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ABSTRACT: We present a model for nonlinear excitations in bio(macro)-molecules
stable at room temperature and offering a possible mechanism for electron transfer over
long distances (e.g., 100 Å and beyond). It is based on the excitation of generally supersonic
solitons in a heated one-dimensional lattice with Morse interactions in a temperature range
from low to physiological level. We study the influence of these supersonic excitations on
electrons moving in the lattice. The lattice units (considered as “atoms”) are treated by
classical Langevin equations. The densities of the core electrons are in a first estimate
represented by Gaussian densities, thus permitting to visualize lattice compressions as
enhanced density regions. The evolution of excess, added free electrons is modeled in the
tight-binding approximation using first Schrödinger equation and, subsequently, the
assumption of local canonical equilibrium corresponding to an adiabatic approximation.
The relaxation to thermal equilibrium is studied in a perturbative approach by means of
the Pauli master equation. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem 110: 46–61, 2010
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THERMAL SOLITONS AND SOLECTRONS IN NONLINEAR CONDUCTING CHAINS

1. Introduction

T he exploration of the interaction between
phonon-type excitations and electrons was of

paramount importance for our understanding of the
main mechanisms of electronic conduction in solid
crystalline materials including superconductivity. In
particular, we mention the “polaron” concept devel-
oped by Landau and Pekar [1–3]. On the other hand,
our knowledge about the electron transfer (ET) pro-
cesses in biomolecules is still far from complete as
though Marcus seminal theory [4, 5] provided a most
valuable breakthrough there are still open ques-
tions [6, 7]. Furthermore, biological motors often
require electron transfer processes over relatively
long distances with only small loss of energy [8,
9]. Davydov [10] was first to express the idea that
for bio(macro)-molecules the interaction of electrons
with solitonic interactions may play a role of sim-
ilar importance as the earlier mentioned electron-
phonon interaction in solid crystalline materials.
Davydov showed that the nonlinearity induced by
the electron-(acoustic) phonon interaction (polaron
effect) leads to excitations which he called “electro-
solitons.” The latter could travel along originally
harmonic lattices and assumed that they could be
stable at physiological temperatures. Several authors
have checked this conjecture by computer simula-
tions. It was shown that Davydov’s electro-solitons
are destroyed already around 10 K lasting at most
2 ps [11–13]. However, the lack of stability of Davy-
dov’s solitons may have been due to lack of con-
sistency in the computational scheme used with
mixed quantum-classical representations (for a thor-
ough discussion of the problem see [14]). Davydov’s
concept of electro-soliton is an appealing general-
ization of the polaron concept. Similar ideas were
advanced by Fröhlich [15, 16] (for an assessment of
the relationship between the two approaches see [17]
and for another related work see [18]). Volkenstein
[19] also advanced the idea that the displacement
of an electron or electron density in a bio(macro)-
molecule causes a conformational rearrangement.
The electron plus the deformation of the bio(macro)-
molecule was thought as similar to the polaron albeit
in a nonperiodic crystalline material, and it was
denoted as “conformon.” Volkenstein pointed out,
however, that the so-called conformon was not capa-
ble of moving at long distances without dissipation
due to the inhomogeneity and aperiodicity of the sys-
tem. The present article is devoted to a generalization

of Landau’s polaron and Davydov’s electro-soliton
concepts [20].

It is now well established that if the underlying lat-
tice dynamics involves an appropriate anharmonic
interaction this results in the appearance of very
stable supersonic acoustic (lattice) solitons [21–27].
Furthermore, it has also been shown that the lat-
tice solitons in a Morse chain when coupled to
free, conduction electrons bring a new form of
dressed electrons or electro-soliton dynamic bound
states [28–36]. They have been called “solectrons” to
mark the difference with Davydov’s original electro-
solitons. The quasi-particles which we call solectrons
belong to the same family as the polarons and the
electro-solitons, since they are bound states of excess
electrons and lattice excitations. Let us insist upon
the fact that they are essentially due to the anhar-
monicity of the lattice, and that their thermal stability
is ensured well above 10 K up to physiological level
(for a given material the actual temperature range
depends on parameter values, as expected).

The rest of the article is organized as follows.
After introducing the model Morse lattice (Fig. 1)
[37], we develop in Section 2 a method of visual-
ization of electron density nonuniformities, which
allows us to estimate the region of solitonic excita-
tions as well as their life times. Section 3 deals with
the electron-lattice interaction in the tight-binding
approximation thus describing how lattice defor-
mations (or relative displacements between lattice
units) affect (free) electron motions and vice versa.
In Section 4, we discuss the dynamics in a heat bath
at finite temperature in a suitable adiabatic approx-
imation by considering that electrons adapt instan-
taneously to the lattice changes. To approximately
describe the relaxation to thermal equilibrium, we
use in Section 5 a master equation approach fol-
lowing Pauli’s seminal work [38–40]. We take into
account the nonuniformities of the electron density
and the nonuniformity of the on-site electron energy
levels.

2. Dynamics of Atomic
Lattice—Moving Overlap Regions as
Supersonic Structures

The first step of our study is rather qualitative. Let
us show that in a heated anharmonic atomic chain,
the overlap regions of the wave functions form very
fast moving local structures including about 10 lat-
tice sites which are moving with supersonic velocity.
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This might be a first hint on a relation to recent find-
ings that the electronic couplings in biomolecules are
determined by nonequilibrium geometries [41].

We shall consider a one-dimensional (1D) nonlin-
ear lattice of length L with N classical particles (atoms
or screened ion cores) and N noninteracting excess,
added free electrons. The electrons occupy some 3D
volume surrounding the 1D lattice. The electrons
eventually lead to donor-acceptor ET or electric cur-
rent in the presence of an external field (a wealth of
information about both items in biomolecules and
the diversity of approaches taken can be found in the
references [7, 42–51]). For the heavy lattice atoms we
consider that they obey classical Langevin dynam-
ics, thus introducing temperature through noise [52].
In the computer simulations we shall take all lattice
units with equal mass m, described by coordinates
xn(t) and velocities vn(t), n = 1, . . . , N, impos-
ing periodic boundary conditions. The Hamiltonian
consists of the classical lattice component Ha, and the
contribution of the electrons He, which includes the
interactions with the lattice deformations. Focusing
on the lattice part we set

Ha = m
2

∑
n

v2
n + 1

2

∑
n,j

V(xn, xj). (1)

The subscripts locate lattice sites and the corre-
sponding summations run from 1 to N. The mean
equilibrium distance (lattice constant) between the
particles in the lattice is σ (σ = L/N). With r = xn+1−
xn denoting the distance between nearest-neighbors
the Morse potential is [37] (Fig. 1)

V = D{exp[2B(r − σ)] − 2 exp[−B(r − σ)]}. (2)

B accounts for the stiffness of the lattice “springs”
and D is a binding/bond breaking energy scale in the
lattice. Typical parameter values for biomolecules
are σ � 1 − 4 Å; D � 0.05 − 0.5 eV. This means that
the oscillation frequency is in the range 1/ω0 � 0.1−
0.5 ps. The stiffness of the potential is not so well
known, and as typical we assume here B � 1 − 5
Å−1. The exact values of the parameters do not mat-
ter, since for consistency in the presentation we will
give all results in dimensionless units which we will
discuss below. A key parameter in our model is the
ratio between the stiffness B and the average equilib-
rium distance σ between the molecules.According to
our estimates this relation which determines the non-
linearity is in the range Bσ � 1 − 20. Here, the lower
border stands for weak nonlinearity and the upper

FIGURE 1. The available knowledge about depth,
frequency, and stiffness of the interaction of atoms may
be fitted by different potentials. Here, Toda (upper curve),
Morse (middle curve), and (r −12, r −6) Lennard–Jones
potentials suitably scaled around the minimum to have
identical second and third derivatives. Relevant in our
context is the repulsive part.

border for strong nonlinearity. In order not to over-
estimate the nonlinear effects, we assume that we are
in the region of weak nonlinearity.

In principle the available knowledge about the
depth of the interaction potential, the frequency of
oscillations around the minimum and the stiffness of
the repulsive part of the interaction of atoms may be
fitted by different potentials; this is demonstrated
in Figure 1. We decided to use the Morse poten-
tial, since—as far as we know—it is with respect
to the repulsive forces the most realistic albeit sim-
ple potential. What is relevant in our respect is the
exponential behavior of the repulsive part, and the
possibility to match the stiffness (the third deriv-
ative) to available data. The attractive part of the
potential, which is less realistic for the Morse model,
is not of relevance in our context since solitonic exci-
tations are determined by the repulsion between
the atoms. For illustration in our computer simu-
lations we shall use N = 200 and B = 1/σ . This
is rather weak (small nonlinearity) but still in the
range of the available data as noted earlier. With
increasing values of the dimensionless parameter
(Bσ) the effects described here will be even more
pronounced.

Then in the presence of random forces (hence non
zero temperature) and also external forces, H, the
evolution of lattice particles is described by Langevin
equations (n = 1, 2, .., N) [52]

d
dt

vn + 1
m

∂H
∂xn

= −γ0vn +
√

2Dvξn(t). (3)
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FIGURE 2. Toda–Morse lattice. Specific heat at
constant volume/length (upper curve) and ratio of
potential energy, U , to kinetic energy, Tkin (lower curve)
of the anharmonic lattice (in dimensionless units
according to the main text). Note that we have only the
“high” temperature range. T � 0.1 − 0.5 (even up to 1) is
the soliton range. Following up in temperature there is
melting (transition from solid to the hard sphere fluid:
Cv/kB = 0.5).

The stochastic forces
√

2Dvξn(t) model a surround-
ing heat bath (Gaussian white noise). The parame-
ter γ0 describes the common standard friction fre-
quency acting on the lattice atoms from the heat
bath. Through Einstein’s relation Dv = kBTγ0/m, we
have temperature T. The quantity σ is the length
unit (though in occasions we shall use 1/B) and
the frequency of oscillations around the potential
minimum ω−1

0 is the time unit.
As the energy unit we shall use 2D = mω2

0σ
2/(Bσ)2,

that with Bσ = 1 reduces to mω2
0σ

2, traditionally
used by most authors. This energy will be used also
as the unit to measure the temperature T (kB =
8.6 × 10−5 eV/K; kBT = 2D).

The specific heat (at constant volume/length) of
the atomic lattice described by the system (1) and
(3) is known (Fig. 2). According to this quantity
the region where nonlinearity plays significant role
in our lattice is 0.75 < Cv/kB < 0.95. This is the
multiphonon or highly deformed phonon or, bet-
ter, soliton range. The corresponding temperatures
in energy units are in the range T � 0.1 − 0.5 (and
even up to 1–2) or in other terms TM

sol � 0.2 − 1.0D.
In electron volts (eV) this would be the range
TM

sol � 0.01 − 0.1 eV. For biological macromolecules
this estimated range of temperatures includes
the range of physiological temperatures (about
300 K).

We can visualize the time evolution of the lattice
units and the lattice compressions and expansions,

hence the solitons by representing the density of the
atomic electrons. This can be achieved by consid-
ering that each lattice particle is surrounded by a
Gaussian electron density (atomic density) of width
s = 0.35σ . Then the total atomic electron density
on the axis where the atomic centers are located is
given by

ρ(x) =
∑

n

1√
2πs

exp
[
− (x − xn(t))2

2s2

]
(4)

where x is the coordinate on the axis and xn the
place of the atomic sites. Thus each lattice atom is
like a spherical unit with continuous core electron
density concentrated around its center. In regions
where the atoms overlap, the density is enhanced.
Note that this picture is entirely qualitative, we use
it only for the purpose of visualization. This model
permits identifying solitonic excitations based on the
colors in a density plot. We show in Figure 3 the
result of computer simulations for three tempera-
tures T = 0.005 (∼5 K), T = 0.1 (∼102 K), and T = 0.5
(∼5 × 102 K). The absolute temperatures given here
correspond to 2D = 0.1 eV.

The diagonal stripes correspond to regions of
enhanced density (regions of overlap of the wave
functions) which are running along the lattice, this
is the sign of solitonic excitations. In fact the over-
lap regions visualized here by colors are supersonic
structures which have a size of about 10 lattice units.
Indeed checking the slope we see that the excita-
tions which survive more than 10 time units move
with supersonic velocity. The pictures shown are
quite similar to what was described by Lomdahl and
coworkers [11–13], with a life time of at most 2 ps
which are stable only up to 10 K. Ours, however, live
about 10–50 time units that is for several picosec-
onds. Note that T = 1 is well above physiological
temperatures. This confirms an earlier finding where
at T � 300 K stable solectrons could be identified
[30, 31]. Recall that Davydov’s electro-solitons and
hence Lomdahl and Kerr’s earlier mentioned work
refer to solitons induced by the presence of origi-
nally free electrons and subsequent electron-lattice
interaction (polaron-like effect). In the case we study
here, the solitons are excited already before injecting
electrons, and they are solely a consequence of the
nonlinear lattice dynamics. What happens if excess,
added free electrons are added is described in the
following section.
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FIGURE 3. Toda–Morse lattice. Visualization of running excitations using ρ ′ = √
2πsρ, core electron density. In each

case the left plot is a snapshot ρ ′(t ), while the right plot represents trajectories ρ ′(x/σ , t ) (the gray scale coding is in
arbitrary units). We study three temperatures (given in units of 2D): upper two-figures: T = 0.005: we see only harmonic
lattice vibrations and no evidence of strong (soliton-like) excitations; center two-figures: T = 0.1: many density peaks
show solitons (diagonal stripes). The strongest compressions move with velocity around 1.1vsound; lower two-figures:
T = 0.5: among the many excitations appearing we observe solitons running with velocity around 1.3vsound. Parameter
values: N = 200 and Bσ = 1.

3. Electron-lattice Dynamics in
Tight-Binding Approximation

Let us now study the influence of the nonlinear
lattice oscillations or in other words lattice defor-
mations on the dynamics of added, excess electrons,
which are moving by hopping processes on the lat-
tice interacting with the lattice units. The centers of
the excess electrons are hopping on the 1D lattice
from site to site. However to be more precise we
have to realize that the electrons and their field are
phenomena in the 3D-space around the lattice. In
dependence on the distance from the electrons the
atoms change their onsite energies, e.g. by polar-
ization effects, and by modifying their transition
probabilities. Taking only one atomic state per site in

the tight-binding approximation (TBA) we can write
for the excess electrons [53–55]:

He =
∑

n

[
En(. . . , xn−1, xn, xn+1, . . .)c+

n cn

− Vn,n−1(xn, xn−1)
(
c+

n cn−1 + cnc+
n−1

)]
. (5)

Recall that (5) refers to initially free electrons added
to the lattice atoms assumed to be located at sites
“n”. The Hamiltonian (5) gives a mixed quantum-
classical representation of the electron dynamics
using the probabilities cncn∗ of electron location
at site n including classical time-dependent coor-
dinates xn(t) of the atomic lattice sites. Purposely
we shall consider the nonuniformity of the on-site
energy levels (diagonal elements, Vnn, of the trans-
fer matrix). Further assuming that the interactions

50 INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY DOI 10.1002/qua VOL. 110, NO. 1



THERMAL SOLITONS AND SOLECTRONS IN NONLINEAR CONDUCTING CHAINS

depend exponentially on the distance between the
atoms (5) becomes

He =
∑

n

{(
E0

n + δEn
)
c+

n cn

− V0 exp[−α(qn − qn−1)]
(
c+

n cn−1 + cnc+
n−1

)}
. (6)

Here, for convenience in notation, qn denotes a lattice
site spatial vibration (relative displacement) coordi-
nate. This is a dimensionless coordinate (units 1/B)
defined by xn = nσ +qn/B. Typical parameter values
are in the range α = 1 − 1.75) [11, 13, 31]. The term
E0

n denotes on-site energy levels of the unperturbed
lattice and δEn is the perturbation due to the lattice
vibrations (harmonic as well as anharmonic modes
may contribute). As done by Holstein and others we
can assume in a first approximation that the shift is
linear in the deformations [18, 47–49]

δEn = χδxn; δxn = (qn/B), (7)

where the “electron-phonon coupling constant,” χ ,
estimates how much the on-site energy level En, i.e.,
the local site energy, depends on the displacement of
the oscillator site; qn is dimensionless (unit: 1/B). In
a real crystal this coupling between lattice deforma-
tions and electronic states, leads for high enough val-
ues of the parameter χ to the formation of polarons.
In view of the above given parameter values, the
value of the coupling constant is in the range χ �
0.1 − 2 eV/Å. Adapting these assumptions to our
model we have to take into account that our model
is translationally invariant and that we are consid-
ering relative lattice displacements. Accordingly, we
set

δEn � χ1

2
[(qn+1 − qn) + (qn − qn−1)], (8)

with χ1 = χ/B as a new constant. Using a pseudopo-
tential which models all electric effects including also
polarization we set

En = E0
n − Ue

′∑
j �=n

h√
(xn − xj)2 + h2

. (9)

Here Ue is the maximal value of the shift and h
is a length scale expressing the decay of the inter-
action strength with the distance. In the computer
simulations we used mostly the parameter values
Ue = 0.1D, h = 0.3σ . Further the over-dash in the
sum indicates that the range is to be restricted in an
appropriate way like at a distance 1.5σ from the cen-
ter of the atomic core. In other words we assume

that only those atoms in the neighborhood which
are nearer than 3σ/2 contribute to the shift of energy.
We may consider the expression (9) as a semiem-
pirical expression for the shifts albeit with two free
parameters, Ue and h. In order compare with the
“ansatz” (7) made by Holstein and others we con-
sider a linearization of Eq. (9) and hence we can
write

δEn � hUeσ

B(σ 2 + h2)3/2
[(qn+1 − qn) + (qn − qn−1)]. (10)

Comparing (8) and (9) we find the relation between
both models

χ = Ue
2σh

(σ 2 + h2)3/2
=

(
Ue

σ

)
2(h/σ)

[1 + (h/σ)2]3/2
. (11)

Then for Ue = 0.1 − 1.0D, h = 0.3σ , D = 0.1–0.5 eV,
and σ = 1–5Åwe obtain χ = 0.001−0.1 eV/Å.As the
parameter values in this approach are about one or
two orders of magnitude below the earlier indicated
values we expect that here polaron effects are rather
weak and hence the system dynamics is dominated
by solitons.

The probability to find the electron at the lattice
site or atom located at xn, i.e., the occupation number
pn, is pn = cnc∗

n. Solving the Schrödinger equation for
the components of the wave function cn we get

i
dcn

dt
= τ0

[
E0

n + δEn(qn+1, qn−1)
]
cn

− τ {exp[−α(qn+1 − qn)]cn+1

+ exp[−α(qn − qn−1)]cn−1}, (12)

where E0
n and δEn are dimensionless (unit: 2D); τ0 =

(2D/hw0) and τ = (V0/hw0). The corresponding
equations for the lattice displacements reads in this
approximation

d2qn

dt2
= −pn

∂δEn(qn+1, qn−1)

∂qn

+ {1 − exp[−(qn+1 − qn)]} exp[−(qn+1 − qn)]
− {1 − exp[−(qn − qn−1)]} exp[−(qn − qn−1)]
− αV0

{
exp[−α(qn+1 − qn)]

(
c+

n+1cn + cn+1c+
n

)
+ exp[−α(qn − qn−1)]

(
c+

n cn−1 + cnc+
n−1

)}
.

(13)

The problem reduces, in principle, to solving both
Eqs. (12) and (13) coupled together. It is not, how-
ever, the only possible approach to our problem as
we shall see below.
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There are several types of of soliton-mediated
electron transfer processes: (i) electron transfer (ET)
from a donor to an acceptor mediated by mechan-
ically excited lattice solitons, (ii) soliton-mediated
electron transfer (ET) in a lattice in thermal equi-
librium with thermally generated solitons, and (iii)
electric current mediated by solitonic excitations in
the presence of an external field.

Here, we study only the first two processes. Let
us begin with the first problem. Let us estimate
how the path of an electron may be influenced by
a soliton which was generated by a perturbation in
the lattice. When an excess electron is placed at a
donor located at site n = 100 at time t = 0, Figure
4 shows our findings: (a) pure anharmonic lattice
vibration without electron-lattice interaction (α =
0): time evolution of one soliton, (b) free electron
hence alien to lattice vibrations (α = 0): spreading of
the free electron probability density, as a natural con-
sequence of Schrödinger equation, (c) electron-lattice
interaction (α = 1,75): soliton-mediated ET. The
electron is dynamically bound to the soliton thus cre-
ating the traveling, generally supersonic solectron
excitation. Indeed when the electron-lattice interac-
tion is operating, we see that the electron moves
with the soliton with a slightly supersonic velocity
vel ∼ 100

70 vsound and is running to the right border of
the square plot. Let us assume that there an acceptor
is located. This means that the electron is guided by
the soliton from donor to acceptor. In reality the elec-
tron cannot ride on just a single soliton from donor
to acceptor. Several solitons should be involved in
transport. Therefore, the above given soliton veloc-
ity is an upper bound for ET. In principle this effect
may be used as a way to manipulate the transport of
electrons between a donor and an acceptor. Clearly
in our case we may have a polaron-like effect due to
the electron-phonon (or soliton) interaction coupled
to a genuinely added lattice solitonic effect due to the
anharmonicity of the lattice vibrations. This permits
soliton besides phonon-assisted hopping.

Let us summarize the findings on ET obtained
so far: Electrons injected into the lattice may form
very stable bound states which move with super-
sonic velocity along the lattice and may transfer the
electron over hundreds of lattice sites. This effect
points in the direction of the observation of elec-
tron transfer over long distances with only small
loss of energy. The problem however remains, how
stable solitons may be excited. In principle, any
fast mechanical deformation or significant confor-
mational rearrangement could be responsible for
the excitation of solitons running along the lattice.

FIGURE 4. Toda–Morse lattice. Results of numerical
integration of Eqs. (12) and (13). Upper figure: α = 0,
soliton alone; center figure: α = 0, electron alone; lower
figure: α = 1, 75, solectron (electron dynamically bound
to the soliton). The gray scales (velocity and probability
density) are in arbitrary units, just for illustration.

This however requires synchronization between the
electron emission and the lattice soliton excitation.
Another more physically appealing process is to
look for thermally excited solitons, which are always
present in the medium. This problem is investigated
in the next two sections.

4. Adiabatic Approximation to the
Thermal Electron Dynamics

In a heated lattice the atoms and electrons per-
form quite complex motions. The earlier used
Schrödinger–Langevin dynamics based on the tight-
binding Hamiltonian and the Langevin equations
for the lattice is not so suitable for describing a
heated system due to the large differences between
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the electronic and the lattice relaxation times. In the
following we will discuss several other approaches.
In a simplest entirely classical approximation we
can assume that the time evolution of the electrons
is very fast defining locally a Maxwell-Boltzmann
distribution. To construct this distribution we look
again at the interaction between the lattice units and
the surrounding excess, added free electrons. We can
also assume that all lattice atoms which are near to
the electron in distance 1.5σ or less contribute to the
local potential V(x) acting on the excess electron

V(x) =
∑

n

Vn(x − xn), r = |x − xn| < 1.5σ , (14)

with

Vn(x − xn) = −Ue
h√

(x − xn)2 + h2
. (15)

In accordance to Section 3 we take Ue � 0.1D, which
ensures that the electrons are only weakly bound to
the atoms and may transit from one side to the other
of a lattice unit. Accordingly, the electrons are able
to wander through the lattice eventually creating an
electric current. To place a pair of electrons between
two lattice particles is in general not favorable in
energetic terms, since the energy of repulsion e2/ε0r
has to be overcome; ε0 denotes dielectric constant.
However, the electron may attract more than two lat-
tice atoms thus forming a deep potential hole akin
to a polaron state which is a static structure corre-
sponding to favorable energetic configurations. Here
we are rather interested in the dynamic phenomena
initiated by solitonic excitations in the lattice. How-
ever, we have to take into account that both of these
phenomena, the local compression by a static process
(polaron formation) and by a running compression
(soliton excitation), are intimately connected. The
choice h � 0.3σ provides shallow minima at the loca-
tion of the lattice atoms with significantly deep local
minima at the location of a compression. Because of
the quite complex thermal motions of the atoms, we
may expect a rather complex structure of the field
acting on the electrons.

The potential V(x, t) changes quickly and the dis-
tribution of the electrons tries to follow it as fast
as possible hence electrons are “slaved” accord-
ingly, thus permitting an adiabatic approximation.
We have a situation similar to that described for
free electron statistics in semiconductor theory [56].
When the electron density is sufficiently low, so
that the electrons are still nondegenerated we may

approximate the original Fermi–Dirac statistics by
the Maxwell–Boltzmann statistics. The Boltzmann
approach is often a rather good approximation
which connects in a simple way the distribution with
the landscapes of the local potential. Then, we take

n(x) = exp[−βV(x)]∫
dx′ exp[−βV(x′)] , (16)

with β = 1/kBT. Here x denotes the linear coordinate
along the lattice. An example of the estimated den-
sity is shown in Figure 5 (not normalized and given
in logarithmic scale). The (relatively high) peaks cor-
respond to the enhanced probability of a soliton to
meet and trap an electron. This defines the solectron,
i.e., an electron “surfing” on a soliton for about 10–50
time units (i.e., a few picoseconds) then getting off
it and eventually finding another soliton once more
to surf-on and so on. For T = 0.1 we observe several
rather stable running excitations (diagonal stripes)
with velocity around 1.2vsound. For T = 1 (not shown
in the figure) we have observed many weak and
only a few high level excitations moving with the
supersonic velocity 1.4vsound. The probabilities esti-
mated from the Maxwell–Boltzmann distribution are
strongly concentrated at the places of minima. This
means that most of the electrons are concentrated
near to solitonic compressions.

Let us now study the problem in a discrete quan-
tum statistical formulation. In a first approximation
we may assume the canonical equilibrium distribu-
tion

p0
n = exp[β(µ − En)], (17)

where the chemical potential µ is given by the
normalization. In the adiabatic approximation we
assume that this distribution is attained in a very
short time. The En are the eigenvalues of the Hamil-
tonian He. Since this eigenvalue problem with time-
dependent matrix elements is very complicated, we
estimate the eigenvalues by the diagonal elements of
the matrix E0

n + δEn. This assumption leads in linear
approximation to the expression

p0
n � exp

[
− δEn

kBT

]
= exp

[
−χ(qn+1 − qn−1)

BkBT

]
. (18)

Let us now consider that one big soliton is excited in
the heated system. We assume the following soliton
shape

exp[−3(qn − qn−1) = 1 + β0 cosh−1[κn − β0t]. (19)
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FIGURE 5. Toda–Morse lattice. Classical probability distribution of an electron in a heated anharmonic lattice in the
adiabatic approximation according to local Boltzmann distribution. On the left figure a snapshot of the distribution is
given for a certain time instant. On the right figure the actual time evolution of the distribution is displayed. The
temperature is T = 0.1. Parameter values: N = 200, h = 0.3, σ = 1, and Bσ = 1. [Color figure can be viewed in the
online issue, which is available at www.interscience.wiley.com.]

It seems pertinent to note that for all practical pur-
poses a Gaussian appears as a valid approximation to
(19) when using Morse or L-J potentials as shown by
Rice and coworkers [22, 23]. By introducing Eq. (19)
into Eq. (18) we find

p0
n � [1 + β0 cosh−2[κn − β0t]]ζ

× [1 + β0 cosh−2[κ(n + 1) − β0t]]ζ , (20)

where

ζ = χ

6BkBT
. (21)

We see that a solectron in a thermal medium
is quite similar to a mechanically excited soliton
except for some kind of twin structure and a little
deformation of the shape and the amplitude, both
temperature-dependent. The velocity of a solectron
in a thermal medium, however, is the same as the
standard soliton velocity.

Let us now proceed to a quantum statistical study
of systems in thermal equilibrium. The canonical

equilibrium distribution is now given by the time-
dependent energy eigenvalues which lead to the
expression

p0
n � exp[−c(qn+1(t) − qn−1(t))], (22)

with c = χ/kBT. For systems in thermal equilibrium,
the displacements have to be taken from a computer
simulation of thermally excited solitons. Their dis-
tribution is a quickly changing local function of the
lattice displacements. In the adiabatic approxima-
tion we assume that this distribution is attained in a
very short time, as shown in Figure 6.

Instead of following just on computer simulations
we may estimate the soliton frequency from the ther-
mal statistics of the solitons in the lattice. There exists
some knowledge [57–60] for Toda interactions. By
using the equivalence between Toda and Morse sys-
tems (see Fig. 1) we may transfer these results at least
to a good approximation to Morse systems. The cal-
culation goes as follows: (i) we determine for single
solitons with parameter κ which are described by

FIGURE 6. Toda–Morse lattice. Canonical probability distribution of an electron in a heated anharmonic lattice in TBA
and adiabatic approximation. Left: T = 0.1, right: T = 0.5. Parameter values: Bσ = 1, α = 1.75, V0 = 1, τ = 10, and
γ = 0.002. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]
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Eq. (19), as shown above. We assume that this excita-
tion is wandering with the soliton, and (ii) we assume
that the density of solitons depending on parameter
κ is known. Following [59, 60] we have

n(κ , T) = 4aκ
πkBT

exp(−κ) exp[−(E(κ) − 2κ)/kBT],
(23)

where

E(κ) = 2a
b

[sinh cosh κ − κ]. (24)

Since the occupation pn depends on κ we get this way
the electron occupation distribution. In a thermally
excited system, the number of solitons depends on
the initial and boundary conditions. In an infinite
thermal Toda system, the number of solitons can be
approximated by

n(T) � constT1/3, (25)

a distribution assumed to be valid for Morse forces.
Then the number of solitons increases with the tem-
perature. On the other hand, their contribution to
macroscopic properties, as e.g. the specific heat goes
down as can be seen in Figure 2. Further the influence
of solitons on the solectron formation diminishes
with increasing temperature, as shown in Eq. (17).
Therefore, we expect that there exists a kind of “opti-
mal temperature” where solitons have the strongest
influence on the formation of solectrons.

5. On the Relaxation to Thermal
Equilibrium Using Pauli’S Master
Equation

In the adiabatic approximation we assumed that
the relaxation to local equilibrium is instantaneous.
In reality, however, the relaxation takes a small, but
finite time. In our case of 1D-TBA systems with
discrete sites for the electrons, we can introduce
an approximate irreversible Markov description of
the relaxation following Pauli’s (1928) seminal work
[38]. Pauli started from the Schrödinger equation
and derived by perturbation theory a Markov chain
description and an expression for the transition prob-
abilities. He introduced an irreversible master equa-
tion expressing the balance between the transitions
in an ensemble. Pauli’s equation is valid for a micro-
canonical ensemble and neglects symmetry effects.

Further extensions took into account the symme-
try of the wave functions and offered a description
compatible with the Bose–Einstein or Fermi–Dirac
statistics [39, 40]. Later generalizations to canonical
ensembles were connected with the development of
Metropolis algorithms [61]. Applications of master
equations to hopping processes in semiconductors
were given by Böttger and Bryksin [54, 55] and appli-
cations to processes in biomolecules by Schlag and
coworkers [50, 51]. A preliminary study of this is
given in [35].

Following Pauli’s approach we proceed from the
Schrödinger equation (12) to a Markovian master
equation for the occupation probabilities of electrons
pn in a system with the energy levels En:

dpn

dt
=

∑
[Wnn′pn′ − Wn′npn]. (26)

The transition probabilities derived originally by
Pauli using perturbation theory for microcanonical
ensembles (transitions in a narrow energy shell) read
for the TBA model

W0(n, n + 1) = V0

�
exp[−2α(qn+1 − qn)]

× 2πV0δ(En − En+1), (27)

W0(n, n − 1) = V0

�
exp[−2α(qn − qn−1)]

× 2πV0δ(En − En−1), (28)

where δ(x) is Dirac’s delta function. The transitions
from state n to a state n′, one of the nearest-neighbor
sites, should correspond to the same energy level
(or to a level within a narrow shell). In the case of a
thermal embedding, the situation is more compli-
cated due to the interaction of the electrons with
the lattice and the heat bath. Because of the ther-
mal embedding, we have to go to a generalization
for thermal ensembles. In such cases the transition
probabilities depend on both energy levels between
which the transitions occur and on the direction of
the transition:

W(n, n + 1) = V0

�
exp[−2α(qn+1 − qn)]E(n, n + 1),

(29)

W(n, n − 1) = V0

�
exp[−2α(qn − qn−1)]E(n, n − 1).

(30)
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The thermal factors E(n, n′) are not symmetrical with
respect to their arguments, however there must be
detailed balance

W(n′, n)

W(n, n′)
= exp

[
β
(
En − E′

n

)]
. (31)

In other words, the relation of the thermal fac-
tors should correspond to the relation of Maxwell–
Boltzmann factors. There are several possibilities
to fulfill this relation [55, 62]. The simplest one is
the mere Monte–Carlo procedure, where downhill
transitions are weighted with E = 1 and uphill
transitions with a factor less than unity [61]

E(n, n′) = 1 if En < En′ , (32)

E(n, n′) = exp[−β(En − En′)] if En > En′ . (33)

In our simulations we used this simplest approach.
We underline, that this is a first approximation, and
in real biomolecular systems the relaxation process
is more difficult than the Monte–Carlo dynamics,
which however models some of the basic features
[50]. The Monte–Carlo master equation is a use-
ful tool for computer simulations of the relaxation
to thermal equilibrium distributions. For the first
equilibrium Monte–Carlo study of Davydov’s model
see [63]. Here our approach differs from [63] in
that we include anharmonic forces (Morse poten-
tial) and that we consider a nonlinear relaxation
process. Since the detailed balance is obeyed, it is
guaranteed that in thermal equilibrium the canonical
distribution is solution of the master equation [62].

In dimensionless variables the master equation
(26) for the occupation probabilities reduces to

dpn

dt
= τ {exp[−α(qn+1 − qn)]}2E(n, n + 1)pn+1

+ {exp[−α(qn − qn−1)]}E(n, n − 1)pn−1

− {exp[−α(qn+1 − qn)]}2E(n + 1, n)pn

− {exp[−α(qn − qn−1)]}2E(n − 1, n)pn, (34)

where τ = (V0/�ω0) is the adiabaticity parameter
defined by the relation of the two time scales of
motions. Equation (34) are used for the description
of the thermal motions of the electron system as
an alternative to Eqs. (12). The corresponding equa-
tions for the lattice displacements which exclude the

dependence on the phases of the wave function are
now

d2q
dt2

= {1 − exp[−(qn+1 − qn)]} exp[−(qn+1 − qn)]
− {1 − exp[−(qn − qn−1)]} exp[−(qn − qn−1)]
− 2αV0{exp[−α(qn − qn−1)]√pn+1pn

+ exp[−α(qn+1 − qn)]√pnpn−1}, (35)

which are alternative to Eq. (13). Although the sys-
tem of Eqs. (34) and (35) contains several approxima-
tions, yet it provides a rather fast and therefore useful
tool for the computer simulations of the electron-
lattice dynamics in thermal systems. Figure 6 illus-
trates results of computer simulations based on this
approach. Because of the way we treat electron
relaxation effects, there are differences between the
methodology using the coupled Schrödinger equa-
tion and Langevin equation system (12), (13) and that
using Pauli’s approach albeit they are minor at least
for small and for medium values of τ ∼ 1. For large
τ , the electron relaxation in the heat bath is very
fast and the distribution may be approximated by
the local Maxwell-Boltzmann distribution discussed
in Section 4. For τ � 10 − 20, the approach based
on the Pauli equation (34–35) is most useful, since it
provides information on deviations from the adia-
batic approximation as the lattice dynamics and the
electron dynamics are treated independently includ-
ing their coupling. Recall that in the strict adiabatic
approximation given in Section 4 one assumes that
the electrons adapt “instantaneously” to any change
in the lattice. In other words one assumes that the
electrons follow in a very fast way to the new lat-
tice configuration and may be described at any time
by the canonical distribution [62]. In the approach
based on Pauli’s method we take into account that
the electrons need time to follow the lattice motions
what leads to certain delay in their response and to
some deviations from the stationary solution. How-
ever, qualitatively the picture remains similar to the
results obtained in section 4 as shown in Figures
7 and 8 where the solution of Eq. (34) is obtained
simultaneously with that of Eq. (35).

Let us analyze now the relaxation of the distribu-
tion of injected excess electrons for several examples.
In Figures 7 and 8 we show the solutions of Eqs.
(34) and (35) found with two types of initial con-
ditions for three temperatures in both cases. In the
first case (Fig. 7) the initial state corresponds to an
electron probability density spread over half of the
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FIGURE 7. Toda–Morse lattice. Time evolution of the electron probability distribution according to Pauli’s equation (34).
Three temperatures (unit: 2D) are considered: upper two-figures: T = 0: an initially rectangular distribution tends
irreversibly toward homogeneous spreading along the lattice; center two-figures: T = 0.01: again the initial distribution
tends to be uniform along the lattice though there is electron-phonon interaction; and lower two-figures: T = 0.5: the
initial rectangular distribution becomes localized around a few peaks thus illustrating the corresponding formation of
solectrons that move with supersonic speed. Parameter values: N = 200, Bσ = 1, h/σ = 0.3, Ue = 0.01, and τ = 1;
α = 0, for T = 0, and α = 1 for both T = 0.01, and T = 0.5.

lattice length (note the homogeneous, constant dis-
tribution between sites 50 and 150), for which the
velocity is “localized” accordingly (Heisenberg rule).
In the second case (Fig. 7) the opposite situation is
considered. Here the electron probability density is
localized in space and hence “delocalized” (spread)
in the velocity space. In both cases we observe an
irreversible spreading of the corresponding distri-
bution as time proceeds for the “very cold” lattice
[T = 0; Figs. 7(ai) and (aii), and Figs. 8(ai) and (aii)].
Both the initial and “final” distributions (after a time
lapse of 400 or 200 units) are displayed (upper plots).
Below we can see the time evolution of the distri-
butions. If the lattice is heated to the temperature
corresponding to the usual phonon range (T = 0.01)

in both cases we continue observing a similar irre-
versible spreading of distributions along the lattice
[Figs. 7(bi) and (bii); Figs. 8(bi) and (bii)]. As the tem-
perature is increased (T = 0.5) we start observing the

role of anharmonicity: solitons become excited that
“localize” the electron probability density, not form-
ing a single peak but rather several relative maxima
at each time instant [Figs. 7(ci) and (cii)]. The latter
evolve in time with the soliton motion [the solectrons
are formed: Figs. 7(cii) and 8(cii)]. It can be observed
that a solectron trajectory is composed of a series of
trajectory fragments moving along either the right
(positive velocity) or the left (negative velocity). The
slope of the trajectory defines the actual soliton (and
solectron) velocity. This is to be expected as there is
no external electric field. This apparent symmetry
would be broken by such a field whatever the value
of its strength could be.

Noteworthy is that several of the effects described
above have been seen already using only classical
theory [28, 29] as well as in the quantum mechani-
cal study using the tight-binding model [34, 36] as
e.g. splitting of the electron probability density into
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FIGURE 8. Toda–Morse-lattice. Same as in Figure 6 but using “localized” (sharper peaked than rectangular) initial
distributions. Note that here time intervals are 200 time units only.

parts, merging of electron distributions, changing of
host solitons (kind of promiscuity of the electron),
etc. The values of the interaction parameters Ue and
α cannot be fixed a priori since they depend on the
particular lattice case under consideration.

6. Concluding Remarks

In anharmonic conducting lattices at temper-
atures high enough (including the physiological
range for biomolecules, ca. 300 K), thermal soli-
tons can be excited which lead to strong local lattice
compressions. This deforms the potential landscape
in which the electrons are moving. The electrons
tend to be trapped in the regions of maximal den-
sity created by the local compressions and then
forced to move dynamically bound to the soli-
tons. These excitations have been called solectrons
to mark the difference with Davydov’s electro-
solitons. They also constitute a generalization of Lan-
dau’s original polaron quasiparticle. Both Landau

and Davydov considered only harmonic lattice
vibrations.

We have shown that indeed both solitons and
solectrons are stable to rather high temperatures
with several picoseconds lifetimes. Our study has
been based upon consideration of an anharmonic lat-
tice (with Morse interactions) to which excess, free
electrons are added. The dynamics of the lattice is
classical and depending on temperature. Thermal
heating excites phonons and solitons. The evolution
of solitons has first been monitored by observing the
evolution of the core electron density profiles sur-
rounding the centers of the atoms originally placed
at lattice sites. This is a useful alternative to the
observation of just point trajectories along the purely
mechanical lattice. For the excess, added free elec-
trons we have taken two approaches: first the elec-
trons are treated in the tight-binding approximation
with evolution dictated by the Schrödinger equation.
Alternatively, for heated lattices the time evolution
has been described first in adiabatic approxima-
tion, by assuming that the density distribution is
canonical, i.e. corresponds to local equilibrium at
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any time instant. The relaxation process to the local
equilibrium is then studied in a perturbative way by
using a master equation approach first proposed by
Pauli [38]. Our theory generalizes the master equa-
tion approach developed by Schlag and coworkers
[50, 51] as we have considered the influence of a
heat bath surrounding the electrons in a Monte-
Carlo approximation. Since practically all proteins
and biomolecules are embedded in a warm medium
we wonder up to what extent our approach may
be appropriate to describe electron transfer (ET) in
such “molecular wires.” The velocities predicted in
our model computations are slightly supersonic (just
for reference in DNA vsound ≈ 10 Å/ps � 1 Km/s
[42, 43]).

In conclusion we can say: (i) In a lattice with non-
linearity and excess, added free electrons dynamic
bound states or quasiparticles, called here solectrons,
may be generated. These rather stable bound states
belong to the same family as Landau’s polaron and
Davydov’s electro-soliton. However in our case they
have a different origin, which is in the nonlinearity
of the lattice, and they have a different (supersonic)
speed and an enhanced stability at “high” temper-
atures; (ii) Mechanically excited supersonic solitons
in a lattice, e.g. by sudden initial deformations or
conformational structural changes, may form with
excess, added free electrons solectrons that is quasi-
particles which are very stable bound states and may
carry charge over long distances; (iii) In a heated
medium many small supersonic lattice excitations
are generated forming little spots which can be able
to catch the electron density. As a consequence, the
electron density remains rather localized as shown
in Figures 6 and 7, where we can see spots which
move with supersonic velocity and have a finite life
time. The dispersion is small, corresponding to an
increase of the life time. However, the single, indi-
vidual solectron spots are unable to carry charges
over long distances, since they change stochastically
their direction.

Appendix: Solitons as Matter or
Charge Carriers

It is customary to denote by solitary waves certain
localized (single-event) nonlinear waves of transla-
tion, i.e., waves that cause a net displacement of
e.g. the liquid in the direction of the wave motion
like bores in rivers. This denomination may also
apply to nonlinear periodic waves or wave trains
[64–67]. They were originally studied in shallow

water canals, rivers, and straits though they may also
appear in the open ocean [65, 68]. Surfing on a river
bore or on a huge wave approaching the sea-shore
is a form of wave-mediated transport. Some of those
single waves or wave peaks may exhibit particle-like
behavior upon collision among themselves or reflec-
tion at walls as already noted long ago by the pioneer
Russell [69]. Their particle-like behavior led Zabusky
and coworkers [70, 71] to introduce the concept of
soliton (bores or hydraulic jumps or even kinks are
also called “topological” solitons, whereas waves
of “elevation” or “depression” are denoted as non-
topological solitons—aka “bright” and “dark” soli-
tons, respectively—in condensed matter physics).
They dealt with the dynamics of one-dimensional
(1D) anharmonic lattices and their (quasi)continuum
approximation [72], provided by the Boussinesq–
Korteweg–de Vries equation [73, 74]. Their work
built upon seminal research done by Fermi and
coworkers [75–77] who tried to understand equipar-
tition in a lattice by adding anharmonic forces. They
used 1D lattices with 16, 32, and 64 units interacting
with “springs” obeying x2 and x3 forces and another
described by a nonlinear but “piecewise linear”
function. The force proportional to displacement fol-
lows Hooke’s law and defines the realm of linear
oscillations, harmonic in Fourier space and phonons
in the quantum mechanics realm [3, 53]. Also worth
recalling are the significant achievements of Visscher
and collaborators using the Lennard–Jones potential
[78] who, while trying to understand heat transfer,
explored the role of anharmonicity and of impuri-
ties (doping a given lattice with different masses,
thus generating isotopically disordered lattices). We
also wish to highlight the work done by Toda on
the lattice (he invented) with a peculiar exponen-
tial interaction that due to its integrability permitted
obtaining exact explicit analytical solutions [21, 79].
The Toda interaction yields the hard rod impulsive
force in one limit (the fluid-like or “molten” phase)
while in another limit it becomes a harmonic oscil-
lator (the lattice crystal-like solid phase). Through
a suitable Taylor expansion it provides the above-
mentioned anharmonic forces beyond Hooke’s law.
Rice and coworkers [22, 23] explored soliton features
in 1D lattices with Toda, Morse and L-J potentials
including the standard (12-6) case and the (32-6)
so-called standard-screw potential. More recently,
Heeger and coworkers have used (topological) soli-
tons to explain the electric conductivity of poly-
mers [80] though in this case solitons come from
the degeneracy of the ground state and not from
an originally underlying lattice anharmonicity in
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trans-polyacetylene the case most studied by those
authors. Finally, let us mention that Del Rio et al.
[81] have shown that in driven-dissipative lattices
solitonic traveling periodic waves [82] can act as
dynamical ratchets (as in Brownian ratchets and
molecular motors) and hence can transport matter
or charge due to the asymmetry of the wave peaks
and not of the underlying potential.
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