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Anharmonicity and Soliton-Mediated
Transport: Thermal Solitons, Solectrons
and Electric Transport in Nonlinear
Conducting Lattices

W. Ebeling, M.G. Velarde, A.P. Chetverikov, and D. Hennig

Abstract We report here results about the excitation and survival of solitons in
one-dimensional (1d) lattices with Morse interactions in a temperature range from
low to physiological or room temperature (ca. 300 K). We also study their influ-
ence on added free electrons moving in the lattice. The lattice units (considered as
“atoms” or “screened ion cores”) are treated by classical (Newton–)Langevin equa-
tions. Then representing the densities of the core (valence) electrons of lattice units
by Gaussian distributions we visualize lattice compressions as enhanced density re-
gions. The local potentials created by the solitonic excitations are estimated as well
as the classical and quantum–mechanical occupations. Further we consider the for-
mation of solectrons, i.e. dynamic electron–soliton bound states. Finally, we add
Coulomb repulsion and study its influence on solectrons. A discussion is also given
about soliton-mediated electron pairing.

Keywords Morse interaction � Polaron � Soliton � Solectron � Electron pairing

1 Introduction

Excitation energy transfer processes in biological systems are problems of basic
and long-standing interest [1–3], and especially the functional primary processes in
photosynthetic reaction centers, drug metabolism, cell respiration, enzyme activities
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and gene regulation have been studied intensively. In this context understanding
the mechanism of electron transfer (ET) in biomolecules has attracted considerable
attention during the last years [4–23]. The exploitation of the ET processes to con-
struct technological devices has already been proposed and for such an achievement
a theoretical understanding of the transfer mechanism in nature is needed and/or it
has to be invented.

Inspired by the success of biomolecule modifications along with the determi-
nation of their three-dimensional structure microscopic theories for energy-transfer
reactions were developed. Data of high resolving X-ray analysis gave the essential
details on an atomic scale needed as input quantities for microscopic theories of ET
in them. This gave insight into the relation between the structure and function for the
energy and particle transfer in biomolecules and it has been shown how their steric
structure can affect electron tunneling. In particular, experiments indicate that the
H-bridges and covalent bonds involved in the biomolecules secondary structure are
vital for mediating ET. On the other hand under physiological conditions (ca. 300 K)
the ET may be activated by couplings to vibrational motion as long ago advocated
by Hopfield [4]. Furthermore, molecular dynamics simulations have predicted that
global molecule motions are very important for biochemical reactions for instance
in light-induced reactions of chromophores accompanied by nuclear motions and
for the ET in pigment protein complexes. In reaction center proteins proceed the
protein nuclear motions coherently along the reaction coordinate on the picosec-
ond time scale of ET as femtosecond spectroscopy revealed. Thus the vibrational
dynamics of biomolecules may serve as the driving force of ET in them. There-
fore investigations of transport mechanisms relying on the mutual coupling between
the electron amplitude and intramolecular bond vibrations in biomolecules are of
paramount importance.

Studies of energy storage and transport in macromolecules on the basis of self-
trapped states have a long history beginning with the work of Landau [24] and
Pekar [25, 26]. They introduced the concept of polaron (or as earlier said elec-
tron self-trapping), i.e. an electron accompanied by its own lattice distortion (a few
phonons in another language) forming a localized quasiparticle compound which
becomes the true electric carrier. In this context an approximate Hamiltonian sys-
tem is often used to model transport of such localized excitations [27, 28]. When
the size of the polaron is large enough so that the continuum approximation can
be applied to the underlying lattice system in a clever combination of physical in-
sight and mathematical beauty Davydov showed that a mobile self-trapped state can
travel as a solitary wave along the molecular structure and he coined the concept
of electro-soliton as electrical carrier and the natural generalization of the polaron
concept [29–32]. Since the work of Davydov the relevance of solitons for the energy
and particle transport in biomolecules has been recognized [33–36]. Similar ideas
to Davydov’s were also advanced by Fröhlich [37–43]; the relationship between the
two approaches was elucidated in [44]. Most of the studies of transport properties
in biopolymers are based on one-dimensional nonlinear lattice models, and recent
two- and three-dimensional extensions with respect to solitonic transport of vibra-
tional energy can be found, e.g. in [45–47]. Recent findings suggest that supersonic
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acoustic solitons can capture and transfer self-trapping modes in anharmonic one-
dimensional lattices [48]. Regarding the enforcing role played by soliton motion in
the functional processes in biomolecules we note that recently it has been proposed
that the folding and conformation process of proteins may be mediated by solitons
traveling along the polypeptide chains while interacting with a field corresponding
to the conformation angles of the protein [49]. Furthermore, in a nonlinear dynamics
approach to DNA dynamics it has been suggested that solitons propagating along
the DNA molecule may play an important role in the denaturation and transcription
process [50–54].

Hence, for a theoretical understanding of ET mechanisms in biomolecule the
models should not only incorporate the static aspect of the protein structure but
also its dynamics [55]. In particular, it has been illustrated that the dynamical cou-
pling of moving electrons to vibrational motions of the peptide matrix can lead to
some biological reactions in an activationless fashion [56]. In this spirit the investi-
gations in [57–65] have been devoted to bond-mediated biomolecule ET using the
concept of breather solutions. The transfer of electrons along folded polypeptide
chains arranged in three-dimensional conformations constituting the secondary he-
lix structure of the proteins has been considered. It has been demonstrated that the
coupling between the electron and the vibrations of the protein matrix can activate
coherent ET.

In view of the above and to better place the work that follows here let us in-
sist on the fact that it is the nonlinearity induced by the electron-(acoustic) phonon
interaction that led Davydov to his electro-soliton concept for otherwise dynam-
ically harmonic lattices. Davydov argued that these excitations could be stable
at finite temperatures and could persist even at physiological or room tempera-
tures. Several authors have checked this conjecture and have shown that Davydov’s
electro-solitons are destroyed already around 10 K lasting at most 2 ps [33–36]. We
shall follow Davydov’s line of thought here but rather than using a harmonic lattice
we shall consider anharmonic lattice dynamics. It is now well established that if
the underlying lattice dynamics involves anharmonic interaction this may result in
the appearance of supersonic (acoustic) solitons running free along the lattice like
in a Toda lattice and in some other cases [66–83]. We shall make use of the Morse
potential [84] (akin to the Toda repulsive interaction and to the Lennard–Jones po-
tential) together with the electron–(acoustic)soliton interaction. As shown in Fig. 1,
these potentials can be scaled around the minimum in such a way that the first three
derivatives are identical what guarantees a close relationship of their nonlinear (soli-
ton) excitations when acting in a lattice. It is also known that these excitations bring
a new form of dressed electrons or electro-soliton dynamic bound states [74–83].
They have been called solectrons to mark the difference with Davydov’s electro-
solitons (for further historical details see [85]). We shall show that due to the added
lattice anharmonicity and the excitation of lattice solitons there is solectron sta-
bility well above 10 K, in fact up to the physiological or room temperature range
(ca. 300 K).

After introducing the model lattice problem in Section 2, we develop in Section 3
a method of visualization of soliton excitations as well as estimation of their life
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times. Discussed also there are the processes of solectron formation, electron pair-
ing and solectron pair formation. In Section 4 using the tight-binding approximation
we further explore how lattice deformations (or relative displacements between
lattice units) affect solectron evolution. We also return there to the question of
soliton-mediated electron pairing. In Section 5 we explore in depth how Coulomb
repulsion affects solectron formation and electron pairing. A summary of results and
comments are given in Section 6.

2 Lattice Dynamics

2.1 Lattice Anharmonicity and Temperature

We shall consider in a mixed classical–quantum description a 1d nonlinear lattice
with added (free) conduction electrons allowing donor-acceptor electron transfer
(ET) or electric current in the presence of an external field. The system consists
of N classical units (atoms or screened ion cores). We shall focus on the case of
periodic boundary conditions on a lattice like a ring of length L. These electrons
are allowed to occupy some 3d volume surrounding the 1d lattice. For the heavier
lattice units (relative to the electrons) we shall consider that have all equal mass m,
and are described by coordinates xn.t/ and velocities vn.t/, n D 1; : : : ; N . We take

Ha D
m

2

X
n

v2n C
1

2

X
n;j

V .xn; xj /: (1)

The subscripts locate lattice sites and the corresponding summations run from
1 toN . The mean equilibrium distance (lattice constant) between the particles in the
lattice is � (� D L=N ). We shall assume that the lattice particles repel each other
with a strong Born repulsive force and attract each other with a weak dispersion
force with a potential which depends on the relative distance r D xnC1 � xn be-
tween nearest-neighbors only. As earlier indicated we shall take the Morse function,
one if not the earliest quantum-mechanics based interaction potential [84]. As Fig. 1
shows its repulsive core is to a good approximation like that of the Toda potential
though the latter possesses an unphysical attractive component. As the Hamiltonian
(Eq. (1)) with V taken as a Toda potential is integrable and we know analytically in
compact form its exact solutions this is of interest to us as we shall be concerned
with relatively strong lattice compressions where what really matters is atomic re-
pulsion. On the other hand it also appears of interest that the Toda interaction yields
the hard rod impulsive force in one limit (the fluid phase) while in another limit it
becomes a harmonic oscillator (the solid lattice crystal-like phase). Thus we take

V D D fexpŒ2B.r � �/� � 2 expŒ�B.r � �/�g : (2)
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Fig. 1 Toda (upper curve),
Morse (middle curve) and
Lennard–Jones L-J(12-6)
(lower curve) potentials suit-
ably scaled around their
minima to have identical
second and third derivatives.
Another L-J potential used by
chemists is the so-called stan-
dard screw L-J(32-6) potential
offering no added advantages
for the purposes of this report
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Exponentials are easily implemented in analog computers and they are also easier
to handle mathematically for our purposes here. For illustration in our computer
simulations we shall useN D 200 and B D 1=� . B accounts for the stiffness along
the lattice and D provides an estimate of the binding/break-up energy of lattice
bonds.

Then in the presence of random forces (hence non zero temperature) and external
forces, H , the evolution of lattice particles is described by the (Newton-)Langevin
equations (n D 1; 2; : : : ; N ) [86]

dvn
dt
C
1

m

@H

@xn
D ��0vn C

p
2Dv �n.t/; (3)

where the stochastic force
p
2Dv �n.t/ models a surrounding heat bath (Gaussian

white noise). The parameter �0 describes the common standard friction frequency
acting on the lattice units or atoms from the surrounding heat bath. The validity of
an Einstein relation is assumed Dv D kBT �0=m, thus binging temperature T ; kB
in Boltzmann’s constant. In most cases we shall use � as the length unit (though in
occasions we may use 1=B) and the frequency of oscillations around the potential
minimum !�10 as the time unit. Typical parameter values for biomolecules are � '
1 � 5Å; B ' 1Å�1; D ' 0:1 � 0:5 eV [87–89]. This means that B� ' 1 (it
could take a higher value) and 1=!0 ' 0:1� 0:5ps. As the energy unit we shall use
2D D m!20�

2=.B�/2, that with B� D 1 reduces to m!20�
2, commonly used by

most authors. This energy will be used also as the unit to measure the temperature
T .kB D 8:6 � 10

�5eV=K; kBT D 2D/.
The specific heat (at constant volume/length) of system Eqs. (1)–(3) is shown

in Fig. 2. Accordingly, the region where anharmonicity plays significant role is
0:75 < Cv=kB < 0:95. This is the multiphonon range or highly deformed-phonons
domain on the way to melting in the system (recall that at high T , Cv D 0:5,
there is transition to a hard-sphere fluid phase). The corresponding temperatures
in our energy units are in the range T ' 0:1–0:5 (and even up to 1–2). Introducing
the binding strength of the Morse lattice, as the Morse potential can be suitably
adapted to the Toda interaction (Fig. 1), we foresee that solitonic effects are to be
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Fig. 2 Toda–Morse lattice.
Specific heat at constant
volume/length (upper curve)
and ratio of potential energy,
U , to kinetic energy, Tkin of
the anharmonic lattice. Note
that we have only the “high”
temperature range
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expected in the range TMsol ' 0:2 � 1:0D. In electron volts this would be the range
TMsol ' 0:01 � 0:1 eV. This range of temperatures includes for biomolecules the
range of physiological temperatures (ca. 300 K).

2.2 Lattice Units as Atoms and Lattice Solitons

We can visualize the time evolution of the lattice atoms and hence the lattice de-
formations or lattice excitations by representing the density of the valence electrons
which are moving bound to the ion cores. This can be achieved by considering,
for simplicity, that each lattice unit is surrounded by a Gaussian electron density
(atomic density) of width, e.g. s D 0:35� . Then the total atomic electron density is
given by

�.x/ D
X
n

1
p
2�s

exp
�
�
.x � xn.t//

2

2s2

�
: (4)

Thus each lattice atom is like a spherical unit with continuous (valence) electron
density concentrated around its center. In regions where the atoms overlap, the den-
sity is enhanced. This permits identifying solitonic excitations based on a color code
in a density plot. This is of course a rough approximation which helps visualization
of the location of dynamic excitations by using the (covalence) electrons density en-
hancements as an alternative to directly locating mechanical lattice compressions.
For our purposes in Sections 2 and 3 this suffices. The mechanical approach is used
in Sections 4 and 5. We show in Fig. 3 the results of computer simulations for three
temperatures T D 0:005 (�10K), T D 0:1 (�2 � 102K) and T D 0:5 (�103K) with
D D 0:1 eV. If we use D D 0:05 eV, then T D 0:5 corresponds to T D 575K.

The diagonal stripes correspond to regions of enhanced density which are freely
running along the lattice, this is the sign of solitonic excitations. Checking the
slope we see that the excitations which survive more than 10 time units move
with supersonic velocity. The pictures shown are quite similar to those described
by Lomdahl and Kerr [33, 36] who gave a life-time of at most 2 ps and being stable
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Fig. 3 Toda–Morse lattice. Visualization of running excitations (phonons and solitons) along the
lattice. For convenience we use �0 D

p
2�s� to account for atomic core (valence) electrons density

(the grey scale coding is in arbitrary units). We study three temperatures (given in units of 2D):
upper set of figures: T D 0:005.�10K): we see only harmonic lattice vibrations or phonons and
no evidence of strong (soliton-like) excitations; center two-figures: T D 0:1.�2:102 K): many
density peaks show solitons (diagonal stripes). The strongest compressions move with velocity
around 1:1vsound; lower two-figures: T D 0:5.�103 K): among the many excitations appearing we
observe solitons running with velocity around 1:3vsound . Parameter values: N D 200 and B� D 1

only up to 10 K. Ours, however, live about 10–50 time units that is for several
picoseconds and survive even at T D 1 which is well above physiological tem-
peratures. This confirms an earlier finding were at T ' 300 K stable solitons and
solectrons could be identified [79, 80]. Recall that Davydov’s electro-solitons and
hence Lomdahl and Kerr’s earlier mentioned work refer to solitons induced by the
presence of originally free (conduction) electrons and subsequent electron–phonon
(polaron-like states) whereas in the case described in this Section the conduction
electrons are yet to be added as we shall do in the following section.
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3 Local Electronic States

Let us now add to the system free electrons surrounding in 3d space the 1d lattice
(Fig. 4).

3.1 Local Pseudo-Potentials and Classical Densities

The lattice creates a field which acts on the free electrons. In order to construct this
field we need to evaluate the interaction between the lattice units and the surround-
ing electrons. The latter form a narrow 3d neighborhood of the lattice with diameter
about the Bohr-radius aB.

We can assume that all lattice atoms (with their valence electrons) which are near
to each other by 1:5� or less contribute to the local potential V.x/ acting on each
conduction electron

V.x/ D
X
n

Vn.x � xn/; r D jx � xnj < 1:5�: (5)

The potential Vn.x�xn/ created by the lattice particles n at the place of the electron
x may be estimated by a pseudo-potential approach [90, 91]. One possible ansatz
for the interaction of electrons with ions is

Vn.y/ D �Ue
hp

y2 C h2
: (6)

The value of the binding energy Ue is in the range Ue ' 0:05 � 0:1 eV. This is a
second (independent) energy unit of the system, in general lower in value than the
earlier mentioned binding energy between lattice units. Let us consider for numeri-
cal convenience Ue ' 0:02 � 0:2D and h D 0:3� . The choice h D 0:3� provides
shallow minima at the location of the lattice atoms with significantly deep local
minima at the location of lattice compressions. In view of the value Ue the electrons
are only weakly bound to the atoms and may transit from one side to the other of a
lattice unit. Accordingly the (free) conduction electrons are able to wander through
the lattice eventually creating an electron current. To place a pair of such electrons
between two lattice particles is in general not favorable in energetic terms, since
the energy of repulsion e2="0r has to be overcome; "0 denotes dielectric constant.
However the electron may bind to more than two lattice atoms thus forming a deep
potential hole akin to a polaron state which is a static structure corresponding to

Fig. 4 Toda–Morse lattice.
Sketch of lattice atoms or ion
cores surrounded by added
free electrons in 3d space

xn x
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favorable energetic configurations. Here we are rather interested in the dynamic or
time evolving phenomena initiated by solitonic excitations in the lattice. However
we have to take into account that both of these items, the local compression by a
static process (polaron formation) and by a running compression (soliton excitation)
are intimately connected.

In the simplest entirely classical approximation we can assume that the evolution
of the conduction electrons is very fast and the corresponding probability density
follows locally a Boltzmann distribution. Note that when the electron density is
sufficiently low, so that the electrons are still nondegenerated we may approximate
the Fermi statistics by the Boltzmann statistics. In a heated lattice the units perform
quite complex motions, we may expect therefore a rather complex structure of the
field acting on the electrons. Let us give now examples of the fields created by
the lattice atoms. The potential energy is given in units of the binding energy Ue .
Taking into account the energy unit 2D.B�/2 (D m!20�

2), the scale is set by the
ratio � D Ue

2DB2�2
D 1

2B2�2
Ue
D

. For B� D 1 the energy scale is therefore � D Ue
2D

. To
estimate any physical quantity the value of � is very important.

The potential V.x; t/ is time-dependent and gives at each time instant a snapshot
of the actual situation. The potential changes quickly and the distribution of the
electrons tries to follow it as fast as possible and hence the electrons are “slaved”
accordingly, thus permitting an adiabatic approximation. We have a situation similar
to that described for free electron statistics in semiconductor theory [92]. Then, we
assume as a first approximation a Boltzmann distribution

n.x; t/ D
expŒ�ˇV.x; t/�R
dx0 expŒ�ˇV.x0; t /�

; (7)

with ˇ D 1=kBT . Here x denotes the coordinate along the lattice. An example of the
estimated density Eq. (26) is shown in Fig. 5. The (relatively high) peaks correspond
to the enhanced probability of a rather strong lattice compression, i.e., a soliton
ready to meet and trap an electron. This defines the solectron as an electron “surfing”
on a soliton for about 10–50 time units (i.e. a few picoseconds) then getting off it
and eventually finding another soliton partner once more to surf-on and so on. For
T D 0:1 we observe several rather stable running excitations (diagonal stripes) with
velocities around 1:2vsound . For T D 1 (not shown in the figure) one can observe
many weak and only a few very stable excitations moving with supersonic velocity
1:4vsound . The probabilities estimated from the Boltzmann distribution are strongly
concentrated at the places of minima. This means that most of the electrons are
concentrated near to solitonic compressions.

3.2 Bound States of 3d Electrons in a Nonlinear Lattice Ring

So far our estimates of the electronic states in the local potential were entirely clas-
sical. The Boltzmann distribution finds the deepest minima of the local potential
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Fig. 5 Heated Toda–Morse lattice. Classical probability distribution of an electron in a heated
anharmonic lattice in the adiabatic approximation according to local Boltzmann distribution. On
the upper figure a snapshot of the distribution is given for a certain time instant. On the lower figure
the actual time evolution of the distribution is displayed. The temperature is T D 0:1. Parameter
values: N D 200, h D 0:3, � D 1 and B� D 1

V .x; t/ acting on an electron. The problem to find the quantum states for an electron
in the anharmonic lattice is more difficult. There exist different situations depending
on the relative values of the four length scales aB , h, � , d , where aB is Bohr-radius,
h is kind of softness scale of lattice particles (according to the pseudopotential
(Eq. (6)), � is the lattice spacing at equilibrium and d is the smallest interatomic
lattice distance at solitonic compressions. As earlier noted, the character of the elec-
tron dynamics depends strongly on the value of h and on the distance � . Figure 6
shows that the choice h D 0:3� depending on the distance between the neighbors in
the lattice allows two kinds of minima. Accordingly, for a compressed lattice with
aB ' h ' � and d < � , solectrons are to be expected.

Let us investigate now the conditions for possible formation of pairs of solectrons
and under which conditions a solectron pair is more stable than a single solectron.
As shown above, the electrons in soliton-bearing lattices move in a fastly chang-
ing potential landscape. The structure of this landscape is similar to the landscapes
known from the theory of disordered systems [93–95]. At variance with the latter
cases, our potential is time-dependent. In typical snapshots of the potential land-
scape acting on the electrons we see relatively flat normal parts showing only small
oscillations of the potential and deep local minima which move approximately with
soliton velocity. Certainly, the character of the bound states which may be formed
depends on the depth of the potential Umin, on the temperature T and on the relation
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Fig. 6 Potential (in units of U0) felt by an electron placed between two ions versus lattice spacing.
If the ions are at equilibrium distance r D � the potential minima are at the center of two nearby
ion cores. Between two compressed ions r D �=5, a new potential minimum appears midway
between two nearest-neighbor ions

between the characteristic quantum time �q / h̄=Umin and the classical time scale
1=!0. Assuming that the classical time scale is much longer, we may work in an adi-
abatic approximation. Let the deep potential minimum (like a potential well) created
by a soliton be approximated by a parabolic profile

U.r/ D U0 C
a0

2
r2 C ::: (8)

where r denotes distance in 3d space. The second derivative is

a0 D U
00.r/jrDr0 '

c

�2
; (9)

with c ' 1. A typical valley includes just a few lattice units. Then the bound states
are approximately given by

"n D U0 C 3h̄!0

�
nC

1

2

	
; n D 0; 1; 2; : : : (10)

where a D m!20 . The ground state wave function is

�0.r/ D .r0/
�3=2��3=4 exp.�r2=2r20 /; (11)

where r20 D .h̄=m!0/. Note that this estimate is valid only for sufficiently deep
minima. These states can in principle be filled by electrons albeit obeying Pauli’s
exclusion principle. In the ground state, if sufficient solitons are available, each of
the solitons can capture two electrons with opposite spin or possibly more electrons
as suggested by classical estimates. However higher occupation is less probable.
Indeed a second electron with opposite spin may be placed on the same level as the
first one, but a third electron in a potential valley cannot occupy the ground state
level any more.
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3.3 Binding Energy and Wave Functions of Solectron Pairs

As we have seen, the potential well created by a soliton may in principle be occu-
pied by pairs of electrons with opposite spins satisfying Pauli’s exclusion principle.
At first sight, these electron pairs, which are Bosons, appear like “bipolarons” or
“Cooper pairs”. However looking at the details we see, that the solectron pairs are
something new. The problem of pairs or clusters of quantum electrons in a parabolic
trap is not new [96–98]. In the case of solectrons the width of the potential well is of
the order of a few equilibrium inter-atomic lattice distances. In a first estimate the
energy of a solectron is about

"n D U0 C
3

2
h̄!min; (12)

and correspondingly the ground state energy of a Coulomb pair is

"0p D 2
�
U0 C

3

2
h̄!0

�
C h

e2

"0rp
i; (13)

where rp is the distance of the electrons in the pair and as earlier "0 is the dielec-
tric constant of the medium. Due to the factor two this energy is in general lower
than the energy of the state of one bound and one free electron. If the term arising
from Coulomb repulsion is weak, pairing is favorable. An estimate follows from the
condition that repulsion and attraction to the center of the well balance each other

m!20r1 D
e2

"0.2r1/2
: (14)

This leads to a classical estimate of the Coulomb shift

�"cl D
e2

2"0r1
D

�
e2

"0

�2=3
.m!20/

1=3: (15)

Within quantum theory we may estimate the Coulomb shift by using perturbation
theory as done in the study of the Helium atom. We take two electrons which are
confined in the field of a spherical potential well given by Eq. (8). The symmetric
ground state wave function of two electrons with opposite spin is given by

�.r1; r2/ D
1

�3r60
exp

�
�
r21 C r

2
2

2r20

�
: (16)

The mean energy calculated with these wave functions is then

"p0 D 2U0 C 3˛h̄!0 C�"qm; (17)
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�"qm D
1

�r60

Z
dr1

Z
dr2

e2

"0jr1 � r2j
exp

�
�
r21 C r

2
2

2r20

�
: (18)

After doing the integral over the angles (Eq. (18)) becomes

�"qm D
16e2

�r60

Z 1
0

dr1r1 expŒ�r21 =r
2
0 �

Z r1

0

dr2r
2
2 expŒ�r22 =r

2
0 �; (19)

or else

�"qm D
e2

"0r0
A0; (20)

where the constant is defined by the integral

A0 D
16

�

Z 1
0

dyy expŒ�y2�
Z y

0

d zz2 expŒ�z2� 	 0:32: (21)

In view of this estimate, the mean distance between the electrons in a solectron pair
is around 3r0, i.e. three times the “size” of the wave function. We expect that the real
Coulomb shift is between the classical and the quantum estimates. In order to find
solectron pairs we need conditions where the Coulomb shift is much smaller than
the gap to the next level which is 3 h̄!0. To be on the safe side we require conditions
such that

maxŒ�"cl ; �"qm� < 3h̄!0: (22)

Under these conditions the formation of a solectron pair is favored.

3.4 Soliton Mediated Electron Pairing

Let us further comment on how electron pairing could be influenced by the presence
of solitons. If one could obtain Boson pairs with sufficient density, then interesting
effects may be expected. Looking at the classical probability distributions in Figs. 3
and 5 we see that there are minima of different types. There are flat and narrow
minima which carry just one electron as in a solectron. Further there are minima
with two electrons and finally deep minima capable of carrying many electrons.
In fact as Figs. 3 and 5 show most of the minima carry 3–10 electrons. However
quantum-mechanical effects rather provide a new picture: (i) quantum solectrons
are in energy just a bit higher than the classical solectrons due to the ground state
energy shift 1:5h̄!0; (ii) a second electron with opposite spin may be placed at the
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Fig. 7 Toda–Morse lattice. Left figure: formation of an electron pair in the potential minimum
created by a solitonic excitation in the lattice. The formation of a trio requires a much higher
energy. Therefore a solectron trio is ruled out except at very high temperatures. Right figure: shape
of the pair wave function near to the minimum of the potential

same level (see Fig. 7). These solectron pairs are rather stable since the binding of a
third electron needs a relatively high amount of energy, namely 3h̄!0.

Let us estimate the chance to form trios. To place another electron into a solitonic
well which is already occupied by an electron-pair needs the overcoming of a gap
with the amount 3h̄!0 between the ground state and the first excited level. Thus if

kBT < 3h̄!0; (23)

the occupation by trios, quartets, etc. (which is classically possible) is more or less
prevented by quantum effects. Indeed we may assume that the extension of a soli-
tonic minimum is about ten times wider than the Morse potential minimum (Fig. 1).
Such minimum corresponds to a frequency about 3 � 1012s�1. Then the frequency of
oscillations around the minimum of the soliton potential is about 1012s�1. This is
about 1 � 2 eV. Accordingly, the inequality (Eq. (23)) implies T < 103K naturally
fulfilled in all interesting cases.

Thus under special conditions, in certain windows of parameter values, the for-
mation of pairs is more favorable than the single solectron. Under quasi-classical
conditions however the system seems to favor electron clusters. In conclusion we
may say that the Pauli exclusion principle has the consequence that instead of
classical clusters we observe quantum–mechanical pairs of solectrons. This sup-
ports the soliton-mediated electron pairing mechanism proposed by Velarde and
Neissner [99] (Fig. 8).
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4 Electron-Lattice Dynamics in Tight-Binding Approximation

Let us now go deeper into the question of solectron formation by describing the
electrons on the lattice using the tight-binding approximation (TBA).

4.1 The Tight-Binding Approximation

The tight-binding approximation replaces the Schrödinger continuum dynamics by
a hopping process along the discrete lattice sites. Assuming that there is only one
atomic state per lattice unit we get for the electrons the following Hamiltonian in
second-quantization formalism [100, 101]

Hel D
X
n

�
En.:::; xn�1; xn; xnC1; :::/c

C
n cn

� Vn;n�1.xn; xn�1/.c
C
n cn�1 C cnc

C
n�1/

�
: (24)
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Recall that (24) refers to initially free or excess electrons added to the lattice with
atoms assumed to be located at sites n. The quantities cn, cCn originally refer to
Fermion destruction and creation operators, respectively, with appropriate anti-
commutation relations but here they are just complex numbers. Purposedly in this
section we shall consider the non-uniformity of the on-site energy levels (diagonal
elements, Vnn, of the transfer matrix). Further assuming that the interaction depends
exponentially on the distance between the lattice units, we set

Vn;n�1 D �V0 expŒ�˛.qn � qn�1/�: (25)

Then the Hamiltonian (Eq. (24)) becomes

Hel D
X
n

˚
.E0

n C ıEn/c
C
n cn

� V0 expŒ�˛.qn � qn�1/�.cCn cn�1 C cnc
C
n�1/



; (26)

where, for convenience in notation, qn denotes a lattice site spatial vibration (relative
displacement) coordinate defined by xn D n�Cqn=B . The termE0

n denotes on-site
energy levels of the unperturbed lattice and ıEn is the perturbation due to the lattice
vibrations (harmonic as well as anharmonic modes may contribute). The simplest
approximation is

ıEn D �.qn=B/; (27)

where the “electron–phonon coupling constant”, �, indicates that the on-site energy
level En, i.e. the local site energy, depends on the displacement of the unit at that
site; qn is dimensionless (unit: 1=B). As shown e.g. in [87–89], this coupling be-
tween lattice deformations and electronic states, leads for large enough values of
the parameter � to the formation of polarons. In view of the above given param-
eter values, the value of the coupling constant is in the range � ' 0:1 � 2 eV/Å.
We have to take into account that our model is translationally invariant and we are
considering relative lattice displacements. Accordingly, we set

ıEn '
�1

2
Œ.qnC1 � qn/C .qn � qn�1/� ; (28)

with �1 D �=B as a new constant. An alternative, using a pseudopotential like
Eq. (6), is the approximation

En D E
0
n � Ue

0X
j¤n

hp
.xn � xj /2 C h2

; (29)

where the over-dash in the sum indicates that it is to be restricted in an appropriate
way by introducing screening effects. For instance, as earlier done, we may cut the
sum at a distance 1:5� from the center of the ion core, or in other words include all
terms corresponding to lattice units which are nearer than 1:5� . Then we assume
that the energy levels are shifted like the field created by the pseudopotentials acting
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on the electron from the side of the neighboring atoms. To linear approximation
we get

ıEn '
hUe�

B.�2 C h2/3=2
Œ.qnC1 � qn/C .qn � qn�1/� : (30)

Comparing Eqs. (28) and (30) we find

� D Ue
2�h

.�2 C h2/3=2
D

�
Ue

�

	
2.h=�/

Œ1C .h=�/2�3=2
: (31)

Then for Ue D 0:1 � 1:0D, h D 0:3� , D D 0:1 � 0:5 eV, and � D 1 � 5Å we
obtain � D 0:001 � 0:1 eV=Å. As the parameter values in this approach are about
one or two orders of magnitude below the earlier indicated values we expect that
here polaron effects are rather weak and hence the system dynamics is dominated
by solitons.

The probability to find the electron at the lattice site or atom located at xn, i.e.
the occupation number pn, is pn D cnc

�
n . Solving the Schrödinger equation for the

components of the wave function cn we get

i
dcn

dt
D �ŒE0

n C ıEn.qnC1; qn�1/�cn

�� fexpŒ�˛.qnC1 � qn/�cnC1
C expŒ�˛.qn � qn�1/�cn�1g ; (32)

where E0
n and ıEn are dimensionless (unit: 2D). The corresponding Newtonian

equations for the lattice units are

d2qn

dt2
D �pn

@ıEn.qnC1; qn�1/

@qn

Cf1 � expŒ�.qnC1 � qn/�g expŒ�.qnC1 � qn/ �
�f1 � expŒ�.qn � qn�1/�g expŒ�.qn � qn�1/ �
�˛V0

˚
expŒ�˛.qn � qn�1/�.cCnC1cn C cnC1c

C
n /

C expŒ�˛.qnC1 � qn/�.cCn cn�1 C cnc
C
n�1/



: (33)

The role of temperature would be considered further below. The problem reduces,
in principle, to solving both Eqs. (32) and (33) coupled together. It is not, however,
the only possible approach to our problem as we shall see below.

4.2 Discussion About Solectronic Excitations and Expected
Consequences

Let us consider one of the possible soliton-mediated processes: single electron trans-
fer (ET) in a soliton-mediated hopping process along the lattice from a donor to
an acceptor. When an added, excess electron is placed at a donor located at site
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Fig. 9 Toda–Morse lattice. Soliton, electron and solectron. Results of numerical integration of
Eqs. (32) and (33). Upper left figure: ˛ D 0, soliton alone; upper right figure: ˛ D 0, electron
alone; bottom figure: ˛ D 1; 75, solectron (electron dynamically bound to the soliton). The grey
scales (velocity and probability density) are in arbitrary units, just for illustration

n D 100 at time t D 0, Fig. 9 shows our findings: (a) pure anharmonic lattice vi-
bration without electron–lattice interaction (˛ D 0): time evolution of one soliton
as predicted by the Morse Hamiltonian (Eq. (33)), thus illustrating how little we
depart from the Toda solitons; (b) free electron alien to lattice vibrations (˛ D 0):
spreading of the free electron probability density as a consequence of Schrödinger
equation (32); and (c) electron-lattice interaction (˛ D 1;75): soliton-mediated ET
as predicted by Eqs. (32) and (33) coupled together. The electron is dynamically
bound to the soliton which is the solectron excitation.

When the electron–lattice interaction is operating, we see that the electron moves
with the soliton with a slightly supersonic velocity vel � 100

70
vsound and is running

to the right border of the square plot. Let us assume that there an acceptor is lo-
cated. This means that the electron is guided by the soliton from donor to acceptor.
In reality the electron cannot ride on just a single soliton from donor to acceptor.
Several solitons should be involved in transport. We have already mentioned this
kind of promiscuity of the electron. Therefore the above given soliton velocity is an
upper bound for the ET process. In principle this effect may be used as a way to
manipulate the transfer of electrons between donor and acceptor. Clearly in our case
we may have a polaron effect due to the electron–phonon (or soliton) interaction in
addition to the genuinely lattice soliton effect due to the anharmonicity of the lattice
vibrations. Thus, from donor to acceptor, we have not just phonon-assisted ET but
a much faster soliton-assisted ET.
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4.3 Adiabatic Canonical Distributions in the Tight-Binding
Approximation

In a first approximation with non-interacting electrons the canonical equilibrium
distribution is

p0n D expŒˇ. �En/�; (34)

where the chemical potential  is given by the normalization. In the adiabatic ap-
proximation we assume that this distribution is reached in a very short time. Using
the approximation (Eq. (28)) we get

p0n ' exp
�
�
ıEn

kBT

�
D exp

�
�
�.qnC1 � qn�1/

BkBT

�
: (35)

Suppose now that one big soliton is excited by appropriate heating of the lattice to
the temperature T . We assume the following shape of the solution

expŒ�3.qn � qn�1/ D 1C ˇ0 cosh�1Œ�n � ˇ0t �: (36)

Incidentally, the computations by Rice and collaborators [71, 72] show that for
Morse or L-J [L-J(12-6) and L-J(32-6)] potentials a Gaussian profile could also
be used as an reasonably valid approximation to the exact solution (Eq. (36)) of the
Toda lattice.

By introducing this into Eq. (35) we find

p0n ' Œ1C ˇ0 cosh�2Œ�n � ˇ0t ��� Œ1C ˇ0 cosh�2Œ�.nC 1/ � ˇ0t ��� ; (37)

where
� D

�

6BkBT
: (38)

We see that a thermally excited soliton is quite similar to a mechanically excited
soliton except for some kind of a twin structure and a little deformation of the shape
and the amplitude, both temperature-dependent. The velocity of such thermal soliton
is the same as the standard soliton velocity.

Quantum mechanically the canonical equilibrium distribution is given by the
time-dependent energy eigenvalues and hence rather than Eq. (35) we now get

p0n ' expŒ�c.qnC1.t/ � qn�1.t//�; (39)

with c D �=BkBT . The displacements have to be taken from computer simulations
of thermally excited solitons. The distribution is a quickly changing local function of
the displacements. In the adiabatic approximation we assume that this distribution
is reached in a very short time, as shown in Fig. 10. Noteworthy is that this picture of
a canonical quantum distribution is qualitatively similar to the classical distributions
shown in Fig. 5. We may estimate the soliton frequency from the thermal statistics
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Fig. 10 Toda–Morse lattice. Probability distribution of an electron in a heated anharmonic lattice
in the adiabatic approximation according to the quantum canonical distribution. The actual time
evolution of the distribution is displayed. Upper figure: T D 0:1; lower figure: T D 0:5. Parameter
values: B� D 1, ˛ D 1:75, V0 D 1, � D 10 and � D 0:002

of the solitons in the lattice as done in Refs. [70, 73] for Toda interactions: (i) single
solitons with parameter � are described by Eq. (36); and (ii) the density of solitons
depending on parameter � is known. Following [73] we have

n.�; T / D
4a�

�kBT
exp.��/ expŒ�.E.�/ � 2�/=kBT �; (40)

where
E.�/ D

2a

b
Œsinh cosh � � ��: (41)

Since the quantities pn depend on � we get this way the distribution of electron
occupation numbers. In a thermally excited system, the number of solitons depends
on the initial and boundary conditions. In an infinite Toda system (and the like for a
Morse potential) the number of solitons can be approximated by

n.T / ' const T 1=3: (42)
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Thus the number of solitons appears increasing with increasing temperature. On
the other hand their contribution to macroscopic properties, as, e.g. the specific heat
goes down as seen in Fig. 2. Therefore we expect that there exists a kind of “optimal
temperature” where solitons have the strongest influence [70, 81].

5 Coulomb Repulsion and Electron-Lattice Dynamics
in Hubbard Approximation

Let us complete our analysis by considering in more details the role of Coulomb
repulsion between two added excess electrons thus supplementing our findings in
Sections 3.3. and 3.4. We shall do it in the simplest possible way using Hubbard’s
model Hamiltonian [102–104]. Thus shall take the Coulomb repulsion when the
electrons are at their shortest separation distance (local on-site repulsion).

5.1 The Hubbard Hamiltonian

When we add a spin variable and augment (Eq. (24)) with an on-site local
(Coulomb)–Hubbard repulsion we get

Hel D �
X
n;�

�
Vnn�1 Oa

C
n� Oan�1� C VnnC1 Oa

C
n� OanC1�

�
CU

X
n

OaC
n"
Oan" Oa

C
n#
Oan# ; (43)

where the index n denotes the lattice site. Here � accounts for the electron spin
which can be up or down. For clarity we now have made explicit the Fermion oper-
ators OaCn� creates an electron with spin � at site n and Oan� annihilates the electron.
The second term in Eq. (43) represents the on-site electron–electron interaction due
to Coulomb repulsion of strength U (here it has positive values only). The transfer
matrix is like Eq. (25). For Hlattice we take Eq. (1) with Eq. (2).

5.2 Localized Paired Electron-Lattice Deformation States

We start with the exact two-electron wavefunction given by

j .t/i D
X
m;n

	mn .fpmg; fqmg/ Oa
C
m"
OaC
n#
j0i ; (44)

where j0i is the vacuum state (containing no electrons) and 	mn denotes the prob-
ability amplitude for an electron with spin up to occupy site m while an electron
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with spin down is at site n; pn D mvn. The symmetric 	mn D 	nm probability am-
plitudes are normalized

P
mn j	mnj

2 D 1 and depend on the set of lattice variables
.fpng ; fqng/.

To obtain the equations of motion for the probability amplitudes the wavefunc-
tion (Eq. (44)) is inserted into the corresponding Schrödinger equation and the
evolution of the lattice variables is derived from Hamilton’s variational principle
with an energy functional E2 D h jH j i. Suitable choice of scales permits rewrit-
ing the evolution equations in dimensionless form in a similar way as earlier done.
Then we get:

i
d	mn

dt
D �� f expŒ�˛ .qmC1 � qm/ � 	mC1n C expŒ�˛ .qm � qm�1/ � 	m�1n

C expŒ�˛ .qnC1 � qn/ � 	mnC1 C expŒ�˛ .qn � qn�1/ � 	mn�1 g

C NU	mnımn; (45)

d2qn

dt2
D Œ1 � exp f�.qnC1 � qn/ g� expŒ�.qnC1 � qn/ �

� Œ1 � exp f�.qn � qn�1/ g� expŒ�.qn � qn�1/ �
C˛V expŒ�˛ .qnC1 � qn/ �X
m

˚
Œ	�mnC1	mn C 	

�
mn	mnC1�C Œ	

�
nC1m	nm C 	

�
nm	nC1m�




�˛V expŒ�˛ .qn � qn�1/ �X
m

˚
Œ	�mn	mn�1 C 	

�
mn�1	mn�C Œ	

�
nm	n�1m C 	

�
n�1m	nm�



: (46)

Comparing with the equations in Section 4, Eq. (45) replaces Eq. (32), having as-
sumed, for simplicity, that all on-site diagonal factors are equal and hence can be
scaled away by suitable choice of the reference energy level. This suffices for our
purpose in this Section. Correspondingly, Eq. (46) replaces Eq. (33). As in Eqs. (32)
and (33) the parameter � appearing in the R.H.S. of Eq. (45) determines the degree
of time scale separation between the (fast) electronic and (slow) acoustic phonon
or soliton processes. For computational illustration we shall use in what follows:
� D 10, V D 0:1, and ˛ D 1:75. To obtain localized stationary solutions of the
coupled system (Eqs. (45) and (46)) an energy functional is minimized yielding the
lowest energy configuration.

The probability for one electron to be in site n with spin up, respectively spin
down, is determined by

�n" D h j Oa
C
n"
Oan"j i D

X
k

j	nkj
2 ; (47)

�n# D h j Oa
C
n#
Oan#j i D

X
k

j	knj
2 : (48)
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Fig. 11 Toda–Morse lattice. Lattice solitons and the role of Coulomb repulsion for an electron
pair. Left figure: initial profile of the localized lattice deformation; right figure: electron probability
distribution corresponding to a minimum of the variational energy for three different values of the
Hubbard parameter U (values in insets). Other parameter values: ˛ D 1:75 and V D 0:1

Typical electron probability distributions and the corresponding profile of displace-
ments of the molecules are depicted in Fig. 11 for three different values of U
(because of symmetry �n" D �n# and we plot half the electron density at a site
n defined as �n D 1

2

P
k .j	knj

2C j	nkj
2/). The corresponding localized compound

comprises an exponentially localized two-electron state and the associated pair of
kink-shape lattice deformations which represented as exp.�.qn�qn�1// are of bell-
shape. These are the earlier introduced lattice solitons (Eq. (36)). Increasing the
repulsive (Coulomb–) Hubbard-interaction has the impact that the inter-electron
distance (and accordingly also the distance between the centers of the solitons)
widens. At the same time the degree of localization reduces, i.e. broader profiles
of lower peak values result. Notably, the localized solutions are fairly broad width
and thus are expected to be mobile when appropriate kinetic energy is added. While
for low values U � 0:05 the electron probability density is single-peaked increasing
U causes a split up of �n into a double-peak structure. ForU � 0:9 the inter-electron
distance exceeds the width of either of the two peaks of the electron probability den-
sity. Therefore the two electrons can no longer be regarded as paired. Those features
of the electron probability are equivalently exhibited by the soliton patterns, that is
the stronger the repulsive interaction is, the less is the lattice compression reflected
in the width and amplitude of the soliton patterns.

5.3 Moving Electron-Pair Soliton Compounds

Let us now see the evolution of the localized electrons coupled with the corre-
sponding lattice deformations. The motion of the lattice soliton is achieved with
the excitation of the soliton momenta according to
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pn D 2 sinh.�/=� fexpŒ2�.n � 1/�=.1C expŒ2�.n � 1/�/
� expŒ2�.n � l/�=.1C expŒ2� .n � l/�/g

C2 sinh.�/=� fexpŒ2�.n � l � 1/�=.1C expŒ2�.n � l � 1/�/
� expŒ2�.n � l/�=.1C expŒ2� .n � l/�/g : (49)

One should bear in mind that while in this way the lattice is equipped with ki-
netic energy the electrons are presented as a standing state. To investigate whether
a soliton-assisted transport is achievable for two correlated standing electrons in
the lattice suffices to integrate the system (Eqs. (45) and (46)). For illustration this
has been done with N D 61 lattice sites and as in all previous cases with periodic
boundary conditions. The evolution of paired electrons and solitons for repulsive
interaction strength, U D 0:05, is illustrated in Fig. 12. Noteworthy is that for such
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particular values the lattice solitons travel with subsonic velocity along the lattice
retaining their localized profile save an early emission of small radiation to either
side. Likewise the localized shape of the electron pair probability distribution as
well as the inter-electron distance of a single site are maintained throughout the
computation. Apparently part of the energy contained initially in the lattice defor-
mation flows to the electronic degree of freedom with the result that the height of
the electron probability density increases, with consequent lowering of the velocity
of the corresponding solitons. For higher repulsion strengths, U � 0:05, supersonic
moving paired electron lattice solitons compounds can be observed as it is the case
for ˛ D 2 and V D 0:25 for which an inter-electron distance of a single site is
attained.

6 Summary and Concluding Remarks

Davydov’s approach to ET in biomolecules was a clever combination of physical
insight and mathematical beauty. His electro-soliton concept was a fruitful step
forward from the polaron concept due to Landau and Pekar. In both cases the
underlying lattice dynamics is harmonic hence leading to phonons which are linear,
infinitesimal excitations of the lattice crystal. The electro-soliton originates in the
nonlinearity of the electron–lattice coupling. A natural generalization of the polaron
and electro-soliton concepts is possible if consideration of lattice anharmonicity is
added to the electron–lattice interaction. Indeed, if we focus first on the anharmonic
lattice dynamics there are known Hamiltonian cases like the Toda one which be-
ing integrable possess as exact solutions, both solitons and solitonic periodic waves
obtained in analytical compact form. Such lattice solitons are natural “carriers” of
either matter or charge along the lattice crystal [105] and can trap excess, added
electrons thus leading to dynamic bound states which have been called solectrons.
There is a major component in the solectron concept that makes clear-cut distance
with Davydov’s electro-soliton. The underlying lattice excitations are of finite am-
plitude, and not merely infinitesimal.

Davydov’s electro-solitons do not survive above 10 K and do this with just a few
picoseconds lifetimes. In the present report we have shown that at variance with
Davydov’s electro-solitons, at least for Morse–Toda-like interactions thermally ex-
cited solectrons survive well above the physiological or room temperature range
(ca. 300 K) with several picoseconds lifetimes. First we have shown that thermally
excited solitons do survive at such temperatures. This was explored assuming that
lattice units are atoms or screened ion cores and then tracking lattice compressions
by the alternative offered by enhanced (covalent) electron densities. Then adding
excess, free (conduction) electrons we have shown how solectrons are formed and
survive at the physiological or room temperature range. Subsequently, we have con-
sidered pairs of electrons with added Coulomb repulsion albeit in the local, screened
Hubbard approximation. The computer simulations have shown that electron pairs
dynamically bound to solitons can travel along the charged lattice with speeds either
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subsonic or supersonic. It clearly appears that Coulomb repulsion does not alter the
possibility of solectrons being ET carriers or at the origin of a new form of (non-
Ohmic) electric conduction in the presence of an external field [75]. Furthermore,
by allowing electron pairing the results here reported open the path to the study
of solectron pairs as Bosons and whether or not such a system is prone to Bose–
Einstein condensation is an appealing question.
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41. H. Fröhlich, Phys. Lett. 39A, 153 (1972)
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