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We discuss here possible models for long-range electron transfer (ET) between a donor (D)
and an acceptor (A) along an anharmonic (Morse–Toda) one-dimensional (1d)-lattice. First, it
is shown that the electron may form bound states (solectrons) with externally, mechanically
excited solitons in the lattice thus leading to one form of soliton-mediated transport. These
solectrons generally move with supersonic velocity. Then, in a thermally excited lattice, it is
shown that solitons can also trap electrons, forming similar solectron bound states; here, we
find that ET based on hopping can be modeled as a diffusion-like process involving not just one
but several solitons. It is shown that either of these two soliton-assisted modes of transport can
facilitate ET over quite long distances.
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Long-range electron tunneling through biomolecules
like azurin and DNA has been studied intensively
both experimentally and theoretically over the last
three decades [Marcus, 1956, 1999; Hopfield, 1974;
Potasek & Hopfield, 1977; Marcus & Sutin, 1985;
Wan et al., 1999, 2000; Winkler, 2000; Gray &
Winkler, 2003, 2005; Bollinger, 2008; Shih et al.,

2008]. However, if one focuses on long-range tun-
neling (beyond 20 Å) and on the transport veloc-
ities measured (near or even at supersonic levels)
not everything has been explained theoretically. To
develop this point, we refer to recent work on the
influence of nonlinear lattice excitations on electron
transfer [Velarde et al., 2005, 2006, 2008a, 2008b;

185

http://dx.doi.org/10.1142/S0218127410025508


February 15, 2010 9:46 WSPC/S0218-1274 02550

186 M. G. Velarde et al.

Hennig et al., 2006, 2007]. It has been shown that
electron trapping by solitons and a new form of
(generally supersonic) electric conduction mediated
by solitons are possible in an anharmonic one-
dimensional (1d)-lattice. Accordingly, in the present
letter we concentrate on explaining how these pre-
dictions may help to understand significant features
of the electron transfer (ET) between a donor (D)
and an acceptor (A). Following the standard pic-
ture, the process occurs along a lattice chain of “b”
steps by crossing a bridge between D and A: D –
b – b –b –b –b . . . . . . . . . –b –b – b – A (Fig. 1).
Here we shall focus only on the transport along the
bridge leaving aside the processes D-b and b-A well
explained by Marcus theory [Marcus, 1956, 1999;
Marcus & Sutin, 1985]. Such a bridge can be con-
sidered as a possible path for one-shot tunneling
between D and A.

We shall study the following possible models
of ET:

(i) If solitons are mechanically excited by an exter-
nal source, then long lasting, stable compounds
or bound states (solectrons) of electrons and
solitons may be formed, which generally move
with supersonic velocity. In principle, the elec-
trons may be carried by these mechanically
excited solitons like a surfer use waves in the
sea or using a bore along a river.

(ii) In a thermally excited system, solitons can be
excited by heating the lattice (phonons are also
excited). These solitons and the correspond-
ing solectrons have a finite life time. Under
these conditions the ET process from D to A
shares features similar to a diffusion-controlled
reaction.

Adopting a 1d-lattice model to portray the
backbone of a polypeptide chain (a biomolecule),
like the above mentioned bridge with elements “b”,

Fig. 1. ET along a biomolecule modeled by a Morse lattice. The excess electron (wave function Ψ) is emitted from site D
(donor) by appropriate energy supply and travels along the bridge or “backbone” lattice made of anharmonic elements down
to the site A (acceptor).

we are interested in the consequences of nonlinear
(running) lattice excitations. Such excitations cre-
ate local regions of very high compression between
neighboring lattice sites, thus increasing the proba-
bility of tunneling of an added excess electron from
one site to another eventually bringing it from D to
A. For illustration, the particular system we have
in mind is the protein azurin, which has been stud-
ied extensively by Gray and Winkler [2003, 2005;
Winkler et al., 1982]. Gray and Winkler focused on
the following sequence of residues in azurin: THR
126, LEU 125, THR 124, GLY 123, LYS 122, MET
121 and the Cu active site. As described by these
authors, mutants were prepared in which Ru(bpy2)
(im)(HisX)+2 was attached to sites 122, 123 and
126, and the tunneling distance associated with ET
between each Ru labeled mutant and the Cu accep-
tor was established: 15.9 Å for X = 122; 17.9 Å for
X = 124; and 26.0 Å for X = 126. An analysis of the
results obtained using the above mentioned classical
Marcus theory for adiabatic electron transfer reac-
tions provided a breakthrough in our understanding
of ET and has led to deep insights on the factors
affecting ET in the above system, particularly the
environmental influence of the protein fold in low-
ering the reorganization energy.

The experiments described above were, of
course, carried out at finite temperature. In a
model-system, temperature can be taken into
account in a very straightforward way by includ-
ing frictional damping (or other nonconservative
forces). The main point here is that accounting for
nonlinear (anharmonic) lattice excitations gives fur-
ther (theoretical) support to quite long-range ET
in proteins. The lattice is supposed to model the
polypeptide backbone that bridges D and A. This
is done by assuming that the restoring forces for
the peptide bonds are assumed to have anharmonic
character. With the above assumptions, several
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parameters need to be assigned to specify the gov-
erning Hamiltonian and implement the model: these
parameters can be extracted from the literature.
First, from the crystal structure of azurin [Crane
et al., 2001], one can calculate the N to N distance
between each of the residues from THR 126 to MET
121. Although the N–N distances change a bit, the
average distance is ∼3.5 Å. Second, the mass of each
residue from THR 126 to MET 121 is known, and
an average mass per residue, ∼100 amu/residue can
be established. Third, the bond dissociation energy
D and the bond stiffness B for the peptide bonds
must be assigned, as we shall do it below by adopt-
ing the Morse potential.

The electron will be considered within the tight
binding approximation [Ashcroft & Mermin, 1976]
while the lattice dynamics will be treated classi-
cally. The lattice interactions are assumed to be
of Morse type (or adapted Toda–Morse, akin to
the Lennard–Jones interaction) [Toda, 1989], hence
allowing for phonon — and soliton — longitudi-
nal vibrations with compressions governed by the
repulsive part of the potential [Chetverikov et al.,
2006a, 2006b]. Thus, we consider a 1d anharmonic
lattice with dynamics described by the Hamiltonian
H = Hlattice + Helectron, with

Hlattice =
∑
n

{
p2

n

2M

+ D(1 − exp[−B(qn − qn−1)])2
}

. (1)

Here M denotes the mass of a lattice particle, the
coordinates and momenta are qn, pn; (n = 1, . . . , N)
and describe their respective displacements from
equilibrium positions and momenta, B character-
izes the stiffness of the spring-like constant in the
Morse potential, D is the depth of the potential
well, and σ defines the equilibrium lattice spacing.
Keeping in mind that the experimental system we
wish to model is azurin, the Morse frequency can
be taken to be of order of a vibration frequency,
viz. ΩMorse = (2DB2/M )1/2 ≈ 1013s−1. Once the
value of the dissociation energy D of the peptide
bond has been set, the value of the bond stiffness B
can be estimated from the harmonic approximation
to the potential in Eq. (1). To get a more global
sense of the interplay between D and B, we list in
Table 1 complementary values of these two param-
eters assuming that the Morse frequency, ΩMorse,
and the mass M per residue have been set as stated
above.

Table 1. Relation between the dissociation
energy D and the lattice stiffness B with the
fixed oscillation frequency ΩMorse = 1013s−1

and the molecular mass M = 100 amu.

D [eV] B [Å−1]

0.1 2.28
0.3 1.31
0.5 1.02
1.0 0.72

For the electron contribution to the Hamilto-
nian we take

Helectron = En(qk)c∗ncn

−
∑
n

Vnn−1(qk)(c∗ncn−1 + cnc∗n−1), (2)

with n denoting the lattice site where the electron
is “placed”; the complex quantities cn give the nth
component of the wave function, and pn = |cn|2
gives the probability of finding the electron residing
at site n. The bound state energy at site n may
depend on the particle shifts of the neighbors. We
shall use the ansatz

En = E0
n + χ0(qn+1 − qn−1). (3)

This is a translation-invariant modification of the
linear shift used by Holstein [1959, 1981] and
Kalosakas et al. [1998, 2003]. The parameter χ0

always has a relatively low value. In fact, in our
computations we shall set it to zero to simplify; the
reason is that we want to suppress effects owing
to energy shifts and concentrate more on the influ-
ence on the transfer elements. The quantity Vnn−1

defines the transfer matrix element responsible for
the transport (hopping) of the electron along the
chain (considering only nearest neighbors). This ele-
ment is the key ingredient, allowing for the cou-
pling of the electron to the lattice displacements,
and hence to the lattice vibrations, phonons or soli-
tons. A reasonable choice for Vnn−1 is

Vnn−1 = V0 exp[−α(qn − qn−1)], (4)

where the parameter α accounts for the strength of
the coupling. Since we shall measure all energies in
units �ΩMorse it is convenient to scale the energy
levels in V0 which gives

En = �ΩMorse[εn + χ(qn+1 − qn−1)], (5)

with εn = E0
n/�ΩMorse and χ = χ0/�ΩMorse (recall

that to simplify we set χ = 0). Further we consider
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the system in a “thermal bath” characterized by
a Gaussian white noise, ξj, of zero mean and time
delta correlated. For the sake of universality, it is
best to rescale quantities and consider a dimen-
sionless problem. We take as unit of time Ω−1

Morse.
For displacements we take B−1 as the unit, for
momenta we take (2MD)−1/2, for the interaction
force we have αV0/2BD, and hence α is measured in
(B−1) units. To avoid introducing a new set of vari-
ables to denote dimensionless quantities, we sim-
plify our discussion by retaining the same symbols
for the dimensional variables as used above. Then,
the dynamics of the Hamiltonian system yields the
following equations for the components of the elec-
tron wave function cn, and the lattice vibrations, qn,

i
dcn

dt
= [εn + χ(qn+1 − qn−1)]cn

− τ{exp[−α(qn+1 − qn)]cn+1

+ exp[−α(qn − qn−1)]cn−1}, (6)

d2qn

dt2
= {1 − exp[−(qn+1 − qn)]} exp[−(qn+1 − qn)]

−{1 − exp[−(qn − qn−1)]}
× exp[−(qn − qn−1)] + χ[c∗n+1cn − c∗n−1cn]

−αV {(c∗n+1cn + cn+1c
∗
n)

× exp[−α(qn+1 − qn)] − (c∗ncn−1 + cnc∗n−1)

× exp[−α(qn − qn−1)]}, (7)

where the new dimensionless parameters are V =
V0/2D, α = α0/B, and τ = V0/�ΩMorse. Note that
τ gives the ratio of the two time scales involved in
the dynamics which, in frequency terms, refer to
ultraviolet/electronic versus infrared/acoustic pro-
cesses for electrons and phonons. For purposes of
illustration we shall use the following parameter
values: σ = 4.0 Å, B = 4.45 Å−1, α = 1.75B,
D = 0.1 eV, V0 = 0.05 eV, ΩMorse = 3.04 · 1012s−1,
vsound = σΩMorse = 12.1 Å/ps, Ωelectron = V0/� =
0.608 · 1014s−1, τ = 10–20. Muto et al. [1989] pro-
vided the DNA values, just for comparison, we
give here for our Morse potential: σ = 3.4 Å,
B = 2.1 Å−1, D = 0.23 eV, ΩMorse = 5.0 · 1012s−1,
vsound = 17 Å/ps. All these values are comparable
with those used earlier in modeling azurin, as well
as for some other biosystems such as the α-helix
[Davydov, 1991; Christiansen & Scott, 1990; Scott,
1992].

The existence of bound states between electrons
and lattice deformations in 1d-lattices was studied

in the continuum case by Davydov and collabora-
tors ([Brizhik & Davydov, 1983] see also [Cruzeiro-
Hansson & Takeno, 1997]) and was studied in a
discrete (Morse) lattice model in our previous work
[Velarde et al., 2006, 2008a, 2008b; Hennig et al.,
2006, 2007]. In principle, this effect may be used
as a way to manipulate the transport of electrons
between donor and acceptor. Clearly, in our case,
we can have a polaron-like effect due to a electron–
phonon (or soliton) interaction coupled to lattice
solitons, the latter owing to the anharmonicity of
the lattice vibrations. This permits soliton rather
than phonon assisted hopping.

Let us begin with the first model of ET. We
can estimate how the path of an electron may be
influenced by a soliton generated by an external,
mechanical perturbation of the lattice near a local-
ized electron.

The added, excess electron is placed at t = 0 at
the donor, D, located at site n = 100 [Fig. 2(a)].
Due to the electron-lattice interaction (α =
1.75) we observe soliton-mediated ET. We see in
Fig. 2(a) that the electron moves with the soli-
ton with a slightly supersonic velocity vsolectron ∼
(120/100)vsound, and runs to the right border of
the square plot, where we assume that there is the
acceptor. This means that the electron is guided
by the soliton from D to A. In reality, the electron
cannot ride on just a single soliton from donor to
acceptor; several solitons must be involved in trans-
port. Therefore, the above given soliton velocity is
an upper bound for ET in the lattice. In order to
study the superposition and cooperation of several
solitons acting on one electron we studied in another
computer experiment the evolution of an electron in
the field of two solitons. We have observed that as
time proceeds there is a splitting of the electron
probability density [Fig. 2(b)].

Note that the solitons which we have considered
are externally excited. The solitons were launched
at some site of the lattice at t = 0 as an initial
condition and simultaneously we place the electron
at a different site. Note also that temperature plays
no role. However, we know that for solitons to be
sustained moving unaltered along the lattice, the
temperature must be high. Indeed according to the
specific heat characteristics of the lattice, the soli-
tons are expected beyond the Dulong–Petit plateau
before the melting point of the lattice [Chetverikov
et al., 2006a].

Let us consider now a lattice heated to some
temperature T . Then solitons may be excited due
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(a)

(b)

Fig. 2. Morse lattice. (a) Evolution of one electron (in terms of its probability density) starting at lattice site 100 and a
soliton starting at lattice site 50. After 10–20 time units of the initial situation the soliton catches the electron and forms a
bound state (solectron) which moves with slightly supersonic velocity. Parameter α = 1.75. (b) The motion of an electron
starting at position 100 between two solitons emitted at positions 60 and 140. The electron probability density splits between
the two solitons, moving away from each other. Parameter α = 1.75.

to the influence of the thermal imbedding. However
we do not have just one or two solitons, but many
of them, as well as many phonons, generated by
the heat bath. We see up to the range of physio-
logical temperatures many small local solitons in
the system which have a finite life-time up to a
few picoseconds. The general picture is such that
the electron probability density is concentrated in
the local “hot spots” created by the local solitonic
thermal excitations. In order to study the influence

of this effect on donor–acceptor ET in more
detail, we performed another series of computer
experiments.

In this series of experiments, we released an
electron into a lattice thermally excited by the heat
from friction and noise sources. These sources are
switched-off at t = 0. Then the electron is placed
at a lattice site. The result is shown in Fig. 3. In
Fig. 3(a) we demonstrate the electron density devel-
oping in a lattice heated up to T = 0.05. We see that



February 15, 2010 9:46 WSPC/S0218-1274 02550

190 M. G. Velarde et al.

(a)

(b)

Fig. 3. Heated Morse lattice. (a) An electron is placed at site 200 of a heated lattice (T = 0.05, τ = 10, α = 1.75). The
probability density gets concentrated at places of local soliton excitations (with a size up to 10 lattice sites) and survives there
a finite time (may be a few picoseconds). Subsequently, it moves to another “hot spot”. (b) The density of an electron released
into a thermal lattice at a higher temperature than in (a) (T = 0.5, τ = 10, α = 1.75). Again the density is concentrated at
places of local soliton excitations and now the cone significantly narrows. Note that the widening of the cone determines the
effective diffusion constant.

the electron probability density is confined more or
less in a cone.

What we see in Figs. 3(a) and 3(b) is that
the electron probability density splits into many
small spots which are localized at thermally excited
solitons. These “hot spots” may comprise up to ten
lattice sites each having a short lifetime which is
in the range of a few picoseconds [Velarde et al.,
2008b]. The little maximum of the electron den-
sity “dies” with the soliton and eventually moves
to the next local soliton. The overall process is

time-dependent as the “hot spots” are created and
annihilated in the thermal process. Note that the
spots denote only probabilities. In Fig. 3(b) we see
the evolution of the electron density in a lattice
heated up to temperature T = 0.5 higher that in
Fig. 3(a) (T = 0.05). Again the electron density is
confined to a cone but the cone occupied by the elec-
tron probability density is significantly narrower.

Modeling the net-transfer of the electrons is
rather difficult due to the complexity of the life
of an electron after injection. At a first glance it
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looks like a diffusion-like process. Let us study the
question whether ET is indeed a diffusion process.
Given the linearity of the Schrödinger equation, the
electron probability density spreads analogous to
a diffusion process, meaning that the mean square
displacement grows linearly in time. On the other
hand, as shown by Brizhik and Davydov [1983] the
nonlinear Schrödinger equation corresponds to pro-
cesses which are much more complicated, e.g. the
spreading of the probability density may be fractal-
like and may even depend on the initial conditions.
Thus we cannot assume that ET at T = 0 may
be modeled as a diffusion-like process. Given this,
we consider a diffusion approach here at temper-
atures T > 0.1, since we expect that the ther-
mal motion regularizes the spreading process. We
have to study in detail the mean square displace-
ment on the thermally excited lattice. For simplic-
ity, we place the injected electron initially at t = 0
and n = n0. The mean square displacement is
given by

〈n(t)2〉 =
∑

n2cn(t)c∗n(t), (8)

where n is now defined relatively to n0 (i.e. n−n0)
and cn(t) have to be calculated according to the
discrete Schrödinger Eq. (7). This procedure gives,
however, only the quantum-mechanical mean. We
still need here a second average with respect to the
stochastic trajectories of the lattice due to Eq. (6).
Accordingly, we define diffusion as a function of
time

d(t) = 〈〈n(t)2〉〉 =
〈∑

n2cn(t)c∗n(t)
〉

. (9)

The outer bracket means that we have to take the
average over many realizations of the lattice dynam-
ics. The result has to be drawn as a function of
time. We expect that this function is linear in time
at least in certain temperature range. This is what
our computer simulations confirm (see Fig. 4).

It is instructive to compare the results found
(Figs. 4 and 5) with the results of an earlier
stochastic computer simulation using Pauli’s mas-
ter equation shown by the dashed curve in Fig. 5
[Chetverikov et al., 2010]. We see that both
approaches disagree at low temperatures. In order
to avoid discussing the origin of such discrepancy
which may be due to more than one cause not
yet very clear to us, we concentrate here in the
range T > 0.1. The diffusion theory tells us that
an electron initially placed at position n0 has a

Fig. 4. Heated Morse lattice. The diffusion function d versus
time t for temperature T = 0.5.

time-dependent probability density described by

ρ(n, t) =
1√

4πDeff t
C exp

[
−(n − n0)2

4Defft

]
. (10)

If we identify n0 with the donor, this formula
shows how the electron density appears at some dis-
tance, in particular, at the site where the absorber
or acceptor is. The mean square displacement is
given by

〈n(t)2〉 = 2Deff t, (11)

thus showing that the distance traveled by the elec-
tron goes as the square root of time t, a relatively

Fig. 5. Heated Morse lattice. The effective diffusion coeffi-
cient, Deff , of the thermal electron hopping between soliton
spots including quantum-mechanical and thermal hopping
effects. The points correspond to neglecting the thermal influ-
ence and using only quantum-mechanical hopping, whereas
the dashed line is based on a stochastic calculation. Values
are expected to be significant only for T > 0.1.
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fast mechanism. On the other hand, the probabil-
ity density decays exponentially with the distance,
and hence the log of the density decays with the
square of the distance from the source. We note that
the charge trapping in vibrational hot spots was
observed also in a recent work of Kalosakas et al.
[2003]. On the other hand, most authors report a
linear decay of the log with the density. This remains
still an open problem. Evidently only some ET pro-
cesses are diffusion-controlled while some others are
genuine tunneling processes not considered here.

In the framework of our diffusion model, the
process is considered as a diffusion-controlled reac-
tion. Following Smoluchowski theory [Ebeling &
Sokolov, 2005], the reaction rate of an electron with
probability density ne and one absorber with radius
rA at a fixed position is given by

r = nerADe. (12)

Hence, the rate is proportional to the diffusion
coefficient of the electron. The electronic density
decreases with the distance and develops in time
according to the diffusion law (10). According to
our estimate of the diffusion constant, reaction rates
based on diffusion would first increase with temper-
ature, then reach a maximum and then decay. The
optimal temperature is somewhere around T ∼ 0.2
in units of 2D (Fig. 5).

Let us particularize estimates for the two mech-
anisms studied here. For diffusion transport, the
mean square displacement is given by Eq. (11). By
returning to quantities with dimensions as Å and
picoseconds, the mean square displacement is

〈∆x2〉 = 2Deff t = 2σ2D′
eff

t

t0
, Deff =

σ2

t0
D′

eff .

(13)

For the dimensionless effective diffusion coeffi-
cient D′ we estimate a value around 15 near to the
maximum with respect to the temperature. This is
about 80 Å/ps in dimensional units which is a value
around the maximum and accordingly the mean
square displacement is

〈∆x(Å)2〉 = 160

(
Å2

ps

)
t(ps). (14)

Following Chandrasekhar [1943] we may esti-
mate on the basis of the mean square displacement
Eq. (14) the time t which is required to bring the
largest part of the probability through an absorb-
ing barrier (the acceptor) at a distance l(t) from

the start (the donor). Giving the result as log of
the reciprocal time over the distance l(t) (in Å), we
find

log
[

1
t(s)

]
= 14.2 − 2 log

[
l(t)
Å

]
. (15)

If the electron has the chance to ride on an
external mechanically excited soliton from donor to
acceptor, it will travel approximately with sound
velocity, an estimated distance l(t) = ct. A sound
velocity of 16.9 Å/ps was measured for DNA [Hakim
et al., 1984; Wan et al., 1999, 2000]. By using our
estimated sound velocity of 10–20 Å/ps we find

log
[

1
t(s)

]
= 12 +

20
l(Å)

. (16)

Thus the straight ride on external mechanically
excited solitons is the most effective transport
mechanism, since it yields the shortest time interval
for a given distance.

Riding of the electrons on thermal solitons
shows the transport mechanism, due to the quick
change of thermal soliton directions. However, if
one accounts for bond anharmonicity this ride is
for free since thermal solitons are always present
in biomolecules, at physiological temperature. One
cannot exclude that in reality the action of ther-
mal solitons might be complemented by external
mechanically excited solitons [Chetverikov et al.,
2009a, 2009b, 2010]. A possible candidate of the
source for exciting solitons is Volkenstein’s “con-
formon”, whereby the displacement of an electron
probability density in a biomolecule may cause a
significant conformational rearrangement [Volken-
stein, 1970]. A similar conclusion has been made
recently based on a completely different method
[Balabin et al., 2008]. These authors conclude, that
“electronic coupling is most likely determined by
nonequilibrium geometries beyond a critical dis-
tance (6–7 Å in proteins and 2–3 Å in water)”. In
our work, some kind of “nonequilibrium geometries”
are identified as local deformations due to thermal
soliton excitations.
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