-binding approximation (TBA) and derive Pauli-type
kinetic equations. We consider a highly disordered atomic system, e.g. an atomic monolayer on a surface or a
layer imbedded into a 3d-system in which an electronic plasma system is embedded. The electron concentration
is in our model rather low and assumed to be generated by doping, the dynamics is manly determined by the
electron-atom and by the atom-atom interactions.

Here we do not have in mind any kind of concrete system but we may think about the electron plasma in
the Cu O2 layers of Cuprates which are coupled to nonlinear oscillations of the oxygen atoms [12]. One may
hope that a better understanding of the nonlinear excitations of such two-dimensional plasmas my contribute to
the better understanding of the electronic properties of such systems [13]. Indeed there is some experimental
evidence suggesting that in this type of conducting systems, anharmonic effects may play a key role [12–17].

As we have shown in [6] by using a generalization of the Kubo-Zubarev method [18–23], the complete infor-
mation on the lattice excitations may be taken into account by the dynamic structure factor. This procedure is
particular useful for studying the influence of nonlinear excitations of the atomic lattice on conductive properties.
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In difference to earlier work [2, 6] we use here the tight-binding approximation [24–26] as more appropriate to
the kind of problems treated here [26].

The central physical problem we study is the coupling of the nonlinear atomic lattice excitations to the dy-
namics of the electrons. The physical basis for such a coupling is the polarization interaction between electrons
and atoms. As in our earlier works [6, 8, 11] we assume the Buckingham model potential for the polarization
interaction between the atoms and the electrons,

V pol
ea (r) = − Ueh

4

(r2 + h2)2
. (1)

The long-range behavior is given by the polarizability of the atom, V (r) ∝ r−4, whereas a cut-off parameter h
is introduced to obtain a finite potential energy Ue at zero distance. Considering an atomic configuration {Rn},
n = 1 . . . N , where the position Rn of the nth atom may change with time, the total electron potential due
to the atoms is Vea(r) =

∑
n V

pol
ea (r − Rn). We assume that the density of the electrons is low so that their

interaction and quantum degeneracy can be neglected. Since the polarization potential is attractive, in equilibrium
the electrons will be concentrated around regions of highest atomic density.

The atoms interact with an anharmonic potential. We use here the Toda-Morse like exponential interaction [4].
Our aim is to show that the electron carriers form a supersonic solitary wave that builds upon the anharmonicity of
(positive) ion interactions. The supersonic soliton carrier proposed in Refs. [3–10] comes from anharmonicity in
the lattice dynamics before the electron-lattice interaction is introduced. When the latter is added we can foresee
a redefinition of the evolution with a new effective anharmonic Hamiltonian incorporating e,g. the Toda-Morse
exponential interaction [4].

In view of the above in the present work we look at the problem from the general approach provided by the
linear response transport theory [18, 19], thus connecting transport coefficients, like electric conductivity, with
equilibrium correlation functions. One advantage of this method is that the formulation is independent of the
dimension of the sample. From such a perspective we have a theory valid also in two-dimensional or quasi two-
dimensional materials in a heat bath without assuming external driving of the excitations. Before embarking in
such an approach it is worth recalling a few features about electric transport in electron-atom systems.

Present-day theories of thermal and electric transport processes in electron-atom systems like solids or plasmas
do take into account different elementary excitations like phonons, polarons, plasmons, and excitons [33, 34, 37,
38]. For a survey of transport theory of dense Coulombic systems including solids and dense plasmas we refer
to [20–23, 39]. As the coupling of electron modes with phonon modes is well understood it is thus clear why we
here explore the possibility of interaction of electrons with soliton modes.

2 Hopping dynamics of the electron - atom system

2.1 Hamiltonian in tight-binding approximation

We study a d-dimensional system of atoms (d = 1, 2, 3) and embedded electrons which may carry electric current.
For illustration we restrict to 1d -, or 2d- lattices in order to assess the influence of nonlinear excitations on the
conductivity. The system consists of N atoms forming a disordered lattice with rest positions R(0)

n , n = 1 . . . N,
and one or several electrons with periodic boundary condition. Electroneutrality is given by a compensating
homogeneous background charge density. The dynamics of the system is given by the Hamiltonian

H = Hlattice +Hel +Hlattice−el. (2)

The lattice part of the Hamiltonian, Hlattice, models dynamical changes of the equilibrium positions of the atoms,

Hlattice =
N∑
n

p2n
2M

+
1

2

∑
m,n

Vaa(Rn −Rm). (3)

We approximate the potential of the forces between two atoms by the Morse-potential

V Morse
aa (r) = D [exp(−2B(r − r0))− 2 exp(−B(r − r0))] ; (4)
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816 Chetverikov et al.: Hopping transport of electrons

D is the breakup energy of a bond, B is the range parameter of the Morse potential (otherwise called the lattice
stiffness), and M denotes the mass of an atomic unit. Instead of the stiffnes B we will use later the dimensionless
stiffness b = Bσ, which usually has values in the range b = 1 − 10. Alternatively, we can also introduce
Rn −R

(0)
n that quantify the relative displacements of the atoms from their equilibrium positions. The atoms are

composed of the ion cores with strongly bound electrons that are not excited to higher states. In general, they
have a spin as additional degree of freedom, for instance in the case of hydrogen. We will not consider spin states
in the present calculation. The electron part of the Hamiltonian, Hel, describes the electrons that are added to
the atomic system. Instead of free electron states interacting via the Coulomb potential, we start from the tight
binding approximation where the additional electrons are localized at atom sites so that they are coupled to the
lattice degrees of freedom.

The interaction of the additional electrons with the neutral atoms is given by the polarization potential, that has
for large distances the asymptotic form V pol(r) ∼ αe2/(2ε0r

4) with the atomic polarizability α. For example,
in the case of hydrogen we have α = 4.5a3B . Here a bound state is found in the singlet channel of the bound and
attached electron, with binding energy 0.754 eV. Because of the Pauli principle, no bound state is observed in the
spin triplet state. As a specification of the polarization potential discussed in the Introduction, we will adapt the
screened Buckingham potential for the electron-atom interaction [22],

Vea(r) = − αe2

2ε0(r2 + h2)2
(1 + κr)e−2κr. (5)

For hydrogen, different values of the cut-off parameter h can be found. To reproduce the exact value of the
interaction potential at r = 0, Buckingham found h = 1.4565aB [22]. To reproduce the correct binding energy
of H−, the value h = 1.033aB has been obtained [28]. The factors containing the screening parameter κ reduce
the polarization potential, as given by the Debye screening. Note that we neglect here screening effects (κ = 0)
assuming a low enough density of electrons. Note further that different mechanisms are possible if the neutral
system interacts with a charged particle. The polarization of neighboring atoms is related to the polarization of
the lattice leading to the polaron. In the case of ideal plasmas, Debye screening accounts for the polarization of
the surroundings.

To study the evolution of the additional electrons interacting with the atoms, we assume a tight-binding model
Hamiltonian of hopping type [21, 24–26]

Hel =
∑
n,m

En,mc+n,mcn,m +
∑

n,n′,m

tn,n′,m(Rn′ −Rn)c
+
n′,mcn,m (6)

with the matrix elements

En,m = 〈n,m|H0 + Vea|n,m〉; tn,n′,m = 〈n′,m|H0 + Vea|n,m〉 , (7)

m denotes the internal quantum number of the electron state that is bound to the atom at site Rn. In the following
we will assume for simplicity, that there is only one internal quantum state per atom. In particular, the additional
electrons can be in a localized, bound state, but they can also form extended states when they are excited above
the edge of continuum. We will drop the internal quantum number m in the following. If necessary, the internal
state that characterizes the orbit as well as spin, can be included in the quantum number n. Now, we get [29]

Hel =
∑
n

Enc
+
n cn +

∑
n,n′

tn,n′c+n′cn , (8)

The matrix elements En, tn′,n are functions of the atomic configuration {R1, ...,RN} that describe the coupling
to the lattice. The diagonal terms contain in addition to the atomic binding energy E0 also the polarization
interaction with the other atoms. We will use the simple assumption that the eigenvalues are shifted like the
polarization potential

En � E0 −
N∑

n′=1

Ueh
4

[(Rn −Rn′)2 + h2]
2 . (9)
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As a consequence, the energies En form a rather complex landscape that is determined by the atomic positions
{R1, ...,RN} and leads to a distribution of the energy levels with density of states D(E). In the 1d-case in a first
order approximation a linear Holstein model may be used [4, 5]. Note that this coupling to the lattice is closely
related to the contribution to the electron-lattice interaction introduced by Davydov [4, 5]. The transition matrix
tn,n′ is a fluctuating quantity depending on the atomic distances, tn,n′ = t(Rn′ −Rn). In the following we will
assume an exponential decrease, as earlier suggested by Slater [30]

tn,n′ = t0 exp[−αhop|Rn −Rn′ |] . (10)

The range parameter αhop can be related to the tunneling probability that decreases exponentially with distance.

2.2 Dynamics of the atom subsystem

For the heavy atoms, mass m, we assume that they obey classical Langevin dynamics. We include a phenomeno-
logical damping γn. In the presence of random forces ξn(t) (hence non zero temperature that determines the
strength 2Dv) and also external forces, the evolution of the nth atom is described by the Langevin equations
(n = 1, 2, .., N)

dvn

dt
+

1

m

dH

dRn
= −γnvn +

√
2Dvξn . (11)

The stochastic forces (with diffusion coefficient Dv) model a surrounding heat bath (Gaussian white noise). The
factor γ describes the standard friction frequency acting on the atoms from the side of the surrounding heat bath.
The validity of an Einstein relation Dv = kBTγ/m is assumed, where T is the temperature of the heat bath and
kB is the Boltzmann constant.

Let us assume that the atoms are randomly distributed according to the canonical ensemble. The atomic
dynamics in nonlinear lattices is described by the dynamic structure factor, which is defined as

S(q, t) =
∑
n,n′

exp {iq · [Rn(t)−Rn′(0)]} . (12)

The Fourier transform with respect to time is given by

S(q, ω) =

∫
dt exp(iωt)S(q, t). (13)

More information on this function is given elsewhere (see Refs. [3, 6, 40]). The function S(q, ω) for classical
systems of particles is known from theoretical estimates and from experimental studies based on investigations
of inelastic neutron scattering. It contains the harmonic excitations (phonons) as well as non-linear excitations
(solitons). Note, however, that the knowledge about dynamic structure factors for two- and three-dimensional
conductors is quite limited [23, 41, 42]. The Hamiltonian describes the influence of the atomic motion to the
electron dynamics, the feedback of the electron dynamics on the atomic motion is neglected. Any cluster of
moving atoms generates a potential hole in which electron density might be concentrated and any displacement
of the atoms changes the polarization energy. The electron will follow these changes. This means that the run-
ning local compressions generate a complex landscape with rather deep moving potential wells, which strongly
influence the local dynamics of the electrons and possibly even capture the light electrons. In order to illustrate
these structures we may use the simplest classical approximation and assume that the electron density follows the
Boltzmann distribution (normalized to 1)

n(r) =
exp(−βVea(r))∫
dr′ exp(−βVea(r′))

. (14)

where Vea(r) is the total local potential at the position r of an electron. An example of the distribution of the
polarization potential is shown in Fig. 1.
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818 Chetverikov et al.: Hopping transport of electrons

Fig. 1 Snapshot of typical landscape of the polarization
potential on a thermal lattice, created by the solitonic ex-
citation in a 2d-lattice with 10 × 10 particles (parameter
values b = B, σ = 3, T = 2). The colors represent the
levels of potential, only the highest peaks are displayed.
(Online color: www.cpp-journal.org).

3 Transport theory of electron hopping in nonlinear lattices

3.1 Linear response theory

In our previous work we studied already the influence of solitonic excitations on the conductivity of electron
plasmas in the framework of classical and semiclassical descriptions [6]. As the most important result we may
consider that the solitonic excitations may lead to an increase of the conductivity. This is due to an increase of
the long correlations in the dynamics of the electrons and a corresponding decrease of the collision frequency in
the plasma. Note that the mechanism of hopping conductivity is somewhat opposite to the mechanism of plasma
conductivity. In plasma conductivity the unperturbed state is the free motion of the electrons, the perturbations
are the acts of scattering. In the case of hopping, the unperturbed state is the rest of the electron in one of the
bound states, the perturbation is the transition, the hopping to a different state.

In linear response theory, transport coefficients are obtained from equilibrium time correlation functions. In
the framework of quantum statistics an average is defined as [6]

〈A;B〉ω−iη =

∫ ∞

0

dτ exp[−(η + iω)τ ]
1

β

∫ β

0

dλTr [ρ0B(τ − i�λ)A] . (15)

where ω denotes the frequency of the external perturbation, and η → +0 after the thermodynamic limit is
taken. The time dependence is according to the Heisenberg picture with respect to the system Hamilton Hs,
B(t) = exp(iHst/�)B exp(−iHst/�), and ρ0 = Z−1 exp(−βHs + βμ) is the grand canonical distribution. In
the classical, nondegenerate limit, the operators are commuting variables so that the λ-integral can be dropped.

The time correlation function of the electron is the essential quantity which determines transport properties as
e.g.:
(i) conductivity,
(ii) diffusion and mean square displacement,
(iii) reaction rates.
Most transport properties are determined by the correlation time or more general by the integral over the velocity
correlation function, as e.g. the diffusion coefficient, the static conductivity and the mean square displacement:

D � 〈v; v〉0, σ =
e2

kBT
〈v; v〉0, 〈δx(t)2〉 � 〈v; v〉0t. (16)

3.2 Hopping conductivity

Let us study now the velocity-velocity correlation function. The position operator of the Ne electrons embedded
into the atomic subsystem is denoted by R =

∑Ne

j rj . Following [21] we proceed as follows. We start from the
average velocity

〈Ṙ〉t = Tr(ρ(t)Ṙ) (17)
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and represent the position operator in the hopping form

R =
∑
n

Rnc
+
n cn. (18)

This way we find for the derivative

Ṙ =
i

�
[Hlattice−el,R] =

i

�

∑
nn′

tn,n′(Rn −Rn′)c+n′cn. (19)

In the framework of an adiabatic approximation we assume now that the positions of the lattice particles are fixed
for a moment, so that we have to follow only the fast electron dynamics. The coupling of the electrons to the
external field E is described by

HE = −eE ·R . (20)

Following [24–27, 29] we have

〈j〉 = Tr(ρj) =
e

V
Tr(ρṘ) = σE (21)

and represent this in the hopping form. In a first approximation we neglect dynamical disorder, in particular
solitonic excitations, and consider the atoms on a lattice. Then by introducing the derivative into eq.(21) we
find [29] the first contribution to the current

j1 =
βe2

2ε0�V

∑
n,n′

|tn,n′ |2(Rn −Rn′)E(Rn −Rn′)fn′(1− fn)E(n, n′) . (22)

Two comments are needed:
1) In our expression for the current appears a term fn′(1−fn). This is a weight factor for the transitions n′ → n.
These transitions occur with the weight fn′ if and only if the state n is free as expressed by the weight factor
(1 − fn). The factor fn′(1 − fn) is responsable for the fact that the biggest contribution to the integrals comes
from the region around the Fermi level. Effects connected with degeneration will be discussed in a subsequent
work.
2) We separated a term E(n, n′) which denotes the energy conservation and is defined by

E(n, n′) = 2πδ(En − En′) (23)

Corresponding to eq. (22) we get a contribution to the conductivity

σ1 =
βe2

2ε0�V

∑
n,n′

|tn,n′ |2(Rn −Rn′)2fn′(1− fn)E(n, n′) (24)

We will call this the direct conductivity induced by the external field. The problem is that the expression (24)
gives the correct conductivity only for ”regular” lattices. Our atom distributions, however, are very nonuniform,
and we may have therefore a second contribution to the conductivity which stands for the nonuniformity [24–27]

j2 =
βe2

2ε0�V

∑
n,n′

(Rn −Rn′) [δμn′ − δμn] tn,n′fn′(1− fn)E(n, n′) (25)

Here the quantity δμn describes a kind of chemical potential change due to the redistribution of the particles at
the nth site. In a system with regular lattice, i.e. in the presence of translational symmetry, such a redistribution
does not occur, i.e. we have δμn = 0 for all sites. However in the nonuniform case, applying a field the charges
are redistributed as a reaction of the external field. According to the principle of minimum entropy production of
Prigogine, this reaction of the system will enhance the conductivity obtained from eq.(24). Because the estimation
of the additional, diffusive current is a nontrivial task that needs the self-consistent determination of δμn, see [21],
we will restrict our study to the direct current, thus limiting the validity of our results to the region of not too
strong deformations of the lattice.
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820 Chetverikov et al.: Hopping transport of electrons

3.3 Open systems

The formulae derived so far, correspond to a closed system which conserves energy in each microscopic act
which is expressed by the delta function E(n, n′). Our system is open since the lattice is embedded in a heat
bath modeled by the damping and the noise in the Langevin equation. In order to realize the transition to open
systems we replace the delta-function E(n, n′) by some temperature function which should model the influence
of the heat bath similar to that proposed in [8] and following the lines developed in [24,26]. We use the following
”ansatz”

E(n, n′) = exp[−β

2
(En − E′

n)]F (n, n′), (26)

F (n, n′) = F (En − E′
n) (27)

where F (En − E′
n) is an even function of the difference of the energy levels. There are several variants for this

even function F (x) given in the literature [26]. The simplest is defined by the phenomenological ”ansatz” of the
Monte-Carlo procedure, where downhill transitions are weighted with E = 1 and uphill transitions with a factor
less than unity [32]. This corresponds to the F -function.

F (En − En′) = exp[−β

2
|En − E′

n|] (28)

Proper statistical derivations of the thermal factors may be based on specific microscopic models of the heat bath.
Böttger and Bryksin [24, 26] derived the following general expression

F (En − En′) =

∫ ∞

−∞
exp[

i

�
τ |En − En′ |]K(|τ |)dτ, (29)

where K(|τ |) is a rapidly decaying memory kernel. The decay of these correlations is connected with the damping
of lattice-particle motion. In the simplest case we may assume here an exponential decay with the same damping
constant as appears in the above introduced Langevin dynamics. This leads to the Lorentz profile obtained also
in other work [43]

F (En − En′) =
V0

�

γ

γ2 + (|En − En′ |)/�)2 (30)

In the limit of small damping we come back to the delta-function in the Pauli expression for the transition proba-
bilities.

The same argument can also be given in the quantum statistical approach where correlation functions
〈A;B〉ω−iη have to be evaluated, see [44]. The parameter η can be interpreted as inverse relaxation time to
bring the statistical operator to the relevant distribution. Such relaxation processes are due to all interactions that
are not explicitly treated in the Hamiltonian Hs. In particular, the excitation of phonons or the Langevin dynam-
ics of the atoms are such processes. As long as they are not explicitly included in Hs, they can be accounted for
by an effective relaxation time, i.e. a finite value of η. A finite value of η gives immediately the Lorentz profile
(30) calculating

∫∞
0

dτ exp[−(η + iω − (i/�)(En − En′))τ ]. Another simple approximation for the thermal
factor is the Monte Carlo procedure, which we will use in the next section.

So far we formulated all equations in the framework of an adiabatic approximation with respect to the lattice
dynamics. All quantities appear as slow functions of the atomic positions in the lattice. That means all quantities
have still to be averaged over lattice positions following the dynamics over certain time interval. In particular,
the configurational average gives the probability D(E) of the energy levels (diagonal disorder) that has to be
considered for the energy conservation discussed above.

In principle this averaging may be avoided, if the structure factors of the lattice are known. In order to introduce
the structure factors into the transport theory we may proceed as shown in our previous work [6] replacing the
plasma Hamiltonian by the hopping-type Hamiltonian (8).
We consider the transition matrix

tn,n′ = t(Rn′ ,Rn) = t(rn,n′); rn,n′ = Rn′ −Rn (31)
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and introduce the Fourier transform of the transition matrix t(q) =
∫
d3r exp(iq · r)t(r). We proceed as above

by perturbation theory and introduce the dynamic structure factor as defined above and the corresponding Fourier
transform S(q, ω). This way we find within perturbation theory the generalization of Eq. (24)

σ =
πβe2

ε0�V

∑
nn′

∫
dq|t(q)|2fn′(1− fn)

d2

dq2
S

[
q,

1

�
(En′ − En)

]
exp(β(E′

n − En))− 1

β(E′
n − En)

. (32)

4 Stochastic electron dynamics on thermal lattices

So far our analysis has been based on the Schrödinger equation for the electrons in the tight binding approximation
which is coupled to the Langevin equation for the classical lattice particles. This tacitly assumes the existence of
a heat bath in which the lattice particles are embedded. In principle this picture provides a complete description
of the coupled lattice-electron dynamics. The irreversibility is guaranteed by the friction-noise terms in the
Langevin- equations (3). As shown in [4, 5] we may describe this way also irreversible solitonic excitations at
finite temperature. However, a serious problem connected with this approach are the very long relaxation times
of the electrons due to the large differences between the time scales of the electrons and the lattice particles. This
leads to some difficulties in extensive simulations. In the standard theory of electronic transport this problem
is solved by Boltzmann-type descriptions or by Fokker-Planck-type equations, which introduce an irreversible
behavior [18, 19]. The main problem is here to give a correct description of the coupling to the heat bath. In our
case of the tight binding systems, the situation is somehow simpler due to the discrete character of the electronic
states, which allows a description by discrete Markov chain equations [8, 24, 26, 43]. The Markov approach to
electron dynamics goes back to Pauli’s (1928) seminal work [31]. Pauli started from the Schrödinger equation
and derived by perturbation theory a Markov chain description and an expression for the transition probabilities.
He introduced an irreversible master equation expressing the balance between the transitions in an ensemble.
Pauli’s equation is valid for a microcanonical ensemble and neglects symmetry effects. Further extensions took
into account the symmetry of the wave functions and offered a description compatible with the statistics of Bose-
Einstein or Fermi-Dirac. Later generalizations are connected with the development of Metropolis algorithms for
canonical ensembles [32]. Applications to hopping conduction in solids were given since the seventies by several
authors [24, 26]. First applications of the master equation formalism to electron transfer in macromolecules are
due to [43]. The system we are studying here is rather difficult and seems to be too complicated to be treated in
full detail. We have:
(i) quantum electrons located in discrete states, which are coupled to a heat bath and to the classical lattice,
(ii) classical lattice particles coupled to the heat bath and to the quantum electrons.
(iii) the heat bath with an unspecified internal dynamics.
An additional difficulty is connected with the very large difference between the electronic and the lattice time
scales which was mentioned above.
To simplify this situation we postulate here that the thermal electrons allow a Markov description. Thus we
move from the reversible Schrödinger equation for the occupation numbers in the tight-binding model to an
irreversible Pauli master equation description [19, 31]. Following Pauli’s method we postulate a master equation
for the occupation probabilities of electrons pn of the state n, given here by the position Rn with the energy En:

dpn
dt

=
∑
n′

[Wnn′pn′ −Wn′npn] . (33)

The transition probabilities were derived by Pauli using perturbation theory for microcanonical ensembles (transi-
tions in a narrow energy shell). For comparison, in the Schrödinger equation approach also nondiagonal elements
of the density matrix occur that are in general not small. We neglect here this problem and assume that we have
found already an appropriate unitary transformation which makes the nondiagonal elements sufficiently small
to satisfy the conditions of the perturbation approach. With this assumption the transition probabilities for the
tight-binding model read [8, 31, 43]

W0(n, n
′) =

t20
�
exp[−2αhop|Rn′ −Rn|]2πδ(En − En′), (34)
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where n′ = n ± 1 and δ(x) is Dirac’s delta function. The transitions from state n to a state n′ at one of the
nearest-neighbor sites should correspond to the same energy level (or to a level within a narrow shell). In the
case of a dissipative embedding, the situation is more complicated due the interaction of the electrons with the
dissipative heat bath. Taking into account the heat bath we assume the structure

W (n, n′) =
t20
�
exp[−2αhop|Rn −Rn′ |]E(n, n′, β). (35)

Instead of a delta-like shell we have now a Lorentz-like profile around it. In in the limit of narrow profiles these
expressions converge to the Pauli formula with a delta-like factor. Temperature effects are to be included. When
the electrons are embedded into a heat bath together with the thermal lattice particles [24, 26], the temperature-
dependent thermal factors E(n, n′, β) are not symmetric with respect to the arguments but they are subject to the
condition of detailed balance

W (n′, n)
W (n, n′)

= exp[β(En − E′
n)]. (36)

corresponding to the relation of Boltzmann factors.
The simplest way to satisfy the condition of detailled balance is the Monte Carlo algorithm which we will use
here. For the transition rates (35) we take, see Eq. (28),

E(n, n′) = 1 if En < En′ , (37)

E(n, n′) = exp[−β(En − En′)] if En > En′ . (38)

A simplified form for the 1d-case was used in ref. [8]. The master equation in the given form is a useful tool
for computer simulations of irreversible (non-coherent) electron hopping processes. Since the detailed balance is
obeyed, it is guaranteed that in thermal equilibrium an H-theorem is valid and any initial distribution converges
to the canonical distribution, which is the target distribution of the master equation.

In order to simplify our computer simulations we used so far only the simplest ”ansatz”, the Monte Carlo
procedure described above. The Pauli system of equations contains several approximations, however it provides
a rather fast and therefore useful tool for the simulations of the electron-lattice dynamics in thermal systems. Fig.
2 illustrates results of computer simulations for the case that two fixed wells, depth 2 (in our units 2D), at the
atoms with positions n = 30 and n = 70 are present. We studied two different initial conditions. In the first case
the initial electron density is uniformly distributed. In the second case we initially have a delta-like distribution
in between both wells at position n = 50. We see that the relaxation to a canonical distribution with two peaks
around the positions of energy wells is rather fast, in a few time units the final distribution is reached. In this
respect the Pauli equation describes a basically different behavior as the Schrödinger equation, see Fig. 3. In the
latter we have a reversible description and see a periodic return to the initial state. In the Pauli description the
behavior is irreversible which is due to the neglect of non-diagonal terms of the density matrix. As reason for the
decay of non-diagonal elements the coupling to a surrounding heat bath may be considered.

We show the difference between a Pauli dynamics and a Schrödinger dynamics in Figs. 2 and 3. The evolution
of densities in time is irreversible in the Pauli description and is quasiperiodic in the Schrödinger picture. The
quasiperiodicity is is due to the reversibility of the Schrödinger equation which is in our example only weakly dis-
turbed by the coupling to the irreversible low-temperature Langevin dynamics. We observe coherent motions of
the electron density between the two wells which is tunneling-like. In the Pauli dynamics the coherence between
the phases is destroyed and we see an irreversible approach to canonical distributions.This is a major difference
and the choice of the description might depend on the question we ask.Here we concentrate on transport processes
based on irreversible phenomena.

We mention also that due to the way we treat electron relaxation effects there are also differences between the
methodology using the coupled Pauli and Langevin equation system and that using adiabatic approximations at
least for small and for moderate values of adiabaticity τ ∼ 1. Here the parameter of adiabaticity τ = V0/�ω0

denotes the relation between the characteristic time of lattice oscillations 1/omega0 and the electron hopping
time �/V0. For large τ , the electron relaxation in the heat bath may be considered as very fast and the distribution
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Fig. 2 Morse lattice. The Pauli equation evolution of the electron density for a one-dimensional lattice with 2 energy wells
and the temperature T = 0.01 for two initial electron distributions. The irreversible dynamics is illustrating the H-theorem.
We study the dynamics of the electron density for the case that the fixed wells are located at n = 30 and n = 70 and have the
depth En = −2. Left panel: The initial electron density is uniform.: Right panel: A “localized” (delta-like) initial condition,
as time proceeds, splits into two peaks around the wells. Parameter values T = 0.01, N = 100, α = 0. The parameter of
adiabaticity has the value τ = V0/�ω0 = 10. (Online color: www.cpp-journal.org).

Fig. 3 Morse lattice. The tight-binding Schrödinger evolution of the electron density on a one-dimensional Morse lattice at
the temperature T = 0.01 with two energy wells and delta-like initial electron distributions. The plots illustrate the quasi-
reversible dynamics including coherent motions. The electron density corresponds to two fixed wells with depth ε0 = −5
and a distance 10 (left panel) and a distance 18 (right panel). Parameter values T = 0.01, N = 100, α = 0.1, V0 = 0.1 and
τ = 10. (Online color: www.cpp-journal.org).

may be approximated by a local Boltzmann- or Fermi distribution as shown in ref. [8]. For small and moderate
values of the τ -parameter, say for τ � 10 − 20, the approach based on the Pauli equation is most useful,
since it provides information on deviations from the adiabatic approximation. Our approximation based on the
Pauli method goes beyond the adiabatic approximation since the lattice dynamics and the electron dynamics are
treated independently including their coupling. Recall that in a strict adiabatic approximation one assumes that
the electrons adapt “instantaneously” to any change in the lattice. In other words one assumes that the electrons
follow in a very fast way to the new atomic configuration and may be described at any time by the canonical
distribution [9]. In the present approach based on Pauli’s method we take into account that the electrons need
time to follow the lattice motions what leads to certain delay in their response and to some deviations from the
stationary solution.

5 Mean square displacement and transport coefficients

The simplest transport property is diffusion. Many other properties are simply related to this as explained above.
Our access to diffusion is through the Einstein relations for the mean square displacement. Let as first discuss
some basic aspects. As well known, the spreading of the wave packets according to the Schrödinger equation is
not a diffusion process. In the Pauli-type description the irreversible aspect of the diffusion process of the electron
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density is correctly described as discussed above. Therefore we will concentrate here on the Pauli description.
Figs. 4 and 5 obtained from Pauli dynamics simulations illustrate how the spreading of the electron density, which
is diffusion-like, is strongly influenced by the excitations of solitons in the lattice. We observe that the thermal
solitons create a kind of diffusive channel which stabilize the diffusive character of the spreading as earlier noted
for the 1d-case. In order to investigate the diffusive transport we made several simulations with a delta-like initial
distribution of the electrons for different times and calculated by averaging the ”effective” diffusion coefficient.
An example for the spreading of the wave function in the 2d case is shown in Figs. 4 and 5.

Fig. 4 Morse lattice. The spreading of the electron density in a two-dimensional cold lattice (T = 0.001) for a “localized”
(delta-like) initial distributions at 6 subsequent time instants: t = 0.001, 0.01, 0.1, 1.0, 2.0, 4.0. Parameter values N = 400,
b = Bσ = 4, α = 0.1, and τ = 20. (Online color: www.cpp-journal.org).

This ”effective” diffusion coefficient may be estimated on the basis of the Einstein relation for the mean square
displacement. For the one-dimensional case the mean square displacement is connected with time and effective
diffusion constant by the relation

〈(δn)2〉t = 2Defft. (39)

Here n(t) is the position (the site) for an electron which starts at n0 at t = 0. The average is to be done as follows.
First, the average with respect to the distribution is to be taken

〈(δn)2〉t =
∑
n

(n− n0)
2pn(t). (40)

Further we have to average over many realizations of the lattice dynamics. Some results for the 1d-case are given
in Fig. 6.
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Fig. 5 Morse lattice. The spreading of the electron density for “localized” (delta-like) initial electron distributions on a
2d-lattice for a fixed time instant t = 1 after the start for 6 increasing temperatures T = 0.0006, 0.006, 0.3, 0.6, 1.0, 1.54.
Parameter values: N = 400, α′ = 0.5 and τ ′ = 10. (Online color: www.cpp-journal.org).

Fig. 6 Estimate of the diffusion constant as a function of temperature for Morse lattices. Left panel: Data obtained in ref. [8]
for 1d-Morse lattices by simulations with the Master equation in combination with the Langevin equation. Particle number
N = 200, stiffness of the Morse atoms b = Bσ = 1, parameters of the electron-lattice interactions α = 1, χ1 = 0.1.
The few points outside the main curve were obtained within the Langevin -Schrödinger-TBA-model for the electron-lattice
parameters α = 1.75, χ1 = 0, the increase of the values in comparison to the curve are due to contributions of coherent
transport. Right panel: Estimate of the diffusion constant as a function of temperature for two-dimensional lattices obtained
by simulations with the master equation in combination with the Langevin equation. Parameter values: α = 0.5, τ = 10,
N = 400, b = Bσ = 4. (Online color: www.cpp-journal.org).
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In the 2d-case the mean square displacement is defined as

〈(R(t)−R(0))2〉 =
∑
n

(Rn −R0)
2pn(t). (41)

Finding this expression as a function of time we may estimate the effective diffusion coefficient from

〈(R(t)−R(0))2〉 = 4Defft. (42)

We note that the master equations are not closed, they still depend on the particle coordinates. The corre-
sponding equations for the lattice particles was investigated for the 1d case in Ref. [8]. We calculated the mean
square displacement for several temperatures and represented the mean square function d(t) from simulations by
a linear fit. For T < 0.1 no good approximation by a straight line could be achieved since the shape of the curves
d(t) is not a linear function of time. For 0.1 < T < 0.5 we found a nice quasi-linear shape for all t. On the
basis of several sets of computer simulations with the master equation we obtained the curve shown in Fig. 6 (left
panel). The values of Deff below T � 0.1 have to be considered as extrapolations. The effective diffusion shows
a maximum around T � 0.4. This observed maximum is compatible with some predictions given in earlier work
based on a different semiclassical model [6]. The prediction based on the semiclassical model was that solitonic
excitations are expected to significantly enhance diffusivity first, then reaching a maximum and then going to a
decrease [6, 8]. The maximum was expected at temperatures where the specific heat has a turning point that is
around T � 0.1− 0.5.

For comparison we did also some simulations on the basis of the Langevin-equation coupled to the TBA-
Schrödinger equation. The results for several temperatures are depicted in Fig. 6 by dots. Here we observe
a continuous decrease of Deff(T ) with T which looks as a hyperbola. The diffusion coefficient as a function
of temperature was estimated for the Schrödinger-TBA-model with the parameter values α = 1.75, χ1 = 0,
N = 200, Bσ = 1. The increase of the values for the diffusion constant might be interpreted by contributions by
coherent transport which is not taken into account in the Pauli equation.

From the physical point of view the most interesting result is the decrease of the effective diffusivity with
the increase of temperature. We believe that the pole near T = 0 may be an artefact due to the problems of
consistency between the TBA-Schrödinger equation and the classical Langevin equation. Beyond the maximum
the two descriptions are more or less compatible, taking into account the different value of the αhop-parameter.

In the two-dimensional case the equations of motion are more complicated [11]. Again we assume that the
forces between particles which are supposed to be of the Morse kind and the friction and random forces account-
ing for a Langevin model bath in the case of a heated lattice. For convenience in the 2d lattice dynamics we use
complex coordinates Zn = xn + iyn, where xn and yn are Cartesian coordinates of the n-th particle. Then the
Langevin model coupled to the stochastic dynamics provides the equations of motion for the lattice units

d2Zn

dt2
=

∑
k

[
FM
nk(Znk) + pkF

P
nk(Znk)

]
znk − 2αhop

t0
�

∑
k

exp [−αhop|Znk|]√pnpk

+

[
−γZn

dt
+
√

2Dv (ξnx + iξny)

]
, (43)

where an index n identifies a particle among all N particles of the atomic ensemble, γ is a friction coefficient, Dv

defines the intensity of stochastic forces, ξnx,y denotes statistically independent generators of the Gaussian noise,
Znk = Zn − Zk. Further znk = (Zn − Zk)/|Zn − Zk| is a unit vector defining the direction of the interaction
force FM

nk , corresponding to the Morse potential, and FP
nk, corresponding to the polarization interaction, between

the n-th and the k-th particles. To have dimensionless variables we consider the spatial coordinates normalized
to the length r0 used in the Morse potential. Time is normalized to the inverse frequency of linear oscillations
near the minimum of the Morse potential well, ω−1

M . The energy is scaled with 2D, where D is the depth of the
Morse potential well. Further the parameter b defines the strength of the repulsion between particles. The Morse
interaction force Fnk is given by

FM
nk = FM

nk(|Znk|) = −dV M (r)

dr
|r=|Znk|, (44)
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and the polarization interaction force by

FP
nk = FP

nk(|Znk|) = −dVea(r)

dr
|r=|Znk|. (45)

Here, Ve is the polarization potential defined by Eq. (5) which depends on the characteristic distance h and the
maximal polarization energy Ue. In view of the above only those lattice units with coordinates Zk, satisfying the
condition |Zn−Zk| < 1.5, are taken into account in the sum in Eq. (43). In computer simulations the interaction
of particles is considered to take place inside a rectangular cell Lx × Ly with periodic boundary conditions. We
note that in the essentially classical eqs. of motion (43) there appear terms which couple the classical dynamics
to the quantum master equations. One is due to the dependence of the energy levels on the coordinates of the
atoms and the other on the dependence of the transition probabilities on the Rn.
In the two-dimensional case the calculation of the MSD is a very hard task which requires many simulations
to find valid averages. A first estimate is given in Fig. 6 (right panel). Typical is again a maximum at some
intermediate temperatures. At moderate and at higher temperatures the electronic density fluctuates all the time.
A snapshot of a typical landscape of the quasi-stationary electron density in a thermal lattice, created by the
solitonic excitation in a 2d- lattice with 10 × 10 particles. Results of simulations for the stiffness parameter
b = Bσ = 3 and the temperature T = 0.1 are shown in Fig. 7.

Fig. 7 Morse lattice. Typical snapshots of electron densities in a 2d-system of 20×20 Morse atoms with stiffness b = Bσ =
3 and temperature T = 0.1 Left panel: Distribution of atomic core densities. Right panel: The Boltzmann distribution of
freee (external) electrons in the field of polarized nonuniformly distributed atoms. (Online color: www.cpp-journal.org).

6 Discussion

The system of Pauli equations for the electron dynamics coupled to a classical nonlinear lattice is a very useful
tool to study short time electronic processes in monatomic layers and to estimate transport properties through
the mean square displacement. The Pauli hopping dynamics which we used in this work contains several ap-
proximations. In particular we have in mind the perturbation approximation which restricts our study to not too
strong electron-lattice couplings. Further we neglected screening and Fermi effects, restricting this way our study
to low enough electron concentrations (low doping), such that in particular the difference between the Fermi-
and the Boltzmann distribution can be neglected. In its range of validity, the present method provides a rather
fast and therefore useful tool for the computer simulations of the electron-lattice dynamics in thermal systems.
Figs. 1 and 7 illustrate results based on this approach. Due to the way we treat the electron dynamics there are
differences between the methodology using the coupled Schrödinger equation and Langevin equation system and
that using Pauli’s approach. An advantage of the Pauli approach is, that it takes into account the coupling to
the surrounding modeled as a heat bath. This coupling might be quite essential in the temperature range we are
interested here which is T > 102K. Another advantage of the Pauli method is that it can be easily generalized to
include the influence of spin and symmetry effects. This will be done in a subsequent work. In comparison to the
adiabatic approach used in some previous works [9–11] for one and for two-dimensional systems, the great ad-
vantage is here that we describe directly fast kinetic processes in the layer and can estimated transport processes
as demonstrated for the case of diffusion here. We assumed so far that the electron concentration is generated by
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doping and is rather low, the dynamics is mainly determined by the electron-atom and by the atom-interactions.
Effects of strong Coulomb coupling are not taken into account. A different effect, which is still to be explored
are transition probabilities, which are more interesting than the Monte Carlo algorithm. An open problem is, that
then all results are becoming very sensitive to details of the physical model for the lectron coupling to the heat
bath.
The model which we developed here, is rather general and in this sense more or less universal. We do not have in
mind any kind of concrete system. However, as far as we see, the plasma physics of realistic two-dimensional sys-
tems is still underdeveloped, having in mind many important applications. Several known models of 2d-plasmas
are rather abstract, dealing mostly with the 2d- electron gas. Further there exist a lot of work about quantum
Monte Carlo simulations for parabolic confinement. Here we try to simulate a time-dependent nonuniform con-
finement. Further our aim is here to treat plasmas which are embedded into a heat bath located above or below,
or at both sides. This is, as we believe much more interesting as the treatment of mathematical two-dimensional
plasmas. The price to pay is however, the extreme complexity of the embedding, i.e. the coupling to an external
heat bath. As possible future applications we may think about the electron plasma in the CuO2 layers of Cuprates
which are coupled to nonlinear oscillations of the oxygen atoms (as confirmed experimentally). One may hope
that a better understanding of the nonlinear excitations of such two-dimensional plasmas my contribute to the
better understanding of the electronic properties of such systems, which are in part rather unusual, including in
particular the possibility of high-temperature superconductivity, but this is not our target here. Our aim is a better
understanding of the influence of nonlinear oscillations and waves on the transport properties of such dimensional
plasmas. Beside details of the mechanism, there is indeed some experimental evidence suggesting that in this
type of conducting systems, anharmonic effects may play a key role [12–17].
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