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SOLITON-MEDIATED ELECTRON PAIRING

MANUEL G. VELARDE∗ and CHRISTIAN NEIßNER†
Instituto Pluridisciplinar,

Universidad Complutense de Madrid,
Paseo Juan XXIII, 1, 28040 Madrid, Spain

∗mvelarde@pluri.ucm.es
†neissner@pluri.ucm.es

Received January 26, 2007; Revised February 23, 2007

We study electron-electron pairing in an one-dimensional model lattice system embedded into
a three-dimensional environment. The electron pair potential is lowered by a single, localized
lattice deformation. Such a deformation is related to solitons moving along the lattice. Yet the
exact form and the time evolution of the lattice excitation are of secondary relevance as the
electron pair is stable for sufficiently wide deformations which propagate on molecular time
scales, e.g. velocity of sound � electron velocity. The spatial structure of the pair potential and
the electron-electron wave function bring a mechanism of pairing different from the exchange of
phonons between the electrons and the lattice which leads to Cooper pairs, and different also
from the formation of bipolarons.
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Recently, it has been shown that an one-
dimensional (1D) electrically conducting anhar-
monic lattice allows both ohmic and a faster,
eventually supersonic, non-ohmic form of conduc-
tion [Velarde et al., 2005; Velarde et al., 2006;
Chetverikov et al., 2006a; Hennig et al., 2006;
Makarov et al., 2006; Chetverikov et al., 2006b].
The latter is a soliton-mediated transport exhibit-
ing striking features like current-field characteris-
tics where the current becomes field-independent
as we suitably lower the field strength. Hence
the field’s role is that of symmetry breaking to
merely orient conduction. Consequently, at vanish-
ing field strength the lattice differential conduc-
tivity passes from zero to very high. This finding
appears as a consequence of electron-soliton binding
irrespective of the classical or quantum nature
of the electron-lattice dynamics interaction and
hence shows a kind of universality. In [Velarde
et al., 2005; Chetverikov et al., 2006a; Makarov
et al., 2006; Chetverikov et al., 2006b] the cou-
pling is classical while in [Velarde et al., 2006;

Hennig et al., 2006] quantum tight-binding is
used. On the other hand, when temperature
is added to the dynamics the electric current
exhibits a significant increase when the lattice soli-
tons appear in the system [Velarde et al., 2005;
Chetverikov et al., 2006a, 2006b]. The above fea-
tures have been shown to survive up to room
temperature, e.g. 300 K [Velarde et al., 2006;
Hennig et al., 2006]. The onset of the soliton carriers
in the lattice due to strong anharmonic compres-
sions appears as a necessary albeit not sufficient
condition for the findings described above. In view
of this, in the present communication we take up
the same problem from a different perspective.
We here address the question of electron-soliton
trapping and soliton-mediated electron pairing
from the quantum dynamics viewpoint. Such an
approach, on the one hand, brings us to current
views on electric superconduction and, on the
other hand, to revisiting an old idea suggested by
Fröhlich about the possible role played by the lattice
dynamics in electron pairing and superconduction
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[Fröhlich, 1950, 1952, 1954]. Fröhlich theory invoked
phonon excitations only. Note that although anhar-
monicity in lattice interactions had been invoked
for some time to understand thermal expansion
and heat transfer in solids the soliton concept
was introduced in 1965 [Zabusky & Kruskal, 1965;
Payton et al., 1967; Christov & Velarde, 1995]. Here
we invoke solitons and hence we also generalize the
polaron concept to account for strongly localized
excitations in the form of solitons.

Since electron pairing was shown to be the
fundamental ingredient of superconductivity, it
is worth to investigate different possible mecha-
nisms of pairing. In general the electron-electron
interaction is modified by the interaction of
the electrons with lattice excitations. Under cer-
tain circumstances the electron-electron interac-
tion shows attractive parts under the influence
of lattice excitations [Bardeen & Pines, 1955].
There are several accepted mechanisms of elec-
tron pairing. The best known mechanism is based
on the Cooper instability [Cooper, 1956] lead-
ing to the Bardeen–Cooper–Schrieffer (BCS) the-
ory [Bardeen et al., 1957]. For polarons [Firsov,
1975], compounds of electrons and lattice defor-
mations, the pairing occurs due to the correla-
tion of two localized electrons to form bipolarons.
The condensation of bipolarons has been shown in
[Alexandrov, 2000].

Here we address the question of electron-
electron correlations. We take an electroneutral
system of N electrons and N ions. But not all
degrees of freedom are crucial to account for
soliton-mediated electron-electron pairing. First, we
assume that ions or ion cores are compound to
atoms or molecules that interact via an appropri-
ate model potential Vii, such as the Morse potential
[Morse, 1929] or another strongly repulsive poten-
tial. Then, if the interaction is nonlinear, its repul-
sive part may allow the existence and propagation
of solitons. For a Toda interaction [Toda, 1989] we
know the exact form of the solitons or nonlinear
periodic waves running along a lattice (tanh-like
or topological soliton for displacements and sech2-
like or periodic conoidal waves for displacement
gradients or force). The Toda’s repulsive part is
akin to the Morse interaction and to the repulsive
part of the Lennard–Jones interaction. The attrac-
tive component of the Toda potential is unphysi-
cal but we are interested only in strong repulsion
and strong lattice compressions. If the electrons
interact with the ionic core of the molecules via

a Coulomb-like pseudopotential Vei we may classi-
cally have electron trapping by the solitons [Velarde
et al., 2005; Chetverikov et al., 2006a, 2006b].

In an unperturbed lattice the separation
between the units is given by the equilibrium dis-
tance σ (taken as σ = 5aB for the model, with
aB being the Bohr radius). The resulting periodic
structure of the potential Vei leads to extended
single-electron excitations represented by Bloch
states [Ashcroft & Mermin, 1976]. A soliton-like
deformation of the lattice leads to a localization
of the single-electron wave function [Velarde et al.,
2006; Hennig et al., 2006]. Let us see how this
localized compound influences the electron-electron
interaction. For two electrons at x1 and x2 we can
write down the interaction

Vee(x1, x2, t) = V (0)
ee (x1 − x2) +

∑
n

{Vei(x1 −Q(0)
n

−∆n(t)) − Vei(x1 −Q(0)
n )

+Vei(x2 −Q(0)
n − ∆n(t))

−Vei(x2 −Q(0)
n )}. (1)

Here the first term describes the direct electron-
electron interaction and the second one the influ-
ence of the lattice deformation. The equilibrium
position of the nth ion core is given by Q

(0)
n = nσ

and its time-dependent deviation by ∆n(t). The lat-
ter variable is given by the displacement function
of the soliton. The displacement function is charac-
terized by its width wsol, its maximum amplitude
Amax, and the position of its maximum xsol. For
illustration we use a Gaussian displacement with
wsol = 1.5σ and Amax = 0.1σ.

Since the soliton may bind hence localize a
single electron, the screening of the electron-ion
potential Vei near the soliton will be enhanced.
Therefore, when calculating (1) one has to use the
locally corrected screening parameter κ(x) = κ0(1+
∆n(x)/n0)1/2, with the screening κ0 of the system
without the soliton. For the calculations we have
used κ0 = 0.3σ−1. The quantity ∆n(x) = |u0(x)|2
is the density deviation given by the ground state
wave function u0(x) of the localized electron and
n0 is the particle density in dimension one (1D),
the only case here considered. The local screen-
ing correction is lowered with the increase of the
density. Further the shape of wave function u0(x)
can be taken as Gaussian with the same width
wsol as the displacement function of the soliton.
A snapshot of the effective electron-electron poten-
tial is given in Fig. 1. The potential (1) expresses
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Fig. 1. Electron-electron potential under the influence of a localized, single lattice deformation. The parameters of the
displacement function of the lattice units are: xsol = 0, wsol = 1.5σ and Amax = 0.1σ.

sequences of potential wells and walls along the lines
(X−xsol)2−x2/4 = 0, with the center-of-mass posi-
tionX = (x1+x2)/2 and the separation x = x1−x2,
if a soliton is excited in the lattice. We found that
the sequences are suppressed for absolute values of
the pair separations below 20σ. On the other hand,
they are stable for arbitrary large separations. This
leads to some conclusions for the electron pairing.
Namely (i) the pairing is suppressed near the soli-
ton position, (ii) the localized electron at the soli-
ton position is always involved into the pairing,
(iii) the pair wave function is extended to arbitrary
large separations. The latter point implies the exis-
tence of long-range correlation. Although we are
aware of the fact that those correlations may decay
because of many-particle effects in the quantum
mechanical description the long-range correlations
exist and may survive at least for small densities.

Then one can make an ansatz for the ground state
wave function depending on the separation x and
the center-of-mass position X:

ψ0(x,X) ∼ Θ(X − xsol −B) {φ0(x) ± φ0(−x)}
+ Θ(xsol −X −B) {ϕ0(x) ± ϕ0(−x)}.

(2)

Here Θ is the Heaviside step function and B defines
the radius of pair suppression around the soliton
position. The wave functions φ and ϕ are not iden-
tical because the lattice symmetry is broken by
the soliton. Because φ and ϕ depend only on the
electron-pair separation, they are solutions of the
eigenvalue equations{

− �
2

2µ
d2

dx2
+ Vee(x,X)

}
φk(x) = Ek φk(x)

with X − xsol > B (3)
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and{
− �

2

2µ
d2

dx2
+ Vee(x,X)

}
ϕk(x) = Ek ϕk(x)

with xsol −X > B, (4)

where X appears as a parameter. Further, µ =
me/2 represents the reduced mass of the electron-
electron pair. Figure 2 shows a numerical result
of the pair wave function. An interesting detail is
the independence of the ground state on the spin.
Because of the quite large separation (>20σ) of the
pair the eigenvalue is the same for the symmetric
and antisymmetric spatial wave functions. There-
fore the pair could also have a magnetic moment.

The dependence of the wavefunction on the
center-of-mass position and the separation has an
interesting effect if one thinks about a many-pair
problem. If we assume many pairs formed in the
system they would be highly correlated because
all electrons sufficiently far away from the soliton
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Fig. 2. Wave function (2) of a electron-electron pair that is
created due to a localized lattice deformation. The wave func-
tion vanishes for small absolute values of the separation. For
large separations the wave function shows a constant form.
As the spatial wave function is symmetric or antisymmet-
ric under the exchange of the particles only the solution for
positive x is shown.

position form a pair with one and the same electron
trapped by the soliton. Therefore an ansatz for a
N -electron ground state wave function of paired
electrons reads like

Ψ0(x1, s1; . . . ;xN , sN )

= A{ψ0(x1, s1;x2, s2)ψ0(x1, s1;x3, s3) · · ·
ψ0(x1, s1;xN , sN )}, (5)

with the electron positions xi and the spin vari-
ables si. The operator A represents the anti-
symmetrization procedure which has to act on
the product. Although one pair can be treated
as a boson the internal degrees of freedom are of
fermionic nature. The exchange of two of these
internal variables results in a change of the sign in
the expression for the wave function.

The considerations above rest on an adiabatic
approximation. The electron does not influence the
lattice dynamics. Although we believe that due to
the large ratio between the electron and ion masses
the dynamics decouple, there is an additional prob-
lem due to the discreteness of the lattice. During
the soliton propagation (i) the maximum of the
displacement function coincides with the equilib-
rium position of the nth lattice ion core: xsol =
Q

(0)
n , (ii) the maximum lies between two neigh-

boring equilibrium positions: Q(0)
n < xsol < Q

(0)
n+1,

and (iii) the maximum of the displacement func-
tion coincides with the equilibrium position of the
(n+1)th ion core: xsol = Q

(0)
n+1. This configuration is

equivalent to (i).
All possible configurations are related to differ-

ent eigenvalues of the electron-electron bound state.
When propagating along the lattice this eigen-
value would change. Unfortunately, this would also
change the shape of the wave function. However, for
a large enough width wsol of the displacement func-
tion of the soliton the eigenvalues of all possible
configurations are equal. The effect of discreteness
vanishes for wide solitons. The consequence is that
the motion of a wide enough soliton does not influ-
ence the electron-electron wave function anymore,
its shape or its eigenvalue.

Finally, let us discuss the effects of tempera-
ture on the stability of the quantum mechanical
two-electron bound state. Once the eigenvalue of
the ground state is given one could ask at what
temperature thermal “ionization” may occur. This
question leads to the inequality T > |E0|/kB . In
the example given above we have obtained an
eigenvalue E0 of approximately −0.04Ry which
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corresponds to a temperature of about 5200 K.
Because of this very high temperature the thermal
“ionization” cannot be responsible for the destabi-
lization of the ground state with increasing temper-
ature. On the other hand, the thermal motion of
the ion cores will also affect the two-electron bound
state. We can assume the probability of finding the
nth ion core at position Q as

Pn(Q) =

exp

{
−(Q−Q

(0)
n )2

2∆Q2

}

(2π∆Q2)1/2
, (6)

with ∆Q = (kB T/(MΩ2))1/2. Here ∆Q gives the
thermal deviation of the ion core position depend-
ing on the temperature T , the molecular mass
M and the frequency Ω of low-amplitude oscilla-
tions of an ion pair around its equilibrium sep-
aration σ. The frequency is determined from the
harmonic approximation to the interaction poten-
tial Vii. Let us refer to the soliton induced poten-
tial at T = 0K as the coherent part because it
is stable under the soliton propagation. For higher
temperatures this coherent part is disturbed by
incoherent thermal fluctuations. In our case the
thermal fluctuations dominate already at a little
more than T = 30 K. Although those fluctuations
can create new and even deeper minima in the
effective electron-electron potential those additional
structures are not coherent. Therefore, they have a
destabilizing effect on the electron-electron ground
state. Of course, this depends strongly on the sys-
tem under investigation.

Let us estimate the relation between “critical
temperature” and amplitude of lattice displacement
in a more analytical form. We recall that Amax is
the maximum deviation of the ion position induced
by the soliton. One could ask at what temperature
the thermal deviation of the ion positions reaches
10 per cent of Amax. The inequality reads

A2
max

T
>

100kB

MΩ2
. (7)

Hence the ratio of deformation to the “critical tem-
perature” is given only by material constants. In our
case we obtain a “critical temperature” Tc = 35 K,
which is in agreement with the numerical result. On
the other hand, if we would like to extend the range
of validity to room temperature (T = 300 K), we
have to realize larger lattice deformations (Amax =
0.3σ instead of Amax = 0.1σ used for the model
system).

A new quantum mechanical mechanism of elec-
tron pairing has been described. This pairing orig-
inates in a localized deformation of the lattice in
the form of solitons. Although, the electron pair
is a quantum mechanical compound where many-
particle effects are not considered and its solution
is valid only at zero temperature, we can estimate
a thermal criterion of finding the electron pair. It
makes sense to consider the thermal motion of the
classical ions. Since the electron pairing is bound
to the existence of the soliton and the thermal ion
motion tends to disturb the soliton, the electron
pairing is also destabilized by the increase of tem-
perature. We wish to emphasize once more the spa-
tial structure of the electron pair. A dynamic bound
state of a soliton and an electron (called, for simplic-
ity, solectron) propagates along the lattice. Mean-
while, the localized electron can form pairs with
electrons at arbitrary large absolute values of the
separation. This point is crucial to distinguish the
mechanism from those leading to the formations of
bipolarons.

For decades the formation of bipolarons has
been assumed to be a mechanism that may lead to
superconductivity [Schafroth, 1955] even for high-
temperature superconductors [Bednorz & Mueller,
1986]. The polaron formation is based on the short-
range electron-lattice interaction [Holstein, 1959] or
the long-range electron-lattice interaction [Fröhlich,
1954]. Both methods are successful in describ-
ing single polarons. The first model tends also to
form strongly localized (“small”) bipolarons [Emin,
1987]. Since the localization reduces the mobility
of the pair small polarons are not expected to con-
tribute to superconductivity. On the other hand,
only long-range electron-lattice interactions do not
tend to generally form bipolarons [Emin & Hillery,
1989]. However, the existence of “large” bipolarons
(induced by long-range electron-lattice interactions)
has been shown at least for large coupling strengths
between the electron and the lattice [Verbist et al.,
1991]. But large coupling strengths are known to
suppress the polaron motion [Hennig et al., 2006].
Nevertheless, the possibility of bipolaron-induced
superconductivity has been shown in [Alexandrov
& Ranninger, 1981]. There the fermionic electron-
phonon system has been reduced to a bosonic bipo-
laron system.

Here we have described the coherent motion of
an electron on top of a solitonic lattice excitation (in
fluid flows this is similar to the surfing on the bore
of certain rivers). While the electron is trapped, the
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strength of the deformation and the energy of the
soliton do not allow the electron to influence the
propagation of the soliton significantly. When there
is a mechanism of pairing as we have shown here the
motion of the pair is also coherent with the motion
of the soliton.
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Fröhlich, H. [1952] “Interaction of electrons with lat-
tice vibrations,” Proc. Roy. Soc. (London) A 215,
291–301.
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