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a b s t r a c t

A significant generalization of the polaron concept is given here. The building block of the
new concept is the anharmonicity of the backbone lattice vibrations not considered by
the earlier authors. Due to such (non-Hookean) nonlinear elasticity, solitons may appear
in an one-dimensional Toda (and Toda–Morse) lattice (no electric charge is involved in the
system). Then a discussion is provided about the interplay of an added, excess electron
with these lattice excitations (including polaron-like effects) thus leading, in particular, to
electron trapping by solitons and hence to the dynamic bound state called solectron. Also
given here are features of the ‘‘truth and consequences’’ of introducing this new concept
(and quasiparticle) when dealing with electric transport.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In a concise publication, Landau [1] discussed long ago the conditions under which an electron placed in a periodic field
could be trapped by a crystal lattice distortion. His argument was taken up in [2,3] and by both in a joint [4] publication.
They established that ‘‘the carriers in crystals with ionic lattices are not electrons from the conductivity band, but polarons’’.
Indeed ‘‘by its electric field, a conduction electron will dielectrically polarize the ionic crystal’’. ‘‘At the very beginning of the
process of polarization the polarized crystal already represents, for the electron, a potential well with a discrete spectrum.
The electron having spent part of its energy on the polarization of the crystal, falls into one of the discrete levels, and is thus
localized’’. Then ‘‘the slow conduction electrons should continuously fall into polaron states’’. Note that though, as already
remarked by Landau and Pekar, the size of the polaron must be greater than the lattice constant, due to the discreteness
of the lattice, the polaron is pinned unless a rather large number of ions are involved in the lattice excitation. The polaron
should move in an electric field like a negative charge, the localized state as a whole being forced to move along the field.
Landau and Pekar considered the crystal as a system undergoing small harmonic oscillations. Then they showed that the
electrostatic induction of the electron (the interaction of the electron with the polarized crystal) forces oscillations of the
ions which are longitudinal motions. Alongside their joint publication, the authors alerted, with no explicit details, about
the needed role to be played by ‘‘a certain anharmonicity’’ on those forced oscillations and the expected ensuing ‘‘heat
dissipation’’. The polaron concept, due to the electron-lattice vibrations coupling, introduces nonlinearity in the dynamical
description of electric conduction albeit preserving the linearity of Ohm’s law. Subsequent work done in [5–8] is worth
mentioning. The latter coined the concept of conformon for a polaron-like entity (displacement of an electron probability
density in a macromolecule causes a conformational rearrangement) propagating along an aperiodic macromolecule or
along the secondary structure of an heteropolymer (in principle, with possible dissipation over large distances due to
the inhomogeneity and aperiodicity of the backbone ‘‘lattice’’). He did advance the possibility of taking advantage of such
concept and transfer mechanism when dealing with artificial membranes where periodicity could be imposed.
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Later, Davydov [9–12] showed that if the on-site electron energy levels are taken depending on lattice displacements
(to the linear approximation) then under certain other approximations the polaron evolution equations could be reduced
to a soliton-bearing equation. First he got the (non-exactly solvable) discrete nonlinear Schroedinger equation that under
further approximations leads to the (completely integrable) Ablowitz–Ladik equation. Subsequently, he proceeded further
in accounting for the longitudinal lattice vibrations and also showed that when the polaron is sufficiently extended and the
lattice discreteness can be overcome, the continuumapproximation can be used and further particular conditions permitted,
themobile polaron could be found as a solitary wave solution or soliton (generally with subsonic velocity).1 Davydov coined
the concept of electrosoliton to describe the above-mentioned view of the polaron as a solitary wave (or soliton). Like the
polaron, the electrosoliton can be considered as new physical entity (and electricity carrier). Both relative to the originally
‘‘bare’’ electron (particle) are ‘‘dressed’’ particles or ‘‘quasiparticles’’, a concept also used by Landau in various other contexts.
Recall that only harmonic longitudinal oscillations are demanded to the lattice units.2
The rest of this contribution is organized as follows. In Section 2 the tight-binding electron-lattice interaction is recalled

togetherwith the corresponding time evolution equations for the electron probability density. In Section 3 a sketchy account
is given of the Toda (and imperfect Toda or adapted Toda–Morse) lattice model including its solitary and periodic (cnoidal)
wave solutions (generally with supersonic velocity). Also discussed there are significant features of its specific heat and
dynamic structure factor. Section 4 deals with the evolution of the compound electron-anharmonic lattice longitudinal
vibrations leading to the introduction of the solectron concept. Results about electron trapping by solitons are provided for
various significant particular cases. In Section 5 the characteristics of the solectron-mediated electric transport are discussed.
Finally, in Section 6 a summary of results is provided.

2. Electron dynamics on a lattice

In order to illustrate the above given picture and in view of what follows let us recall how the electron-lattice interaction
and electron transfer along a lattice brings nonlinearity using the tight-binding approximation (electrons are localized on
atomic/lattice sites and only occasionally hop to neighboring sites). Thus to account for electron hopping from one lattice
site to another use can be made of creation (aĎn, creates an electron at site ‘‘n’’) and annihilation (an, annihilates or lowers an
electron at site ‘‘n’’) operators (anticommutation relations

{
am, a

Ď
n

}
= δmn, {am, an} =

{
aĎm, a

Ď
n

}
= 0; aĎnan provides electron

number operator) in second quantization formalism [16]. Then the Hamiltonian operator is

H =
∑
n

[
EnaĎnan − a

Ď
n

(
Vn,n−1an−1 + Vn+1,nan+1

)]
. (1)

The transfer matrix elements, Vn,n−1, etc indicate intersite transfer energy exchange (overlap integrals related to the
probability of electron hopping from site to site; more on this is given further below). The first term accounts for the on-site
electron (levels) having in mind an excess electron added to the originally undistorted lattice.
The single electron wave function under tight binding approximation is |Ψ (t)〉 =

∑
n cn(t)a

Ď
n|0〉,

(
|n〉 = aĎn|0〉

)
, with

appropriate inner product and normalization, 〈Ψ (t)|Ψ (t)〉 =
∑
|c2n | = 1. It evolves according to Schroedinger equation

ih̄
∣∣Ψ̇ (t)〉 = H |Ψ (t)〉 , (2)

where h̄ = h/2π , h is Planck’s (universal) constant. An overdot denotes derivative with respect to time. The complex
quantity cn(t) permits one to define electron probability density relative to the corresponding site ‘‘n’’. To obtain its time
evolution use can be made of the Lagrangian formulation, with

L ≡ 〈Ψ |ih̄
∂

∂t
−H |Ψ 〉 =

∑
n

c∗n
(
ih̄ċn − Encn + Vn,n−1cn−1 + Vn+1,ncn+1

)
. (3)

With ∂L/∂ ċn = ih̄c∗n , ∂L/∂c
∗
n − d/dt

(
∂L/∂ ċ∗n = 0

)
defining conjugated momenta, the least action principle

δ
∫ t2
t1
dtL (cn, ċn, . . .) = 0 yields

ih̄ċn = Encn −
(
Vn,n−1cn−1 + Vn+1,ncn+1

)
, (4)

where the coupling of electron (normalized) probability density (amplitude, cn) to lattice variables (lattice displacements or
vibrations, implicit in the Vn,m) appears. Then the (symmetrized) electron Hamiltonian or energy is

1 The approximations used by Davydov brought mathematical beauty and ‘‘transparent’’ understanding (kind of ‘‘simplicity’’) of the dynamics. But was
it not a bit too much simplification?
2 Although electric conduction is possible in a charged ionic harmonic lattice, to account for equipartition, heat transport and thermal expansion the
anharmonicity in the potential must be invoked (or, alternatively, doping, etc.) [13,14]. However not all anharmonicities ensure this as the lattice ought to
be able to sustain a temperature gradient and not a mere temperature difference alone [15].
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H =
∑
n

En |cn(t)|2 −
∑
n

Vn,n−1
(
c∗n cn−1 + cnc

∗

n−1

)
, (5)

and thus

ih̄ċn = ∂H/∂c∗n . (6)

For the nearest-neighbor interactionmodel the on-site electron energy, in general, depends on the distance between the
nth-lattice unit and its left (n − 1) and right (n + 1) units. Then the simplest approximation corresponds to assuming that
it is independent of the lattice site number so that the corresponding term aĎnan can be scaled away from the Hamiltonian
(1) by an appropriate choice of the ‘‘zero’’ (reference) energy level. Clearly if account is to be done of electron–electron
interaction permitting, for instance, electron-pairing then the diagonal elements must be taken into consideration, together
with their Coulomb repulsion (for which a simplified form was proposed in [16,19,20]).3 As a very first-approximation,
only the off-diagonal transfer matrix elements are considered to significantly contribute to electric transport (with a single
electron).

3. Solitons and the paradigmatic Toda anharmonic lattice

3.1. Solitons

The study of anharmonic lattices owes much to the seminal work done in [21–29]. FPU tried numerically albeit with no
success to explain equipartition of energy (of paramount importance in statistical mechanics) by using the first few non-
Hookean corrections to linear elasticity in the form of cubic and quartic anharmonic potentials as a mechanism to allow
energy sharing and exchange between harmonic modes otherwise non-interacting. The difficulty was clarified by Zabusky
and Kruskal who studied solitary waves and solitary-wave (overtaking) collisions in such anharmonic lattices and their
continuum counterpart. In view of their remarkable particle-like behavior, these waves reappearing unaltered following
collisions, the hallmark of their dynamics, Zabusky and Kruskal denoted them by solitons (solit/solitary wave; on/like in
electron, proton, etc.).4 In fact, before the discovery of the soliton, Visscher and collaborators numerical computations had
revealed ‘‘soliton-like’’ mediated behavior and enhanced heat transport. Solitary waves and solitons found also in other
realms of science appear as potential ‘‘universal’’ carriers of almost anything [30] (like surf waves/non-topological solitons
in the ocean or bores/topological solitons in rivers).
Let us recall how solitons appear in the anharmonic Toda lattice. Consider an one-dimensional (1D) lattice of units

(mass, m or m = 1 for simplicity) interacting with their nearest-neighbors via a potential U(r). Then, classically, for the
displacement of the nth-lattice unit/particle from its equilibrium position, Newton’s equations are

r̈n = U ′ (rn+1 − rn)− U ′ (rn − rn−1) , (7)

where rn denotes displacement (vibration or elongation; depending on circumstances it is of interest to focus on local lattice
deformations or on gradient of displacements) of the unit at site ‘‘n’’. A dash indicates a derivative with respect to the
argument (corresponding space variable).5 No on-site dynamics or structure is considered. There are cases of, e.g., biological
interest where an intra-unit dynamics is added, like an oscillator unit (units with such internal structure coupled to the
other degrees of freedom in the system have been considered by Fröhlich [large polaron], Davydov, Holstein [small polaron]
and others). If rather than actual unit-displacements, relative displacements, ξn = rn+1 − rn, are considered, then Eq. (7)
becomes

ξ̈n = U ′ (ξn+1)− 2U ′ (ξn)+ U ′ (ξn−1) . (8)

3 Taylor expanding yields En = E0 + JL (ξn − ξn−1)+ JR (ξn+1 − ξn), where E0 is the electron energy when the lattice is undistorted and hence all lattice
units are at their equilibrium positions; JL , JR > 0. Further one can assume JL = JR = J . A warning on such simplifications seems pertinent. On the
one hand, scaling away the diagonal terms does not permit one to see in a straightforward way the classical counterpart of the problem as we lose the
energy landscape offered to the electron. On the other hand, if nonlinear elasticity really matters care should be taken in having consistency not jeopardizing
the relevance of its role. Accordingly, linearizations may turn out not being self-consistent simplifications. From the perspective of a classical mechanics
approach, the case of conducting polymers (following Ohm’s law) described by the so-called SSH Hamiltonian model [17,18] is one where solitons (in
particular deformation topological solitons) come from the degeneracy of the ground state (and mismatch of two configurations) and not from genuine
anharmonic lattice dynamics as the interaction invoked is harmonic. In such a case linearization as above expressed is relevant and enough to have theory
describing experimental data. Formally, and even conceptually, from the quantummechanics perspective once theHamiltonian iswritten the output, hence
the soliton, comes from the dynamics, including the lattice dynamics. For conducting polymers an open question is the possible role of nonlinear elasticity
enhancing electron transport to non-Ohmic level but, at present, no experimental evidence seems to exist giving relevance to that question.
4 Anecdote: as Zabusky has indicated their first idea not pursued for reasons alien to science — there was a company with such a trademarked name-
was to call them solitrons. As recently found, a similar case is that of solectron which is the trademarked name of an electronic company. There is also a
beauty product called soltron and the word surfon designates a web site... so it is difficult to find a truly original, not trademarked word for the concept and
quasiparticle originated in the dynamic bound state of an electron to a soliton.
5 If one searches for traveling solutions then onemay set rn(t) = rn−m(t−mτ);m = 1 defines the solitonwhereasm ≥ 2 can be used to define breathers
aka intrinsic localized modes (ILM), i.e. pulsating traveling waves which are exactly translated by ‘‘m’’ sites after a fixed propagation time ‘‘mτ ’’, which are
allowed to oscillate as they propagate on the lattice. ‘‘Breathers’’ seem to having first been observed in lattices of (on-site) nonlinear oscillators loosely or
weakly coupled among themselves.
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Fig. 1. Toda potential (9) with ω0 = σ = 1 and b = 0.01 (practically, the harmonic limit, indicated by a dashed line), b = 5 (solid line), and b = 100
(practically, the hard sphere limit, indicated by a dash-dotted line). Along the abscissa there is interparticle distance, r , centered around the potential
minimum.

Fig. 2. Toda potential
(
U = UT = a

b

[
e−bσ(r−1) + bσ (r − 1)− 1

])
, Morse potential

(
U = UM = a

2b

[(
e−bσ(r−1) − 1

)2
− 1

])
and Lennard-Jones potential(

U = UL−J = U0
[
1
r12
−

1
r6
− 1

])
. In order to have all the three minima of the potential functions at the same location (1,−1) the parameters have been

adjusted with the basic frequency the same. It clearly appears that Toda’s interaction (upper curve) captures the repulsive core well whereas its attractive
part becomes unphysical for large values of the displacement. The abscissa is, like in Fig. 1, denoted by r ≡ ξn/σ .

Then let us consider a paradigmatic interaction potential introduced by Toda,

U (ξn) =
a
b

[
e−b(ξn−σ) + b (ξn − σ)− 1

]
, (9)

where σ is the mean interparticle distance; a > 0 and b > 0 are parameters; b accounts for the non-Hookean stiffness of
the ‘‘springs’’ in the lattice; the last term (−1) is added for computational convenience and need not to be included.6 Note
that with ab finite for b → 0, the function (9) becomes the harmonic potential (linear Hookean, ‘‘springs’’ for a standard
crystal lattice) and ω20 ≡ ab/m defines the angular frequency of vibrations in such harmonic limit (via Taylor expansion) of
(9). [N.B. abe

−br
+ ar − a

b =
ab
2

(
r2 − b

3 r
3
+ · · ·

)
.] In the extreme opposite case b → ∞, the potential (9) approaches the

hard-rod/sphere limit (fluid-like system). Fig. 1 illustrates the form of (9) for several values of the stiffness parameter (anhar-
monicity) and Fig. 2 shows its relative form when adequately compared with Morse and Lennard-Jones potentials [31,32].
In what follows consideration will be given only to strong interparticle compressions such that ξ ≤ σ/2 (below r = 1 in

Fig. 1). [N.B. Materials are usually stronger when compressed and weaker when stretched.] In view of this, the fact that the
attractive part of Toda’s potential (9) is unphysical is of no concern to the study here.
For any finite value of b, in the infinite lattice, the equations of motion (8) possess a one-parameter family of soliton

solutions

ξn = σ − (1/b) `n
[
1+ sinh2 κsech2 (κn∓ sinh κ) ωt

]
. (10)

6 Note also that under an external force or for finite temperatures the lattice constant is not equal to the minimum of the potential well since U(9) does
not depend on lattice site coordinates but on relative lattice displacements.
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Fig. 3. Dispersion relation (frequency vs wavevector; first Brillouin zone) for cnoidal waves (solitons; lower, dash-dotted curve) and the limiting case of
harmonic waves (phonons; upper, dashed curve) as the modulus of the Jacobian elliptic function approaches zero. Ordinate units, ω0; abscissa units, π/σ .

[N.B. Inverting the logarithm it is just the sech2 for e−b(ξn−σ). This exponential is related to the force (9) and characterizes
the strength of the solitonic pulse.] The parameter κ controls the wave velocity and by the same token the wave amplitude
(higher solitons travel faster),

vsoliton (κ) = ±ω0 (sinh κ) /κ, (11)

which shows its supersonic character as the linear sound velocity is given by vsound = ω0 (positive and negative signs merely
give direction of wave propagation). Note that the value of ξn accounts for the local lattice compression experienced by two
neighbor units. In dynamical systems terminology the solitons (10) are homoclinic orbits [33]. Although the soliton tends at
infinity to a constant value, lim ξn = σ as n→ (+∞) or (−∞) [for sech2 the asymptotic value is zero], the flatness of the
soliton wings yields easily to a new hump thus appearing as having a long range (albeit exponentially decaying) influence, a
featurewith consequences to be illustrated later on. This can be easily seen,when a periodic hence finite lattice is considered.
Then the exact solution of the equations of motion is the periodic ‘‘cnoidal’’ wave

ξn = σ − (1/b) `n
[
1+ (2νK (k) /ω)2 dn2 (2K (k) [(n/λ)∓ ν (λ, k) t)]

]
− E (k) /K (k) , (12)

where dn denotes the Jacobian elliptic function with modulus k (0 < k ≤ 1) [34]. The functions K(k) and E(k) are complete
elliptic integrals of the first and second kind, respectively.7 The Jacobian elliptic functions sn, cn and dn are related to each
other and both sn and dn can be written in terms of cn (short word for cnoidal). It can be shown that in the continuum limit
the solution (12) of the discrete lattice can be approximated by the cnoidal solution of the Boussinesq–Korteweg de Vries
equation [24,28,29,33] and on another limit by the solitary wave solution in the form of sech2. It can also be shown that
indeed the B-KdV equation and the Toda lattice do have much in common. By analogy with the linear, harmonic case the
exact dispersion relation is

ν (λ, k) = ω0/2K(k)
[
sn−2 (2K(k)/λ)+ E(k)/K(k)− 1

]1/2
. (13)

Clearly when k gets small one recovers the harmonic wave whereas as k grows the cnoidal wave (12) gets more and more
localized and eventually goes into the solitary wave (10) if the lattice length is allowed to also increase. Note that by analogy
with the harmonic Fouriermodes (phonons in the quantum terminology) in a linear lattice, here the solitary or cnoidalwaves
(or solitons) are the corresponding eigenmodes of the latticewith non-Hookean ‘‘springs’’ (Fig. 3). Inwhat follows advantage
will be taken of the knowledge of the exact solutions, (10) or (12), of the Toda lattice. There is, however, a shortcoming. The
Toda lattice cannot sustain a thermal gradient although it permits a temperature difference, hence it is ‘‘transparent’’ to heat
and is not a heat conductor (solitonswith exponential interaction like (9) run freely in the Toda lattice). This problemdoes not
arisewith Lennard-Jones interactions.8 In viewof this, use is to be done of an imperfect Toda lattice and, recalling that interest
here focused only on high lattice compressions, this can be achieved by substituting (9)with the rather similar and physically
motivatedMorse interaction (Fig. 2) [31] thus considering an adapted (non-integrable, hence imperfect) Toda–Morse lattice
whose solutions and corresponding features should not differ significantly from the exact Toda solutions given above.

7 As Toda has indicated it was his knowledge of elliptic functions that gave him clues to propose the potential function (9) in order to have exactly
solvable Hamiltonian nonlinear model dynamics, rara avis in many-body physics.
8 Peierls was the first to explain heat conduction in a lattice by identifying two types of phonon–phonon interaction: one preserving momentum and
energy flow not contributing to heat, and the other, called umklapp (bending-back) process in that a three-phonon interaction transfers momentum to the
lattice as a whole, contributes to thermal resistivity and hence to heat. An unambiguous understanding of such process demands appeal to anharmonicity
in the lattice dynamics.



M.G. Velarde / Journal of Computational and Applied Mathematics 233 (2010) 1432–1445 1437

Fig. 4. Typical plot of the (numerically computed) specific heat at constant length/volume in kB units. Ttransition = 1, for which CL ≡ Cv = 0.75. Cv = 1 is
the Dulong–Petit value (solid phase; harmonic interaction) and Cv = 0, 5 corresponds to the fluid-like phase (hard-rod interaction). Missing in the figure
is the low temperature values arising from genuinely quantum mechanics (T n Debye law), dimension n = 1.

3.2. Morse potential and the imperfect Toda potential or the adapted Toda–Morse lattice

As earlier noted, the Toda lattice was constructed in such a way as to possess solitons made of elliptic functions. It
did not originate in the study of a realistic, experimentally related physical problem. Yet it has reached a paradigmatic
status as all features are known exactly, including thermodynamic quantities like partition function, the specific heat (at
constant volume/length), etc [27,28,35–38]. To overcome the lack of heat transfer possibility one could suitably redefine
it thus making an imperfect Toda lattice in the spirit of Van der Waals imperfect gas theory, which allows condensation
(a phase transition) while maintaining the perfect gas formalism, i.e., formally the same equation of state. This approach
can be followed in a drastic way by simply disregarding the attractive part in the computations or better by ‘‘adapting’’ the
Toda potential [31,32] to be a Morse one. As earlier noted the Morse potential is practically equivalent to the Lennard-Jones
potential (Fig. 2) though its attractive part is a bit less realistic,

UM(ξ) = D
[
e−B(ξ−σ) − 1

]2
, (14)

to be matched by the Toda potential

UT (ξ) =
(a
b

) [
e−b(ξ−σ) + b(ξ − σ)− 1

]
, (15)

placing together the minima of both potential functions. This can be achieved by defining aTM = a = 2
3BD and bTM =

3B. Then both potential functions share in common up to a third-order Taylor expansion term with fourth-order terms
approximately equal. Then this adapted Toda–Morse potential (or imperfect Toda potential in the sense of Van der Waals)
is a local approximation to the Morse potential with implicit density dependence through ω0 and b. It offers the possibility
of heat conduction and ‘‘phase transitions’’-like phenomena as discussed elsewhere [38].

3.3. Specific heat, and solitons at the ‘‘edge of melting’’

The specific heat at constant length/volume of the Toda lattice was obtained long ago [37,39].9 First, one computes the
free energy F = kBT lg Z , where Z is the normalization factor of the corresponding canonical distribution ρN = e−H/kBT/Z ,
where H is the corresponding Toda (or imperfect Toda) Hamiltonian, T and kB denote, respectively, absolute temperature
and Boltzmann’s (universal) constant. The specific heat is the second derivative of F with respect to T at given constant
lattice length. Fig. 4 depicts in semi-log plot CL versus T , in kB-units. Needless to say, the CL(T ) function does not account for
low temperatures where a T n Debye law applies (n, dimension). It only captures the Dulong and Petit law, here CL = 1, in
the chosen units.
The high-temperature limit CL = 0, 5 corresponds well with the fluid-like, hard-sphere phase. Then around T = 1,

CL ≈ 0, 75 it is the soliton range. Well below T = 1 = Ttransition, phonons control the thermodynamics (and dynamics) of the
system. Similar phenomena can be observed in the dynamical structure factor (DSF) as shown in Fig. 5 in a log–log plot. The
DSF (typical for inelastic thermal neutron scattering experiments, 4 Å ∼ 5 meV ∼ 60 K) gives the frequency spectrum

9 When the lattice has fixed constant length, as expansion is not permitted, experiences internal stress (pressure). If, however, the lattice length is free
but no external force to it is applied (like compression or stretching at a free end), it can be shown that the lattice (a, b > 0) expands as it vibrates. The
solitary wave is a compression pulse, and cnoidal waves cause expansion with, however, high compression at each periodic wave ‘‘peak’’ (or maximum).
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Fig. 5. Typical plot of the dynamic structure factor (DSF) versus frequency for a Toda lattice. In view of Fig. 4 (specific heat) the sequence is as follows:
(a) a single phonon peak appears with (practically) linear sound velocity (ab/m)1/2; (b) at T = 10−1Ttransition the spectrum starts being complicated; (c) at
T = Ttransition among the many peaks emerges the (supersonic) soliton as the highest of them all; and (d) at T = 10Ttransition phonons and solitons provide
a ‘‘highly deformed phonon spectrum’’.

of correlations between density fluctuations. It is the double Fourier transform of the density–density correlation [40,
41]. When T is well below T = Ttransition one observes a single phonon peak that provides the linear sound velocity,
vsound = (ab/m)1/2 = ω0, as earlier indicated. As the transition temperature is approached frombelow the phonon spectrum
gets multipeaked with many phonons or highly deformed phonons showing up (multiphonon range), until a much higher
peak clearly emerges above the messy background. It corresponds to the soliton with supersonic velocity (11). Both the
specific heat (Fig. 4) and DSF (Fig. 5) point to the significant role played by strong lattice compressions in the form of solitons.
Exaggerating a bit one can say that such role tends to come sharper the nearer the ‘‘material’’ is to the ‘‘edge of melting’’.
When solitons get excited, at high enough temperature in the lattice, we expect a significant heat transfer enhancement

relative to the usual Fourier’s linear law. This prediction agrees beautifully with long ago reported data of Uranium [42].
Fig. 6 shows around 200 ◦C, or less, a significant change attributed to the onset of the earlier defined intrinsic localized modes
(ILM)when anharmonicity enters the dynamics [43,44] (locally as a kind of lattice ‘‘defect’’ or all along the lattice; recall that
ILM also refers to discrete breathers). It is the only experimental data known to this author.

4. Electron capture and electron transfer

4.1. The solectron concept

Turning to electric conduction in the (charged) adapted Toda–Morse lattice and in view of the results recalled above
one can treat classically the lattice dynamics while treating quantum mechanically the electron and the electron-lattice
interaction. Indeed, this fits well with the fact that solitons appear above the multiphonon range as shown in Figs. 4 and 5.
Relative to what has been recalled in Section 1 there is the need of choosing (computing) the transfer matrix elements [13,
14], taken here as

Vn,n−1 = V0e−α(ξn−ξn−1) (16)
and so on. The parameter α is an inverse decaying ‘‘length’’ scale.10

10 Note that the choice (16) adds a second nonlinearity to the polaron description. Indeed, as for the on-site energy, En , here (16) could be taken linearized
and then the coupling between cn and ξn would be nonlinear made with linear contributions from each of them, hence (ξn − ξn−1)cn−1 , and so on in the
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Fig. 6. Thermal conductivity of Uranium [42]. Around 200 ◦C there appears clear indication of soliton-mediated transport [44].

To have a universal description it suffices to make quantities dimensionless by introducing suitable scales/units: τ =
V0/h̄ωM , α̃ = α/B, and Ṽ = V0/2D thus using the depth of the Morse potential as unit/scale; ωM =

(
DB2/M

)1/2,M denotes
lattice units mass (typical parameter values for some biomolecules are: B = 4.45 Å−1, α = 1.75B, D = V0 = 0.1 eV,
ωM = 3 × 1012 s−1, V0/h̄ = 0.6 × 1014 s−1, τ = 10). Then disregarding the tilde and also the diagonal terms, Eq. (4)
becomes

iċn = −τ
[
e−α(ξn−ξn−1)cn−1 + e−α(ξn+1−ξn)cn+1

]
. (17)

The parameter τ shows explicitly the time scale of electron motions while the time t corresponds to the slower time scale
of the lattice vibrations. The latter obey the Eq. (8) augmented with the coupling to electron hopping motions or better said,
electron probability density,

ξ̈n =
[
1− e(ξn+1−ξn)

]
e−(ξn+1−ξn) −

[
1− e−(ξn−ξn−1)

]
e−(ξn−ξn−1)

−αV
[(
c∗n+1cn + cn+1c

∗

n

)
e−α(ξn+1−ξn) +

(
c∗n cn−1 + cnc

∗

n−1

)
e−α(ξn−ξn−1)

]
. (18)

Accordingly, taking into consideration the large disparity between τ and t (and also between energies involved),
quite a strong claim is here made: viewed from Eq. (17), if solitons are excited in the lattice following Eq. (8), then Eq.
(18) brings a dominant soliton influence upon the electron probability density, hence upon electron hopping motions
(and eventually trapping as shown below). In turn, the electron evolution, Eq. (17), affects lattice vibrations. There is
feedback or feedforward action of one upon the other, depending on where we start from (18) (the position taken
by the present author here) or (17) (the original approach when introducing the polaron). Needless to say, when no
electron is present, Eq. (18) reduces to Eq. (8). What really matters is that the interplay between electron and lattice
vibrations has now, in view of Eqs. (17) and (18), a genuinely new element, the soliton-mediated effect, recalling its
‘‘universal’’ carrier character [30]. This permits one to consider the compound polaron–soliton ‘‘quasiparticle’’ as a new
physical entity which is the ‘‘solectron’’. Thus, the solectron concept appears as a significant generalization of the original
polaron concept (or in stronger terms a genuinely new concept in electric conduction). Before proceeding to the analysis
of solectron-mediated electric conduction let us add further support to this concept by analyzing some striking results
thus permitting one to firmly justify the possible ‘‘truth and consequences’’ of the new concept. [N.B. As one might have
guessed, unlike in older times, these days when a new idea is put forward, one soon realizes that someone else has
already thought about it. Indeed, variants of the solectron concept have been explored by several authors [45–53]. For
instance, Zolotaryuk et al. [47,48], in the nearest work to this and related contributions of the present author, alerted
about the above discussed two nonlinearities (the polaron coupling and the lattice anharmonicity), a mixture that ‘‘gives
rise to very complicated dynamics’’, with possible consequences like supersonic charge transfer and ‘‘the coupling of the
self-trapping states (polaron) with the lattice solitons’’. Zhou and Xu [51], following that earlier work [47,48], considered a
hydrogen-bonded lattice composed of a proton sublattice and a heavy-ion sublattice backbone. Then they added an excess
electron to the proton sublattice where vibrations or deformations were treated with a quartic (anharmonic) potential
(one of the cases treated by FPU and by Visscher and collaborators; it is also the potential used in textbooks [13,14]).

second term of the r.h.s. of Eq. (4). As supra noted, one must be aware that linearization may put at stake the significance and self-consistency of nonlinear
elasticity in the context of soliton-mediated transport.
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Fig. 7. Soliton and electron taken separately (no interaction). Upper figure: lattice soliton evolution starting at site n = 200 following Toda’s Hamiltonian
equations. Lower figure: electron probability density evolution following Schroedinger equation. From initial ‘‘localization’’ at site n = 200 the electron
ends up completely delocalized, i.e., the probability density is spread ‘‘uniformly’’ everywhere along the lattice [58].

The proton sublattice in turn interacts with the heavy-ion sublattice, the latter considered with just harmonic intersite
interactions. For the electron–proton sublattice interaction they used the, earlier discussed, lowest order tight binding
nonlinearity and no direct electron-heavy-ion lattice interaction was considered. After some approximations made (going
to the continuum, etc.) and using a selfconsistent method of solution they found that the electron (with a sech2 probability
density) can be trapped in compression areas of the proton sublattice and hence the electron binds to topological (tanh-
like kink) deformation solitons of the proton sublattice. Thus they concluded that the latter acts as a ‘‘ferry boat’’ for the
electron (note that sech2 is the derivative of tanh; the latter refers to unit displacements while the former to its gradient).
This is their electrosoliton in the sense of Davydov. Unaware of that publication [51] the present author used the ‘‘surfing’’
metaphor for electrons riding on solitons in the Toda lattice [54]. Then as in their solution method the heavy-ion lattice
motions are mathematically ‘‘slaved’’ to the proton topological solitons the backbone sublattice exhibits similar soliton
deformations (though the intersite potential was harmonic, as earlier noted). They refer to the ‘‘electron-soliton’’-soliton
pair as the significant quasiparticle. This pair concept is, indeed, embraced by the solectron concept. At variance with the
work of Zhou and Xu, let us emphasize that the solectron comes from the definition of the underlying soliton as a kind of
‘‘universal’’ carrier whereas for those authors everything is originated by the addition of an excess electron and, in part, like
with Davydov’s theory, the soliton emerges following mathematical simplifications in the solution methodology.]

4.2. Solitonic electron trapping

Consider an electron placed at site ‘‘n’’ in a lattice (arbitrary for the time being). Then let alone the electron, with no
interaction with the lattice units and hence considering the lattice as a discrete space available, its evolution is dictated
by the Schroedinger equation (2). Fig. 7 shows how from an initially peaked probability density (the electron is initially
‘‘localized’’ at site ‘‘n’’) as time proceeds the probability spreads down to a uniform distribution over all lattice sites. This
means that the electron ends up by being completely delocalized and hence upon adding the ionic character to the lattice no
appreciable polaron effect or self-trapped state is to be expected (not to be confused with a largely extended polaron, as the
electron is everywhere so weak as not being able to significantly alter the lattice motions).
Take now Eq. (8) and launch as an initial condition a soliton at a certain lattice site. The soliton is expected to proceed

unaltered as time progresses. Then let us switch-on the electron-lattice interaction hence switch-on Eq. (18) for the case
when the electron is completely delocalized. The striking result found is illustrated in Fig. 8. Little by little the soliton gathers
the electron probability density, packs it reconstructing at its immediate neighborhood the electron original probability
density peak. This is quite what a ‘‘vacuum cleaner’’ does with ‘‘dust’’. This result gives a hint on a possible significant
consequence. Indeed, once an electron is trapped if a second electron is permitted around (necessarily with opposite spin,
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Fig. 8. Interaction of a soliton with a completely delocalized electron. Lower figure: the electron after following the evolution dictated by Schroedinger
equation (see Fig. 7) ends up completely delocalizedwith probability density spread like ‘‘dust’’ over the entire lattice. Then at such time instant the soliton
is launched taking as initial condition for the electron the final state of the lower picture in Fig. 7. Upper figure: the soliton after gathering the electron
dusty probability density eventually gives rise to the solectron current. As the soliton travels there is reconstruction of the electron probability density in
a kind of ‘‘vacuum cleaner’’ process done by the soliton, akin to a long range correlation effect or a kind of global coupling in the lattice [58].

in accordance with Pauli’s principle) the soliton ‘‘attraction’’ may overcome the repelling Coulomb interaction, thus also
trapping the second electron and allowing pairing. Work seems of interest in this direction [55] in view of results obtained
by other authors [56,57]. Subsequently, after trapping the electron, the compound or bound state soliton-electron, i.e., the
solectron proceedsmoving unaltered along the lattice. Although as time proceeds, there is indeed action of the electron upon
the lattice vibrations, the polaron effect, it is clearly a minor element in the early stage of solectron formation and time and
space evolution and it does depend on the time scales involved in the dynamics. In fact, Fig. 8 shows that the situation is
at the opposite extreme of the polaron case and also differs from the situation when given an electron localized at site ‘‘n’’ a
soliton is launched at either the same site or at another. Electron trapping ensues irrespective of the possible feedforward
or feedback action of the electron upon the soliton (as a polaron effect upon anharmonic lattice vibrations) enhanced or
even dominated by the action of the soliton. Fig. 9 illustrates the polaron–soliton case showing trajectories of a more typical
trapping process with ensuing solectron current.
Let us now launch two solitons which are allowed to collide in their evolution along the lattice. Consider also the added

excess electron. Fig. 10 shows a sequence of events numerically observed. The electron starts being trapped and carried
by one of the solitons, here by the one moving left-to-right. Then there is collision with the oppositely moving right-
to-left soliton. As the collision proceeds and ‘‘finishes’’, the electron leaves the first soliton and reappears trapped and
carried by the second soliton. Accordingly, the electron has changed both partner and direction of motion after the collision.
Another striking result also observed numerically is the electron probability density splitting thus illustrating how quantum
mechanically the electron moves simultaneously in both directions! A detailed analysis, including numerical evidence of
the electron-soliton energy exchanges, with numerous illustrations, of both supersonic and subsonic cases has been given
elsewhere [58,59].

5. Solectron-mediated electric conduction characteristics

The prediction of solectron-mediated electric conduction was first done using the classical Drude–Lorentz approach [54].
It was put forward as a (non-equilibrium) ‘‘phase transition’’ from an Ohmic to a non-Ohmic form of electric conduction
in a driven-dissipative system. Subsequent work [60] has added strong support to the original finding delineating a true



1442 M.G. Velarde / Journal of Computational and Applied Mathematics 233 (2010) 1432–1445

Fig. 9. Soliton and electron interaction leading to a solectronic current from the very beginning. Both are launched and added, respectively, at the same
site (n = 200). Note the use of (finite) periodic boundary conditions in the computation [58].

Fig. 10. Head-on collision of a solectron (elevation, solid line) moving left-to-right with a soliton (depression, solid line) moving right-to-left. v refers to
the soliton and |cn|2 to the electron. Following the collision, the electron (dotted line) decided to change partner. Accordingly, a solectron emerges moving
right-to-left and the abandoned, lonely soliton continues motion left-to-right [59].

(non-equilibrium) phase diagram. Thus the electron-(ion)lattice interaction as well the lattice dynamics were considered in
a purely classical description. Later on, the study was extended to the quantum treatment of the electron and the electron-
lattice interaction,whilemaintaining the classical description of the solitonic lattice dynamics [58,59,61,62]. As earlier noted
this is acceptable provided one targets phenomena at relative ‘‘high’’ temperatures and might it be better the nearer one is
to the ‘‘edge of melting’’ in the system. Recall the experimental evidence of soliton-mediated heat transport enhancement
(Fig. 6) in Uranium at about 200 ◦C (thermal conductivity was measured up to 900 ◦C). Manley et al. [44] have recently
reported the onset of ILM-or lattice solitons at 450 K (. 200 ◦C). However, electric conductivity in the same material has
been measured only up to about 600 ◦C with no significantly appreciable change or ‘‘anomaly’’ in its increasing trend [42].
Around 600 ◦C there is a transition from the α-phase to the β-phase and to the γ -phase and no further data exists that
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Fig. 11. Typical current-field characteristics of the solectron motion (see Fig. 9). The solectron velocity, vs , is plotted versus suitably normalized electric
field intensity. As the field strength is lowered there is a transition from Ohmic to non-Ohmic conduction. As one can expect this transition is affected by
temperature [62].

could indicate the role played by solitons already excited in the crystal. Noteworthy is that Uranium melts at 1100 ◦C. The
temperature 600 ◦C is 40% below themelting point. Clearly, 600 ◦C is far from the ‘‘edge of melting’’. Note that the existence
of the soliton is a necessary albeit not sufficient condition for electric trapping.
Let us comment now on the role played by an externally applied electric field. In order to do this suffices to augment the

tight-binding electron evolution equation with a contribution proportional to the field strength. Then Eq. (17) becomes

iċn = −τ
[
e−α(ξn−ξn−1)cn−1 + e−α(ξn+1−ξn)cn+1+

]
− nẼcn, (19)

where Ẽ = (e/h̄ΩMorse) E accounts for the dimensionless applied field strength. Then from the solution of this equation the
current is given by

j = i
∑
n

(
c∗n+1cn − c

∗

n cn−1
)
. (20)

Using, however, the solectron velocity, vs, as the computational ‘‘measure’’ to account for the electric current, Fig. 11
shows the theoretical prediction. First, the current is proportional to the field strength following Ohm’s linear law. When
the field strength is lowered the electron does not follow the field as the solectron overcomes the action of the field and
then the current takes a constant, field-independent value down to zero field strength. Accordingly, there is a plateauwhere
the differential conductivity vanishes while demanding a huge value near zero field strength. This prediction was first made
in Ref. [54] using purely classical dynamics and electrodynamics. Further details about this characteristics have been given
elsewhere for both the classical and the quantum approaches to the electron-lattice dynamics [39,54,58–62]. Noteworthy is
that the solectron-charge transport in the Toda–Morse lattice appears stable up to ‘‘room temperature’’ (about 300 K) [62].
Another interesting characteristics is the relationship between electric current and temperature. To obtain the latter, due

consideration ought to be taken of temperature in the compound system, including ion lattice temperature and electron
temperature. This study has only been done for the purely classical description treating the problem with an appropriate
Langevin stochastic dynamics [39,54]. It appears that as the temperature is relatively high but, needless to say, below the
melting temperature of the system, the current is practically independent of temperature. Upon lowering it towards the
earlier mentioned Ttransition (Fig. 4) a significant increase occurs thus showing the role played by the solectron. This trend is
expected to hold in the quantum case.
Clearly, for high field strengths as well as for (relatively) high temperatures the electron rather follows either the field

or the disorder induced by kBT . It is for moderate values, of both ‘‘parameters’’ that the solectron fully controls the current.
This is a clear manifestation of the significant role played by the nonlinear elasticity when added to the quantum dynamics
(or even to the classical dynamics) evolution of the lattice model system treated here.

6. Concluding remarks

The origin of the polaron concept (an electron with an associated phonon cloud composed of a few, finite number of
phonons), long ago introduced by Landau and Pekar, has been recalled in order to set the stage and to have solid ground for
a significant generalization by introducing the solectron concept (by analogy, an electron with a soliton cloud which can be
consideredwith an infinite number of phonons; note, however, that the soliton exists even if there is no electron).11 This was
doneby giving preeminence to anharmonic backbone lattice vibrations (andhencenonlinear elasticity) not considered by the

11 A smooth curve is easily reconstructed or analyzed with a few, finite number of Fourier modes while a peaked one like a cornered graph or a cnoidal
peak demands using an infinite number of modes (for a jump recall the Gibbs phenomenon).
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earlier authors, limited to harmonic lattice vibrations (acoustic phonons). This preeminence offers the possibility of soliton
excitations (and related deformations) in the lattice. However, at variance with the polaron, these excitations, by their very
nature, aremobile, even if very few (two or three lattice units) are involved. They appear as long lasting, ‘‘universal’’ carriers
of matter, energy or electric charge. The addition of an excess electron leads to a polaron–soliton interacting compound. But
there is more than that. Indeed, the soliton has been shown to be able to trap an electron even when the latter is completely
delocalized along the lattice and no significant feedforward polaron effect on the lattice motions exists. Numerical evidence
has been provided about the onset of such solitons by presenting specific heat (at constant length/volume) and dynamic
structure factor results. It has also been shown how the solectron mediates in establishing a non-Ohmic form of electric
conduction (generally supersonic; subsonic values are also possible depending on parameter values). A salient feature of
such new form of electric conduction is that for a certain range of relatively moderate electric field strengths the current
becomes constant, field-independent down to vanishing field values. The solectron formation is not an automatic event
for, as already emphasized, the soliton excitation is a necessary albeit not sufficient condition for it. The solectron formation
demands also the adequacy of conditions (parameter values in the dynamics of both electron and lattice, and their coupling,
temperature, etc) for electron trapping to be possible by the soliton. Generally, this latter event is expected to occur at
higher temperatures than the temperature at which solitons are excited. In fact, exaggerating somewhat, solectron currents
are expected at the ‘‘edge of melting’’ or dissaggregation of a material.
In conclusion, quite a strong claim is here made (though theory without experiment is fruitless): nonlinear elasticity

(for the time being this claim refers only to a Toda-like lattice model) may decide electric conduction characteristics, like a
non-Ohmic form of a relatively fast, constant, field-independent current. There remains the question (not addressed here)
of existence and stability of thermal solitons (and solectrons) up to relatively high temperatures, e.g. room or physiological
temperatures. There is only a partial answer to this question in Ref. [62] and in a more recent work [63], where we also have
started considering Eq. (7) augmentedwith a non-uniform diagonal part. Although some numerical evidence shows that the
solectron-charge transport in the Toda–Morse lattice appears stable up to room temperature (about 300 K), further work is
needed along this line of enquiry before a firmly established conclusion can be drawn.
Before closing let us mention that an approach to the problem discussed here using Kubo-like (Kubo-Greenwood-Green

linear response) transport theory valid, in principle, for arbitrary dimension has recently been given elsewhere [64].
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