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Assuming either classical electrodynamics or the quantum mechanical tight-binding of an elec-
tron to a nonlinear lattice with exponentially repulsive potential interactions we show how in
both cases electron trapping can be mediated by solitons thus forming similar robust bound
states (solectrons).
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In two previous letters [Velarde et al., 2005, 2006]
a new form of electric conduction mediated by soli-
tons was shown to be possible in an anharmonic
one-dimensional (1D) lattice. In the first, a strictly
classical approach was adopted hence treating the
lattice dynamics classically and the electron-(ion)
lattice interaction with classical electrodynamics.
In the second, the electron-lattice interaction was
considered within the tight-binding approximation
[Ashcroft & Mermin, 1976] while maintaining the
classical approach to the lattice dynamics. The lat-
tice interactions were of Toda or Morse type akin
to the Lennard–Jones interaction [Choquard, 1967;
Toda, 1989], hence allowing for phonon — and
soliton — longitudinal vibrations with compres-
sions governed by the repulsive part of the potential
[Chetverikov et al., 2005, 2006a, 2006b]. These com-
pressions were shown to be responsible for electron
trapping by the lattice excitations thus leading to
the formation of dynamic bound states (solectrons)

of the electron with the soliton (the same phe-
nomenon is valid also for the solitonic peaks of a
cnoidal wave moving through the lattice).

In the present letter, we proceed deeper in the
analysis and further explore the analogies and dif-
ferences between the classical electrostatic trap-
ping and the quantum mechanical tight-binding
approximation using the Morse interaction. Thus,
we consider a 1D anharmonic lattice with dynam-
ics dictated by the following Hamiltonian describing
nearest-neighbor Morse interactions:

Hlattice

=
∑
n

{
1
2

p2
n

M
+ D(1 − exp[−B(qn − qn−1)])2

}
.

(1)

Here M denotes the mass of a lattice parti-
cle, (qn, pn;n = 1, . . . , N) describe their respective
displacements from equilibrium positions and
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momenta, B characterizes the stiffness of the
spring-like constant in the Morse potential, and D
is the depth of the potential well.

Considering the lattice particles to be posi-
tive ions (or screened ion cores in a broad sense)
of charge +e, we add electrons to the system. In
the strictly classical case we describe the electron
dynamics (mass, me and charge, −e; me � M) by
the equations

me
∂2

∂t2
yj +

∂Ue

∂yj

= −eE + meγe
∂

∂t
yj +

√
2Deξj(t), (2)

where yj denotes the position of the electron (for
simplicity, to have electroneutrality we may con-
sider as many electrons as ions albeit electrons
noninteracting among themselves and hence j =
1, . . . , N). To rule out unnecessary geometric dif-
ficulties while at the same time making the model
more realistic we have assumed that the electrons
are in 3D though the (ion)lattice is 1D. Further,
we have considered the electrons in a “thermal
bath” characterized by a Gaussian white noise, ξj,
of zero mean and delta correlated. The parameter γe

denotes electron friction satisfying Einstein’s rela-
tion with De. For the electron-(ion) lattice interac-
tion, we take

Ue(yj) = −
N∑

k=1

[(yj − qk − kσ)2 + h2]1/2. (3)

The parameter h is a suitable cut-off (h ≈ σ/2) to
rule out unnecessary Coulomb potential difficulties;
σ defines equilibrium lattice spacing.

An alternative approach to the above given
electron-lattice dynamics is to take the tight-
binding Hamiltonian [Ashcroft & Mermin, 1976]:

Hel = −
∑
n

Vnn−1(c∗ncn−1 + cnc∗n−1), (4a)

where n denotes here the site where one electron is
“placed” on the lattice and |cn|2 gives the probabil-
ity of finding the electron residing at the site n. The
quantity Vnn−1 defines the transfer matrix element
responsible for the hopping of the electron along
the chain (considering only nearest neighbor hop-
ping). This matrix is the key ingredient, allowing for
the coupling of the electron to the lattice displace-
ments, and hence the lattice vibrations, phonons or
solitons. A reasonable choice for Vnn−1 is [Hennig
et al., 2000, 2006]

Vnn−1 = V0 exp[−α(qn − qn−1)], (4b)

where the parameter α accounts for the strength of
the coupling.

For the sake of universality, it is best to rescale
quantities and consider a dimensionless problem.
We take as unit of time Ω−1

Morse, where ΩMorse =
(2DB2/M)1/2 denotes the frequency of harmonic
oscillations (linear, first-order approximation to the
Morse exponential). For displacements we take B−1

as the unit, for momenta we take (2MD)−1/2, hence
for the interaction force we have αV0/2BD, and α is
measured in (B−1) units. Then, expecting no confu-
sion in the reader, denoting the new dimensionless
quantities with the same symbols as the old ones,
the dynamics of the Hamiltonian system (1), (4a),
(4b) is given by the following equations for the elec-
tron, cn, and lattice vibrations, qn,

i
dcn

dt
= −τ{exp[−α(qn+1 − qn)] cn+1

+ exp[−α(qn − qn−1)] cn−1}, (5a)

d2qn

dt2
= {1 − exp[−(qn+1 − qn)] } exp[−(qn+1 − qn)]

−{1 − exp[−(qn − qn−1)]}
× exp[−(qn − qn−1)]

−αV {(c∗n+1cn + cn+1c
∗
n)

× exp[−α(qn+1 − qn)]

+ (c∗ncn−1 + cnc∗n−1)

× exp[−α(qn − qn−1)]}, (5b)

where τ = V0/ΩMorse� and V = V0/2D. Needless to
say, in general the two time scales in (5a) and (5b)
are not the same (which in frequency terms refer
to ultraviolet/electronic versus infrared/acoustic),
for most cases with electrons and phonons. For
purposes of illustration we shall use the following
parameter values: B = 4.45 Å−1, α = 1.75B, D =
V0 = 0.1 eV, ΩMorse = 3.04 · 1012 s−1, Ωelectron =
V0/� = 0.608·1014 s−1, and τ = 20.00. These numer-
ical values are relevant, e.g. for electron transport
along hydrogen bonded polypeptide chains such
as α-helices [Davydov, 1991; Christiansen & Scott,
1983; Scott, 1992].

Now, we take advantage of the similarity
between the Morse and the Toda interactions in
the repulsive range where phonons as well as soli-
tons can be excited in the lattice [Toda, 1989;
Chetverikov et al., 2006a, 2006b]. Accordingly, for
the lattice vibrations we make the ansatz

exp[−3(qn − qn−1)] = 1 + β cosh−2(κn − βt), (6)
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where β = sinhκ, and κ is a parameter with dimen-
sions of inverse length (related to the width of the
soliton). The ansatz (6) is the Toda solution with
appropriately rescaled stiffness [Chetverikov et al.,
2006a, 2006b]. It is a valid approximation leading
to localized electronic pulses traveling with the soli-
tons [Hennig, 2000; Hennig et al., 2006]. Using (6),
the coupling between Eqs. (5a) and (5b) yields

cn(t) = β cosh−1[κn − βt] exp[−i(ωt − δn + σ)],
(7)

where ω ≡ −2 cos δ cosh β and δ ∈ [−π, π]. Note
that

∑
n |cn|2 = 1 (conservation of norm, i.e. prob-

ability density) holds for κ = 0.465.
The evolution problem (5) has been solved for

one hundred (N = 100) particles on a lattice with

periodic boundary conditions using a fourth-order
Runge–Kutta algorithm. The norm conservation as
well as the conservation of the total energy was
monitored throughout the integration procedure
to ensure consistency. Figure 1 depicts the results
found for solitons and for electrons. As initial con-
dition at t = 0 we have chosen a cnoidal wave dis-
placement for the lattice particles and a Gaussian
distribution located initially at a place 25 lattice
units away. At a subsequent time t = 10 the elec-
tron distribution is completely spread in compari-
son to the initial distribution which is represented
too. At longer times the electron density concen-
trates around the soliton thus forming a dynamic
bound state or solectron (see the snapshot for
t = 300).
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Fig. 1. Simulation according to Eqs. (5a) and (5b). Initially at t = 0 [Fig. 1(a)] the electron is represented by a (narrow
peaked) Gaussian (dashed curve) with a maximum at n = 50 which is clearly distinct from the soliton-like (cnoidal wave)
compression at n = 25 (V = 0.5). At t = 10 [Fig. 1(b)] the electron density is quite different from the Gaussian (dashed curve
again) and the soliton peak is shifted to n = 39. At t = 300 [Fig. 1(c)] the electron probability density is gathered by the
soliton and becomes again narrow-peaked. The ordinate v denotes dimensionless velocity.
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Fig. 2. Trajectories of both “ions” and trapped “electrons”
in the classical model of 10 + 10 particles (compare to Fig. 1).
We see that in the considered time interval most of the elec-
trons are trapped by a soliton (for related pictures, see also
[Chetverikov et al., 2006a, 200b]).

For comparison we have shown in Fig. 2
the dynamics of ten electrons (N = 10) found by
numerically integrating Eqs. (1) and (2) under the
condition that a soliton is running along the lattice.
We take this example from an earlier work where
the soliton was generated in a chain of ten lattice
particles by a suitable input–output energy balance
[Chetverikov et al., 2006a; Makarov et al., 2006]. As
we see, one after the other all of the electrons are
trapped by a soliton (the tangent is parallel to the
slope of the solitonic excitation of the lattice). In
this way we observe a complete analogy between the
classical and the quantum description with respect
to the trapping phenomenon. We may state that
the trapping of electrons by solitonic compressions
is a physical phenomenon and not just an artifact
induced by the specificity of either the classical or
the quantum-mechanical approach.
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Fig. 3. Dynamics of two solitons and one electron (V = 0.5). The initial distribution of the c(n) is Gaussian placing the
electron at the soliton-like (cnoidal wave) compression running from left to right. We see that upon collision with the oppositely
moving (from right to left) soliton there is an exchange of partner for the electron as its probability density is matched by
the second oppositely moving soliton. (a–c) Correspond, respectively, to the situation before, at, and after the collision. The
ordinate v denotes dimensionless velocity.



Electron Trapping by Solitons. Classical versus Quantum Mechanical Approach 525

We also did a numerical experiment with two
solitons moving in opposite directions (Fig. 3).
Initially, the electron is trapped and, consequently,
moves with the soliton moving to the right (the
alternative is also expected due to symmetry). Then
following the collision with the soliton moving to the
left the electron probability density transfers to the
second oppositely moving (to the left) soliton and
further travels with it. Hence the electron changes
partner in the formation of the bound state (solec-
tron). In another case, we have seen the splitting
of the electron probability density when two soli-
tons oppositely moving collide with each other. In
such a case the outcome of the collision leads to
two solectrons moving away in opposite direction.
Finally, there are cases where the electron probabil-
ity density once captured by a soliton remains with
it although that soliton may experience collision
with other oppositely moving solitons.

Finally, we have calculated also the (dimen-
sionless) current density, j, in the quantum picture
given by

j = i
∑
n

(c∗n+1cn − c∗ncn+1). (8)

Under the assumption that a soliton is generated
and runs from left to right along the lattice, in aver-
age we see a negative current, the sign is due to
the negative charge of the electrons which moves
with the soliton from left to right (Fig. 4, lower
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Fig. 4. Electric density current versus time appearing when
the electron is quantum mechanically trapped by solitons. For
comparison we have plotted in the same figure the outcome
of two different events. In both cases the initial probability
density, c(n), is Gaussian. The upper (respectively, lower) sig-
nal refers to the right-to-left (respectively, left-to-right) mov-
ing soliton with V = 0.4 (V = 0.5). Accordingly the mean
current exhibits positive (respectively, negative) value in the
absence of an external field.

part). The larger fluctuations of the current under-
lies that the trapping is in terms of probability.
The electron is making forward–backward oscilla-
tions around its mean position. In another with a
soliton running from right to left we observed a pos-
itive current (Fig. 4, upper part).

In conclusion, we have shown that soliton-
mediated electron trapping is possible in a non-
linear lattice when the value of the stiffness of
the “ion–ion” (Morse) lattice interactions allows
strong enough compression. Then the electron-
(ion)lattice interaction can be treated in the clas-
sical electrostatic approximation or in the quantum
mechanical tight-binding approximation. In both
cases there is electron “localization” on the lat-
tice while the soliton provides the carrier. Need-
less to say, the difference between the classical and
the quantum approaches is that in the former case,
as we follow trajectories, the electron could jump
from a right moving soliton to a left moving one
[Makarov et al., 2006], while in the other case
the probability density associated to an electron
could split leading to trapping by two oppositely
moving solitons. A discussion of electron trapping,
including electron–electron interaction and electron
spin (satisfying Pauli’s exclusion principle) thus
allowing for electron-pair trapping, would be given
elsewhere.
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