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Abstract. We study the excitation of solitons in lattices with Morse interactions in a wide temperature
range and their influence on (free) electrons moving in the lattice. The lattice units (considered as “atoms”
or “screened ion cores”) are treated by classical Langevin equations. For visualizations the densities of
the core (valence) electrons are in a first estimate represented by Gaussian densities, thus permitting
to visualize lattice compressions. The evolution of the (free) electrons is modelled in the tight binding
approximation first using Schrödinger equation and, subsequently, a stochastic description of the evolution
as a Markov process. We investigate electron transfer assisted by solitons and solitonic influences on
macroscopic transport in particular on diffusion. Then we consider the electron-lattice interaction and
obtain numerical solutions of the simultaneously evolving Langevin and Pauli master equations. We show
that the proposed mechanism of riding on thermal solitons is relatively fast (of the order of the sound
velocity).

PACS. 63.20.Ry Anharmonic lattice modes – 05.60.-k Transport processes – 05.45.Yv Solitons – 71.38.-k
Polarons and electron-phonon interactions

1 Introduction

Davydov and collaborators [1–3] investigated the interac-
tion of electrons with the dynamical excitations in lat-
tices. It was shown that due to the nonlinearity induced
by the electron-(acoustic) phonon interaction (polaron or
electron self-trapping effect) soliton-like excitations which
he called “electro-solitons” may travel along dynamically
harmonic lattices. Davydov predicted that these excita-
tions could be stable at finite temperatures and could per-
sist even at physiological temperatures. Several authors
have checked this conjecture and have found on the ba-
sis of simulations that Davydov’s electro-solitons are de-
stroyed already around 10 K lasting at most 2 ps [4–6].
However – as far as we know – the controversy about
the thermal stability of Davydov’s solitons is not closed.
For example, it is not excluded, that the deficiencies of
mixed quantum-classical representations are responsable
for some of the instabilities seen in simulations of the
Davydov electro-solitons (for a thorough discussion of the
problem see [7]).

Heeger, Schrieffer and collaborators have used (topo-
logical) solitons to explain the electric conductivity of
polymers like in trans-polyacetilene the case most studied
by those authors [8]. In this case solitons come from the
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degeneracy of the ground state and not from an originally
underlying dynamic anharmonicity.

It is now well established that if the underlying lattice
dynamics involves anharmonic interaction, this results in
the appearance of very stable supersonic acoustic solitons
like in a Toda and other nonlinear lattices [9–17,19,20].
We follow here this idea and make use of the Morse poten-
tial (akin to the Lennard-Jones potential and to the Toda
repulsive interaction) together with the electron-lattice in-
teraction. As shown in Figure 1, these potentials can be
scaled around the minimum in such a way, that the first
three derivatives are identical, what guarantees a close
relationship of their nonlinear (supersonic) excitations.
These excitations bring a new form of dressed electrons or
compound (electro-soliton)-lattice soliton dynamic bound
states. They have been called “solectrons” to mark the
difference with Davydov’s original electro-solitons. Then
we show that due to the added lattice anharmonicity and
the excitation of lattice solitons the thermal stability of
solectrons is ensured well above 10 K.

After introducing the model lattice problem in Sec-
tion 2, we develop a method of visualization of the non-
uniformities, which allows us to estimate the region of soli-
tonic excitations as well as their life times. Section 3 deals
with the electron-lattice interaction thus describing how
lattice deformations (or relative displacements between
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Fig. 1. (Color online) Interaction along lattice (top-down
display): Toda (upper dashed curve), Morse (2nd from
above), Lennard-Jones (3rd from above), and Fermi-Pasta-
Ulam (FPU-3, lowest full line) potentials suitably scaled
around a common minimum to have identical second and third
derivatives.

lattice units) affect (free) electron motions and vice versa.
In Section 4, we introduce a (Pauli) master equation ap-
proach to follow the coupled electron-lattice evolution, a
subject which is further explored in depth by considering
various temperatures in Section 5. We then discuss the
evolution of solectrons. This is done with no adiabatic ap-
proximation to the electron evolution hence considering
simultaneously the time evolution of both electrons and
lattice units. Then we obtain a clear picture of the classical
and the quantum-mechanical approaches to the electron-
lattice coupled evolution. Section 6 deals with features
of soliton-mediated diffusion. There we also comment on
soliton-assisted electron transfer (ET) along the lattice.
We compare the main results obtained in this work with
earlier findings [21–26]. Finally we discuss possible appli-
cations of the mechanism of riding on thermal solitons to
problems of long-range electron transfer through bonds in
donor-bridge-acceptor complexes [27]. This is a problem
of high interest for many biological processes and possi-
bly also for molecular-scale electronic devices [27–32]. We
will show that the mechanism of riding on thermal soli-
tons might be relatively fast in comparison to other ET
mechanisms. The existence of thermal solitons in nonlin-
ear lattices is well studied in many independent investiga-
tions [9,10,33].

2 Thermal solitons in nonlinear lattices

We shall consider 1D anharmonic lattices with embed-
ded electrons eventually leading to donor-acceptor ET or
electric current in the presence of an external field (a
wealth of information about both items in biomolecules
and the diversity of approaches taken can be found in
the references [27–32,34–36]). The system consists of N
classical particles (atoms or screened ion cores) and N
non-interacting free electrons with periodic boundary con-
ditions on a lattice of length L. The electrons occupy some
3D volume surrounding the 1D lattice. For the heavy lat-
tice particles we assume that they obey classical Langevin
dynamics, with a phenomenological damping γ0 and some

external source of (Gaussian white) noise thus introduc-
ing temperature. In the numerical simulations we shall
consider the lattice units all with equal mass m, described
by coordinates xn(t) and velocities vn(t), j = 1, . . . , N .
The Hamiltonian consists of the classical lattice compo-
nent Ha, and the contribution of the electrons He, which
includes the interactions with the lattice deformations. Fo-
cusing on the lattice part we set

Ha =
m

2

∑

n

v2
n +

1
2

∑

n,j

U(xn, xj). (1)

The subscripts locate lattice sites and the corresponding
summations run from 1 to N . Let us assume that the
mean equilibrium distance (lattice constant) between the
particles in the lattice is σ (σ = L/N). We shall assume
that the lattice particles repel each other by exponential
repulsive forces and attract each other by weak dispersion
forces with a potential which depends on the relative dis-
tance r = xn+1 − xn between nearest-neighbors only. We
will approximate the potential by the earlier mentioned
Morse function (Fig. 1)

U(r) = D {exp[2B(r − σ)] − 2 exp[−B(r − σ)]} . (2)

For illustration in our computer simulations we shall use
N = 200 and B = 1/σ. Then in the presence of ran-
dom forces (hence non zero temperature) and also external
forces, H , the evolution of lattice particles is described by
Langevin equations (n = 1, 2, ..., N)

d

dt
vn +

1
m

∂H

∂xn
= −γ0vn +

√
2Dv ξn(t). (3)

As earlier announced, the stochastic forces
√

2Dv ξn(t)
model a surrounding heat bath (Gaussian white noise).
The parameter γ0 describes the common standard fric-
tion frequency acting on the lattice units or atoms from
the surrounding heat bath. The validity of an Einstein
relation is assumed Dv = kBTγ0/m, where T denotes
temperature. We shall use 1/B as the length unit which
is most appropriate for Toda and Morse potentials with
respect to the scaling properties [22,23,33], the alterna-
tive choice of σ as the length unit is less useful. Further
we use the frequency of oscillations around the poten-
tial minimum ω−1

0 as the time unit. Typical parameter
values for biomolecules are σ � 1−5 Å; B � 1−5 Å

−1
;

D � 0.05−0.5 eV [27–32,34–36]. This means that Bσ �
1−25 and 1/ω0 � 0.1−0.5 ps. As the energy unit we shall
use 2D = mω2

0σ
2/(Bσ)2, that with Bσ = 1 reduces to

mω2
0σ

2, traditionally used by most authors. This energy
will be used also as the unit to scale the temperature T
(kB = 8.6 × 10−5 eV/K).

The specific heat (at constant volume/length) of sys-
tem (1) and (3) is known (Fig. 2). In first, linear approx-
imation the specific heat of a Morse lattice is given by

cv

kBT
= 1 − 3

8D
kBT + O(T 2). (4)

According to our estimates the region where nonlinearity
plays significant role in our lattice is 0.75 < Cv/kB < 0.95.
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Fig. 2. (Color online) Morse lattice. Specific heat at constant
volume/length (upper curve according to computer simula-
tions) and first-order approximation of the anharmonic lattice
as a function of the temperature (lower curve – linear in T ap-
proximation). The two horizontal lines Cv/kB = 0.95 and 0.75
define the interval where nonlinear effects begin and where our
model breaks down, respectively.

This is the multiphonon range (past the Dulong-Petit
plateau) on the way to melting in the system. The corre-
sponding temperatures in our energy units are in the range
T � 0.1−0.5 (and even up to 1–2). Introducing the bind-
ing strength of the Morse lattice, we foresee that solitonic
effects are to be expected in the range T M

sol � 0.2−1.0D. In
electron-volts this would be the range T M

sol � 0.01−0.1 eV.
For biological macromolecules this estimated range of tem-
peratures includes the range of physiological temperatures
(about 300 K).

The time evolution of the lattice units is represented
by the density of the (valence) electrons which are moving
tight to the ion cores by a Gaussian distribution (atomic
electronic density) of width s = 0.35σ. Our method shows
in fact the overlap of the wave functions of the core elec-
trons of the atoms. Thus each lattice atom is represented
like a soft (Gaussian) sphere with continuous density con-
centrated around its center. In regions where the atoms
overlap, the density is enhanced. This permits identify-
ing solitonic excitations based on the colors in a density
plot. An example is shown in Figure 3 for the temperature
T = 0.5 (∼103 K).

The diagonal stripes correspond to regions of enhanced
density which are running along the lattice which is the
sign of solitonic excitations. Checking the slope we see
that the excitations which survive more than 10 time units
move with supersonic velocity. The pictures shown are
quite similar to what has been described by Lomdahl and
Kerr [5,6] with a life time of at most 2 ps which are stable
only up to 10 K. Ours, however, live about 10–50 time
units that more than several picoseconds. Besides they
survive even at T > 0.5 which is well above physiological
temperature. This confirms an earlier finding were at T �
300 K stable solectrons could be identified [21,22].

3 Electron-lattice dynamics
and soliton-mediated effects

Assuming that there is only one atomic state per ion we
get for the electrons the following simplified form of the

Fig. 3. (Color online) Morse lattice. Visualization of a running
solitonic excitation for the temperature T = 0.5 (�102 K) due
to the overlap of the atomic cores. They appear as diagonal
stripes, which move with velocity about 1.3vsound. Parameter
values: N = 200 and Bσ = 1.

Hamiltonian within the tight-binding approximation

He =
∑

n

[
En(..., xn−1, xn, xn+1, ...)c+

n cn

− Vn,n−1(xn, xn−1)(c+
n cn−1 + c+

n−1cn)
]
. (5)

Recall that (5) refers to initially free electrons added to
the lattice atoms (or screened ion cores) assumed to be
located at sites “n”. We take into account non-uniformity
of the on-site energy levels En. Further assuming that the
interactions depend exponentially on the distance between
the ions (5) can be written as

He =
∑

n

[
(E0

n + δEn)c+
n cn − Vn,n−1(c+

n cn−1 + cnc+
n−1)

]
,

(6)
with

Vn,n−1 = V0 exp[−α(qn − qn−1)]. (7)

Here, for convenience in notation, qn denotes a lattice
site spatial vibration (relative displacement) coordinate
defined by xn = nσ + qn/B. There is the problem that
for some values of the deviations (and typical parameter
values, α = 1−1.75) the exponents may take on very large
values. To cope with this difficulty for large deviations we
may alternatively use exponential functions with satura-
tion. Two important parameters are related to the classi-
cal oscillation frequency ω0 and the frequency of quantum
hopping processes of the electron ωel ∼ V0/�. We define

τ =
V0

�ω0
=

ωel

ω0
, τ0 =

2D

�ω0
. (8)

In the following we assume that the relation between the
quantum frequency and the frequency of the classical os-
cillations (adiabaticity parameter) is at least of the order
of ten. The term E0

n denotes on-site energy levels of the
unperturbed lattice and δEn is the perturbation due to the
lattice vibrations (harmonic as well as anharmonic modes
may contribute). The simplest assumption is a linear de-
pendence on the deviations

δEn = χ(qn/B), (9)
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where the “electron-phonon coupling constant”, χ, indi-
cates that the on-site energy level En, i.e. the local site
energy, depends on the displacement of the oscillator site;
qn is dimensionless (unit: 1/B). As shown e.g. in [34–36],
this coupling between lattice deformations and electronic
states, leads for large enough values of the parameter χ
to the formation of polarons. In view of the above given
parameter values, the value of the coupling constant is in
the range χ � 0.1−2 eV/Å. We have to take into account
that our model is translationally invariant and we are con-
sidering relative lattice displacements. Accordingly, we set

δEn � χ1

2
[(qn+1 − qn) + (qn − qn−1)] , (10)

with χ1 = χ/B as a new constant. This model may be
used to consider small polarons [7,34–36].

Using a pseudopotential which accounts for all elec-
tric effects of larger range including polarization we can
write [17,18]

V (xn) = V0 − Ve

′∑

j �=n

h√
(xn − xj)2 + h2

, (11)

where the over-dash in the sum indicates that it is to be
restricted in an appropriate way introducing screening ef-
fects. In our calculations we cutted the sum at a distance
1.5σ from the center of the ion core (screening distance).
In other words we include all terms corresponding to lat-
tice units which are nearer than 3σ/2. This potential (11)
comes from plasma theory (electrons interacting with ion
cores) [18]. Here our physical picture is based on electrons
embedded into a lattice of neutral atoms. Let us assume
that the electron is located at the site “n” where it is in a
bound state E0

n. This energy is in part due to the polar-
ization of the atoms at the other sites j located at xj . For
the polarization energy we use the standard “ansatz”

V (xn) = V0 − Ve

′∑

j �=n

r4
0

[(xn − xj)2 + r2
0 ]2

. (12)

Here r0 is a characteristic distance and Ue the polariza-
tion energy. In order to be in quadratic order consistent
with (11) we make the choice r0 = 2h. Any displace-
ment of the other atoms changes the polarization energy.
For example the displacement of the right neighbor to
xn+1 = (n+1)σ+qn+1/B changes the polarization energy
electron-atom by the amount

δV (xn) = −Ve
16h4

[4h2 + (σ + qn+1/B)2]2
. (13)

We assume in this approach that the energy levels are
shifted like the energies created by the pseudopotentials
acting on the nth electron from the side of the neighbor-
ing atoms. In order to compare this approach with the
linear shifts used in the literature, we consider also the
linear (small polaron) approximations to equations (11)
and (12). The pseudopotential approach gives in linear

approximation

δEn � Ve
hσ

B(σ2 + h2)3/2
[(qn+1 − qn) + (qn − qn−1)] ,

(14)
and in the polarization approach gives in linear form

δEn � Ve
64h4σ

B(σ2 + 4h2)3
[(qn+1 − qn) + (qn − qn−1)] .

(15)
Comparing (10) and (14) we find in the pseudopotential
approach

χ1 = Ve
2σh

B(σ2 + h2)3/2
, (16)

and comparing (10) and (15) we find in the polarization
approach

χ1 = Ve
128σh4

B(σ2 + 4h2)3
. (17)

Recall that χ = Bχ1. Then for Ve = 0.01D, h = 0.3σ,
in the framework of the pseudopotential model the shift
constant χ = 0.004D and for the polarization model χ �
0.003D. Assuming D = 1 eV, and σ = 2 Å we obtain
χ = 0.002−0.003 eV/Å. These calculations correspond to
the parameter values: χ = 0.005D, h = 0.3, Ue = 0.01. In
some calculations (Sect. 4) to illustrate of the effects we
use a shift factor which is ten times higher, namely χ =
0.05D. Since the parameter value for χ1 used in this work
is about one or two orders of magnitude below the values
used in [34–36] we expect that here polaron effects (self-
trapping as a consequence of electron-lattice coupling) are
rather weak and hence the system dynamics is dominated
by solitons.

The probability to find an electron at the lattice site
or atom located at xn, i.e. the occupation number pn,
is pn = cnc∗n. Solving the Schrödinger equation for the
components of the wave function cn we get

iċn = τ
∑

m

En,mcm = τ0[E0
n + δEn(qk)]cn

−τ {exp[−α(qn+1 − qn)]cn+1 + exp[−α(qn − qn−1)]cn−1} ,
(18)

where an over-dot denotes time derivative; qk =
(q1, ..., qn, ...) E0

n and δEn are dimensionless (unit: 2D).
The corresponding equations for the lattice displacements
reads in this approximation

q̈n = −pn
∂δEn(qk)

∂qn

+ {1 − exp[−(qn+1 − qn)]} exp[−(qn+1 − qn)]
− {1 − exp[−(qn − qn−1)]} exp[−(qn − qn−1)]

− αV0

{
exp[−α(qn+1 − qn)](c+

n+1cn + cn+1c
+
n )

+ exp[−α(qn − qn−1)](c+
n cn−1 + c+

n−1cn)
}

. (19)

The problem reduces, in principle, to solving coupled to-
gether both equations (18) and (19). First we heat the
system to a given temperature (T = 0.1, 0.5 in the exam-
ple shown in Fig. 4). Then we switch-off the heat bath and
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Fig. 4. (Color online) Morse lattice. Example of the spreading
of the electron density and the mean square displacement for
the temperatures T = 0.1 (above), and T = 0.5 (below) from
simulations with the TBA-Schrödinger equation. The initial
density condition is delta-like, concentrated around the center.
Parameter values: N = 400, Bσ = 1, α = 1.75, χ1/2D = 0.1,
and τ = 10.

solve the coupled system of lattice and electron equations,
in our example for delta-like initial electron densities.

The stochastic simulations show that the spreading of
the electron density is a complex diffusion-like process.
Evidently the thermal solitons create a kind of diffusive
channel which stabilizes the electrons. We will study this
in more details further below. However, before we will de-
velop an alternative way of doing computer simulations.

4 Electron dynamics on thermal lattices
based on master equations

So far our analysis has been based on the Schrödinger
equation for the free electrons (in the tight binding ap-
proximation) coupled to the Langevin equation for the
classical lattice particles. This tacitly assumes the exis-
tence of a heat bath in which the lattice particles are
embedded. In principle this picture provides a complete
description of the coupled lattice-electron dynamics. The
irreversibility is guaranteed by the friction-noise terms in
the Langevin-equations (3). We may describe this way
also irreversible solitonic excitations at finite temperature.
However, a serious problem connected with this approach
is the very long relaxation times of the electrons due to
the large separation between the time scales of the elec-
trons and the lattice particles. A second serious problem is

intrinsic to the mixed quantum-classical representations.
Of course the Langevin-equations for the classical parti-
cles and the TBA-equations for the electrons are inter-
nally consistent, however the feedback between electrons
and lattice particles may violate the rules of quantum me-
chanics [7,37]. This leads to some difficulties with respect
to general principles and also with respect to computer
simulations. In the standard theory of electronic transport
this problem is solved by Boltzmann-type descriptions or
by Fokker-Planck-type equations, which introduce an ir-
reversible behavior in a consistent way [37,38]. The main
problem is here to give a correct description of the cou-
pling to the heat bath. In our case of the 1D-tight binding
systems, the situation is somehow simpler due to the dis-
crete character of the electronic states, which allows a de-
scription by discrete Markov chain equations [37,39–45].
The Markov approach to electron dynamics goes back to
Pauli’s (1928) seminal work [46]. Pauli started from the
Schrödinger equation and derived by perturbation theory
a Markov chain description and an expression for the tran-
sition probabilities. He introduced an irreversible master
equation expressing the balance between the transitions
in an ensemble. Pauli’s equation is valid for a micro-
canonical ensemble and neglects symmetry effects. Fur-
ther extensions took into account the symmetry of the
wave functions and offered a description compatible with
the statistics of Bose-Einstein or Fermi-Dirac [47]. Later
generalizations were done by Van Hove and others [48] as
well as with the development of Metropolis algorithms for
canonical ensembles [49]. Applications to hopping conduc-
tion in solids were given by several authors [39–43]. The
first applications of the master equation formalism to elec-
tron transfer in macromolecules seem due to Schlag and
collaborators [44,45]. With respect to general aspects we
mention also recent developments based on path-integral
Monte-Carlo algorithms [50,51].

The ingredients of our model are:

(i) quantum electrons located in discrete states, which
are coupled to a heat bath and to a classical lattice;

(ii) classical lattice units coupled to the heat bath and to
the quantum electrons;

(iii) the heat bath.

Simplifying this situation we assume that the thermal elec-
trons allow a Markov description. We support this conjec-
ture by moving from the reversible Schrödinger equation
for the tight-binding model to an irreversible Pauli master
equation description. Following Pauli’s method we intro-
duce a master equation for the occupation probabilities of
electrons pn in a system with the energy levels En:

dpn

dt
=

∑
[Wnn′pn′ − Wn′npn] . (20)

The transition probabilities were derived by Pauli using
perturbation theory for microcanonical ensembles (tran-
sitions in a narrow energy shell). Applications of this for-
malism to our Schrödinger equation (18) confronts us with
the question of applicability of the perturbation approach
to our basic TBA-equation. Note that the diagonal part
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of equation (18) is – in dependence on the deformations –
not always small relative to the off-diagonal elements. We
disregard here this problem and assume that there exists
an appropriate unitary transformation which makes the
off-diagonal elements sufficiently small to satisfy the con-
ditions of the perturbation approach. However at present
we do not have a general solution to this problem. For
example, evidently processes of tunnelling between wells
cannot be modelled within a stochastic approach. Within
Pauli’s stochastic model the transition probabilities for
the tight-binding model read

W0(n, n′) =
V0

�
exp [−2α|qn′ − qn|] 2πV0δ (En − En′) ,

(21)
where n′ = n±1 and δ(x) is Dirac’s delta distribution. The
transitions from state n to a state n′ at one of the nearest-
neighbor sites should correspond to the same energy level
(or to a level within a narrow shell). In the case of a dissi-
pative embedding, the situation is more complicated due
to the interaction of the electrons with the dissipative heat
bath. Schlag and collaborators [44,45] use a special dissi-
pative mechanism with a damping constant γ which leads
to the transition probabilities

W1(n, n′) =
V 2

0

�2
exp [−2α|qn−qn′ |] γ

γ2+[(En−En′)/�]2
.

(22)
Instead of a delta-like shell we have now a Lorentz profile
around it. In the limit γ → 0 these expressions tend to the
Pauli formula with a delta-factor. Temperature effects are
however not included. When the electrons are embedded
into a heat bath together with the thermal lattice parti-
cles, we have to go to a generalization for thermal ensem-
bles. In such cases the transition probabilities depend in a
non-symmetric way on the energy levels En, En′ between
which the transitions occur:

W (n, n′) =
V0

�
exp [−2α|qn − qn′)] E(n, n′, β). (23)

The temperature-dependent thermal factors E(n, n′, β) is
not symmetric with respect to the arguments but they are
subject to the condition of detailed balance

W (n′, n)
W (n, n′)

= exp [β(En − En′)] . (24)

In other words, the relation of the thermal factors should
correspond to the relation of Boltzmann factors. The prop-
erty (24) suggests the symmetry

E(n, n′) = exp
[
−β

2
(En − En′)

]
F (n, n′), (25)

F (n, n′) = F (En − En′), (26)

where F (n, n′) is an even function. There are several
variants for this even function F (x) given in the lit-
erature. Assuming that the heat bath is a carrier of
phonons which drive transitions by a one-photon mecha-
nism, Bonch-Bruevich and coworkers derived the following

expression [39–41]

F (n, n′) = sinh−1

(
β

2
|En − En′ |

)
. (27)

A different approach to hopping systems was obtained by
starting from the von Neumann equation for the density
matrix by Böttger and Bryksin [42,43].

We will use here a more simple phenomenological
ansatz which is based on the well-known Monte-Carlo
procedure. In this approach the downhill transitions are
weighted with E = 1 and uphill transitions with a factor
less than unity [51],

E(n, n′) = 1 if En < En′ , (28)

E(n, n′) = exp [−β(En − En′)] if En > En′ . (29)

This corresponds to the F -function.

F (n, n′) = exp
[
−β

2
|En − E′

n|
]

. (30)

The Monte Carlo procedure and the corresponding mas-
ter equation is a useful tool for computer simulations
of electron hopping processes. Since the detailed balance
is obeyed, it is guaranteed that in thermal equilibrium
the canonical distribution is solution of the master equa-
tion [52].

In order to simplify our computer simulations we used
so far only the Monte Carlo procedure. More refined algo-
rithms are left to future studies. Within the Monte Carlo
algorithm the master equation for the occupation proba-
bilities reads in dimensionless variables (20)

1
τ

dpn

dt
= exp

[
−2αqn+1,n − β

2
En,n+1 − β

2
|En,n+1|

]
pn+1

+ exp
[
−2αqn,n−1− β

2
En,n−1− β

2
|En,n−1|

]
pn−1

− exp
[
−2αqn+1,n − β

2
En+1,n − β

2
|En+1,n|

]
pn

− exp
[
−2αqn,n−1 − β

2
En−1,n − β

2
|En−1,n|

]
pn,

(31)

where qn,n′ = qn−qn′ , En,n′ = En−En′ and τ = (V0/�ω0)
is the adiabaticity parameter or ratio between the two
time scales of motions. Equations (31) are used for the
description of the thermal motions of the electron sys-
tem as an alternative to equations (18). The correspond-
ing equations for the lattice particles which exclude the
dependence on the phases of the wave function are now

q̈n = {1 − exp[−qn+1,n]} exp[−qn+1,n]
− {1 − exp[−qn,n−1]} exp[−qn,n−1]

− 2αV0

{
exp[−αqn,n−1]

√
pn−1pn

+ exp[−αqn+1,n]
√

pnpn+1

} − pn
∂δEn

∂qn
, (32)
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Fig. 5. (Color online) Morse lattice. Time evolution of the
electron probability distribution according to Pauli’s equation.
Three temperatures are considered: upper set: T = 0: an ini-
tially rectangular distribution tends irreversibly towards ho-
mogeneous spreading along the lattice; center set: T = 0.01:
again the initial distribution tends to be uniform along the lat-
tice though there is electron-phonon interaction; and lower set:
T = 0.5: the initial rectangular distribution becomes localized
around a few peaks thus illustrating the corresponding local
formation of solectrons. Parameter values N = 200, α = 0.5
and τ = 10.

which are alternative to equations (19). The system of
equations (31)–(32) contains several approximations, in
particular the perturbation approximation. However it
provides a rather fast and therefore useful tool for the
computer simulations of the electron-lattice dynamics in
thermal systems. Figure 5 illustrates results based on this
approach. Due to the way we treat the electron dynamics
there are differences between the methodology using the
coupled Schrödinger equation and Langevin equation sys-
tem (18), (19) and that using Pauli’s approach albeit they
are minor differences. An advantage of the Pauli approach
is, that it can be generalized to include the influence of
spin and symmetry effects which were neglected so far in
our theory and in the computer simulations.

5 Stochastic dynamics of the thermal
electron-lattice excitations

The master equation (31) models the electron dynamics as
a stochastic process. The electron is hopping from site to
site and the function pn(t) gives the probability to find the

electron at the time t at the location n. The coefficients of
the master equation are time-dependent through the lat-
tice deformations qk(t) thus leading to a mixed classical-
stochastic description. The present description is closely
related to the adiabatic approximation. This approach as-
sumes in the case of low temperatures [23] that the elec-
tron system is at any time in the local ground state of
the classical subsystem and assumes for the case of higher
temperatures that a local canonical distribution around
the ground state is realized [25,26]. The canonical distri-
bution is here defined as

pn(t) = Z−1 exp [−βEn(t)], (33)

where the En(t) are the eigenvalues of He, in other words
the eigenvalues of the matrix Enm for a given lattice con-
figuration at time t. Since this is a very difficult task,
approximations are required. As earlier noted, due to the
way we treat the relaxation effects there are differences
between the methodology using the adiabatic assumption
and that using Pauli’s approach albeit they are minor dif-
ferences at least for small values of adiabaticity τ ∼ 1. For
large τ , the electron relaxation in the heat bath is very
fast and the distribution may be approximated by a local
Boltzmann-Maxwell or Fermi-Dirac distribution. For val-
ues of the τ -parameter, say for τ � 10−20, the approach
based on the Pauli equations (31, 32) is most useful, since
it provides information on deviations from the adiabatic
approximation. The Pauli method (31, 32) goes beyond
the adiabatic approximation since both the lattice dynam-
ics and the electron dynamics are treated including their
coupling. Recall that in a strict adiabatic approximation
one assumes that the electrons adapt “instantaneously”
to any change in the lattice. In other words one assumes
that the electrons follow in a very fast way to the new
lattice configuration and may be described at any time by
the canonical distribution [52]. In the new approach based
on Pauli’s method we take into account that the electrons
need time to follow the lattice motions what leads to cer-
tain delay in their response and to some deviations from
the stationary solution. Qualitatively however the picture
remains similar to the results obtained in Section 4.

In Figures 5 and 6 the solution of equation (20) is ob-
tained simultaneously with that of equation (32). In differ-
ence to some earlier work [25,26] we used here a moderate
value of the relaxation parameter τ = 10 which makes the
relaxation much faster. According to the estimates given
by Hennig et al. [22,23] this parameter is in the range
τ = 10−30. The other parameter values used in the sim-
ulations are: N = 200, Bσ = 1, χ1 = 0.005D, α = 0 for
T = 0, and α = 1 for T > 0. The solutions were found
with two types of initial conditions for three temperatures
in both cases. In the first case (Fig. 5) the initial state cor-
responds to an electron probability density spread over
almost the entire lattice length (note the homogeneous,
constant distribution between sites 50 and 150), for which
the velocity is “localized” accordingly (Heisenberg rule).
In the second case (Fig. 6) the opposite situation is con-
sidered. Here the electron probability density is localized
in space and hence “delocalized” (spread) in the velocity
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Fig. 6. (Color online) Morse lattice. Same as in Figure 5 (with
the same parameter values) but using “localized” (delta-like)
initial distributions. Note that here time intervals are 200 time
units only.

space. In both cases we observe an irreversible spreading
of the corresponding distribution as time proceeds for the
“very cold” lattice (T = 0; Figs. 5 and 6). Both the ini-
tial and “final” distributions (after a time lapse of 400
or 200 units) are displayed (upper plots). Below we can
see the time evolution of the distributions. If the lattice
is heated to the temperature corresponding to the usual
phonon range (T = 0.01) in both cases we continue observ-
ing a similar irreversible spreading of distributions along
the lattice (Figs. 5 and 6). As the temperature is increased
(T = 0.5) we start observing the role of anharmonicity:
solitons become excited that “localize” the electron prob-
ability density, not forming a single peak but rather sev-
eral relative maxima at each time instant (Fig. 5). The
latter evolve in time with the soliton motion (the solec-
trons are formed: Figs. 5 and 6). It can be observed that
a solectron trajectory is formed of a series of trajectory
fragments moving along either to the right (positive ve-
locity) or to the left (negative velocity). The slope of each
trajectory defines the actual soliton (and solectron) veloc-
ity. This is to be expected as there is no external electric
field. This apparent symmetry would be broken by such a
field whatever the value of its strength could be.

Noteworthy is that several of the effects described
above have been seen already using only classical the-
ory [16,17,19,20] as well as in the quantum mechanical
study using the tight-binding model [21–24] as e.g. split-
ting of the electron probability density into parts, merging
of electron distributions, changing of host solitons, etc.

6 Soliton-mediated diffusion processes

Looking at Figures 5 and 6 we see a spreading of the
electron density, which is diffusion-like in both of our
simulation approaches (Schrödinger as well as stochas-
tic approach). Of course on the basis of a few stochas-
tic simulations we cannot make a final estimate of the
temperature-dependence of the diffusion coefficient. How-
ever, it appears that the thermal solitons seem to create a
diffusive channel which stabilize the electrons. The diffu-
sive picture is obtained by coarse-graining of the stochastic
picture. Instead of sites as the elements of the description
we go to “soliton spots” spanning over about ten sites. The
electron is now hopping between these “soliton spots”,
which are moving with supersonic velocity.

The question of whether the observed phenomena re-
ally belong to a proper diffusion process is not a trivial
task. Let us first look at the case T = 0. Then the process
is described at least in the continuous limit by a nonlinear
Schrödinger equation. For a linear lattice this equation
was investigated long ago by Brizhik and Davydov [2].
They could prove that this nonlinear Schrödinger equa-
tion describes an evolution of the electron density which is
quite complex. There is a strong dependence on the initial
density distribution and in some cases a fractal-like split-
ting of the density is observed. Similar investigations for a
class of nonlinear lattices were carried out by Zolotaryuk,
Spatschek and Savin [15]. For this reason we cannot expect
that our processes are diffusion-like at all temperatures. At
least in the low-temperature range there should be effects
of the type described by the above mentioned authors.
However, with increasing temperature, the thermal effects
would tend to smooth more and more any fractal-like ef-
fects and the electron density should evolve diffusion-like
with hopping between the soliton spots which move su-
personically.

The diffusion coefficient may be estimated on the basis
of the Einstein relation for the mean square displacement.
For the one-dimensional case the mean square displace-
ment is connected with time and effective diffusion con-
stant by the relation

〈(δn)2〉t = 2Deff t. (34)

Here n(t) is the position (the site) for an electron which
starts at n0 at t = 0. The average is to be done as follows.
First, the quantum-mechanical average is to be taken

〈(δn)2〉t =
∑

n

(n − n0)2cn(t)c∗n(t). (35)

However this is not enough as we still have to average
over many realizations of the classical lattice dynamics.
Accordingly, we define a function of time

d(t) = 〈(δn)2〉t =
1
K

K∑

i=1

∑

n

(n − n0)2ci
n(t)ci∗

n (t). (36)

This corresponds to the average over a large number K of
realizations i. As we see from the examples, the individ-
ual trajectories of the electrons remain in certain conical
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Fig. 7. (Color online) Estimate of the diffusion constant as
a function of temperature. The curve was obtained by sim-
ulations with the Master equation in combination with the
Langevin equation (α = 1, χ1 = 0.1). The points outside
the main curve were obtained with the Langevin-Schrödinger-
TBA-model (α = 1.75, χ1 = 0). Other parameter values:
N = 200, Bσ = 1.

region. In other words the electron density remains rather
concentrated in certain angle, which is described roughly
by a Gaussian distribution of diffusion type

P (n, t) = const.
1√

4πDeff t
exp

[
−−(n − n0)2

4Deff t

]
. (37)

We calculated the mean square displacement for several
temperatures and represented the diffusion function d(t)
from simulations as shown in Figure 6 by a linear fit. For
T < 0.1 not good approximation by a straight line can be
achieved. The shape of the curves d(t) for T < 0.1 does not
correspond to a linear behavior, this is just what we ex-
pect. For 0.1 < T < 0.5 we see however a nice quasi-linear
shape for all t. On the basis of several sets of computer
simulations with the master equation we obtain the curve
shown in Figure 7. The values of Deff below T � 0.1 have
to be considered as extrapolations based on a fit to the
piecewise linear region. The curve in Figure 7 corresponds
to extensive simulations with the master equation model.
The effective diffusion shows a maximum around T � 0.4.
This observed maximum is compatible with some predic-
tions given in earlier work based on a different semiclas-
sical model [17,18]. The prediction based on the semiclas-
sical model was that solitonic excitations are expected to
significantly enhance diffusivity first, then reaching a max-
imum and then going to a decrease [16–18]. The maximum
was expected at temperatures where the specific heat has
a turning point that means at around T � 0.1−0.5.

For comparison we did also some simulations on the
basis of the Langevin-equation coupled to the TBA-
Schrödinger equation. The results for several temperatures
are demonstrated in Figure 4 by points. Here we observe
a continuous decrease of Deff (T ) with T which is simi-
lar to a hyperbola. The diffusion constant as a function
of temperature was estimated for the Schrödinger-TBA-
model with the parameters (α = 1.75, χ1 = 0, N = 200,
Bσ = 1).

From the physical point of view the most interesting
result is the decrease of the effective diffusivity with the

temperature. We believe that the pole near T = 0 may
be an artefact due to the problems of consistency between
the TBA-Schrödinger equation and the classical Langevin
equation. Beyond the maximum the two descriptions are
more or less compatible, taking into account the different
value of the α-parameter.

The problems we are discussing here may be of interest
for investigations of single electron transfer (ET) along the
lattice from a donor to an acceptor. As we have seen, the
path of an electron may be influenced by a soliton. When
an added, excess electron is placed in the lattice together
with a soliton emitted at same time in same place, the
electron may be dynamically bound to the soliton thus
creating the solectron excitation [22,23,25]. As we have
shown in such a case the electron may move with the
soliton with a slightly supersonic velocity vel > vsound.
In certain cases the electron may even be guided by the
soliton from donor to acceptor. In reality the electron can-
not ride on just a single soliton from donor to acceptor.
Several solitons should be involved in transport. There-
fore the above given soliton velocity is an upper bound
for the transfer. As we have shown here, thermal solitons,
which have random motion directions and path lengths
originate quite different effect and may even slow down
the speed of electrons. In principle these effects may be
used as a way to manipulate the transport of electrons be-
tween donor and acceptor [27]. Although aiming at a dif-
ferent model approach ours here is a generalization of the
phonon-assisted hopping process earlier studied by several
authors [28–32,34–36]. Clearly in our case we may have a
polaronic (self-trapping) effect due to the electron-phonon
(or soliton) interaction. However due to our choice of pa-
rameter values for the electron-lattice coupling which is
in the weak coupling range, a different effect due to gen-
uine lattice solitons plays the major role. The electrons are
coupled to a genuinely added lattice solitons due to the an-
harmonicity of the lattice vibrations. Hence we have not
just phonon-assisted hopping but rather soliton-assisted
hopping. One may describe this mechanism also as “rid-
ing” on thermal solitons. By returning from equation (34)
to dimensionsional units as Angström and seconds we find
with Deff � 15 for the squared length crossed by riding
on thermal solitons in time t the estimate

l2(t)[Å] � 160 × 1012t[s]. (38)

Correspondingly we find for the log of the reciprocal
time often used in experimental work on the ET donor-
acceptor [27] the relation

lg
1

t[s]
� 14.2 − 2lg(l(t)[Å]). (39)

Except for small distances our estimated reciprocal time
is clearly above the estimate for the data [27] which we
fitted by

lg
1

t[s]
� 12 − 0.4l(t)[Å]. (40)

This way we may conclude that our ET mechanism is
rather fast and evidently is not identical with the actual
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mechanism of ET on a bridge between donor and accep-
tor. The reason is that the actual mechanism is controlled
by relatively slow tunneling processes which are not in-
cluded so far in our simulations. The question about the
interference of the slow tunneling processes with the fast
soliton-riding processes remains open so far. May be the
study of this problem could be of interest for further ap-
plications to ET problems.

7 Concluding remarks

In nonlinear conducting lattices at temperatures high
enough (including the physiological range), thermal soli-
tons can be excited which lead to transient strong local
lattice compressions. This deforms the potential landscape
in which the electrons are moving. The electrons tend to
be trapped in the regions of maximal density of lattice
points created by the local compressions and then forced
to move dynamically bound to the solitons. These exci-
tations have been called solectrons to mark the difference
with Davydov’s electro-solitons.

We have shown that under appropriate conditions the
electrons are rather concentrated in clusters (traps) near
to solitonic compressions. The electrons are attracted to
the local compressions what justifies the concept of solec-
trons. In 1D-systems the clusters are always disconnected.
Electricity may be carried only by moving clusters. There-
fore we cannot expect that a 1D-system goes under the
influence of solitonic compressions to highly conducting
states. However we may expect that this situation changes
drastically in 2D- or quasi-2D systems. In 1D the lo-
cal compressions are soliton-like. In 2D-systems the ex-
citations are similar with respect to the local density
and local energy, however they are different with respect
to the mathematical representations, they are no more
cnoidal waves. As shown by Astakhova and Vinogradov, a
continuous description of these excitations is possible by
some generalization of the Kadomtsev-Petviashvili equa-
tion [53]. What is only relevant in our context is the local
density enhancement and the corresponding local poten-
tial wells. Then with increasing density of the solitonic
droplets, percolation becomes possible, a question to be
discussed elsewhere. We have shown that indeed both soli-
tons and solectrons are stable to rather high tempera-
tures lasting for several picoseconds. This result extends
earlier results obtained for Davydov electro-solitons that
were shown to be stable only up to at most 10 K. Indeed
the anharmonicity stabilizes the electron-soliton bound
states. We have shown that the electron is basically hop-
ping from solectronic trap to solectronic trap, in a coarse-
grained description this evolution is at higher tempera-
tures diffusion-like.

Our study has been based upon consideration of an
anharmonic lattice (with Morse interactions) to which
free electrons are added. The dynamics of the lattice is
classical and depending on temperature. Thermal heat-
ing excites phonons and solitons. For the conduction elec-
trons we have taken two approaches: first the electrons
are treated in the tight binding approximation with evolu-

tion dictated by a Schrödinger equation. Alternatively for
thermal systems, the time evolution has been described
first by coarse-graining in a stochastic picture using a
master equation approach following a seminal work by
Pauli [46,47]. Our theory generalizes a master equation
approach developed by Schlag et al. [44,45] as we have
considered the influence of a heat bath surrounding the
electrons. In an intermediate range of temperature these
thermal systems may be described also after a second
coarse-graining by diffusion equations. Since practically
all proteins and biomolecules are embedded in a thermal
medium we wonder up to what extent our approach may
be appropriate to describe special electron transfer pro-
cesses (ET) in such “molecular wires”.
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