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We study the thermal excitation of solitons in 1D Toda–Morse lattices in a wide range of tem-
peratures from zero up to physiological level (about 300K) and their influence on added excess
electrons moving on the lattice. The lattice units are treated by classical Langevin equations.
The electron distributions are in a first estimate represented by equilibrium adiabatic distri-
butions in the actual fields. Further, the electron dynamics is modeled in the framework of
the tight-binding approximation including on-site energy shifts due to electron-lattice coupling
and stochastic hopping between the sites. We calculate the electron distributions and discuss
the excitations of solectron type (electron-soliton dynamic bound states) and estimate their life
times.
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Since the work of Davydov and others, it is known
that electrically charged solitons may travel along
1D lattices. Davydov conjectured that these electro-
solitons are stable at finite temperatures and may
persist even at physiological temperatures. Several
authors [Christiansen & Scott, 1983; Lomdahl &
Kerr, 1985; Scott, 1992] have checked Davydov’s
conjecture and have shown that the electro-solitons
do not survive above 10 K lasting at most 2 ps.
Davydov’s work is based on electrical transport
in a harmonic lattice, the nonlinearity comes in
only due to the electron-phonon interaction as a
polaronic effect. However, any “positive anharmoni-
city” in the underlying lattice could result in the
appearance of very stable supersonic acoustic soli-
tons [Zolotaryuk et al., 1996]. Following earlier work

[Velarde, 2008; Velarde et al., 2005, 2006, 2008;
Chetverikov et al., 2005, 2006a, 2006b; Makarov
et al., 2006] we continue here exploring this line of
thought and we show that taking into account the
anharmonicity in the lattice together with the non-
linearity of the (polaron-like) electron-soliton inter-
action, the thermal stability of the electron-soliton
dynamic bound states (called, for simplicity, solec-
trons) is considerably enhanced. The dynamics of
the electrons is taken using quantum theory in the
tight-binding approximation.

The 1D lattice system (length L) consists of N
classical particles (all with equal mass m taken as
lattice sites or lattice ions/ion cores/atoms with
no internal dynamics) with periodic boundary
conditions. The electrons (considered lighter than
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the lattice units) occupy some volume in the 3D
space surrounding the 1D lattice. For the heavy lat-
tice particles, we assume that they obey classical
Langevin dynamics. We include a phenomenologi-
cal damping γ0 and some external noise source. The
lattice particles are described by coordinates xn(t)
and velocities vn(t), n = 1, . . . , N . The Hamilto-
nian consists of the classical lattice Hamiltonian
Ha, the contribution of the electrons He, and the
interaction of electrons with the lattice vibrations.
We set

H = Ha + He, (1)

where the lattice part is

Ha =
m

2

∑
n

v2
n +

1
2

∑
n,i

V (xn, xi). (2)

The subscript denotes the lattice particle number
and summation goes from 1 to N . Let us assume
that the average distance between particles is σ
(σ = L/N). At short distances, we consider that
they repel each other with exponentially repulsive
forces while at longer distances they attract each
other with weak dispersion forces depending on
their relative distance r = xn+1 − xn. We will
approximate the potential using the Morse model
(akin to the Lennard–Jones potential and to the
repulsive component of the Toda potential) V =
D{exp[−2B(r − σ)] − 2 exp[−B(r − σ)]}. For illus-
tration in the computer simulations we shall use
N = 200 and B = 1/σ. Then in the presence of ran-
dom forces (hence nonzero temperature) and also
external forces the evolution of lattice particles is
given by the equations

d

dt
vn +

1
m

∂Ha

∂xn
= −γ0vn +

√
2Dv ξn(t). (3)

The stochastic forces
√

2Dv ξn(t) model a sur-
rounding heat bath (Gaussian white noise). The
parameter γ0 describes the standard friction fre-
quency acting from the bath. The validity of an
Einstein relation is assumed Dv = kBTγ0/m, where
T denotes absolute temperature and kB is Boltz-
mann’s constant. For convenience, we use σ as the
unit length and the inverse frequency of oscillations
around the potential minimum ω−1

0 as the time unit.
The unit temperature is 2D. Typical values of the
parameters for biomolecules are in the range [Hen-
nig et al., 2007] σ � 1–5A; B � 1–5(A)−1; D � 0.1–
0.5 eV. This means that Bσ � 1 − 25 while 1/ω0 is
in the range of 0.1–0.5 ps.

In order to visualize the solitons in a first
approach we focus attention on the “atomic” den-
sity. We assume that each lattice particle is sur-
rounded by a Gaussian electron density providing
a screened ion core of width s = 0.35σ. Then the
total atomic electron density is given by

ρ(x) =
∑
n

1√
2πs

exp
[
−(x − xn(t))2

2s2

]
. (4)

Hence we assume that the atom is like a spheri-
cal object with continuous (valence) electron den-
sity concentrated around each lattice site. In regions
where the atoms overlap, the electron density is
enhanced. This permits easy visualization of soli-
tonic excitations based on the colors in a den-
sity plot. This is of course a rough approximation.
Figure 1 shows the result of simulations for the
temperatures T = 0.005 and T = 1. The diago-
nal stripes correspond to regions of enhanced den-
sity which are running along the lattice. This is a
sign of solitonic excitations. Checking the slope, we
see excitations which over 10 time units move with
supersonic velocity. These pictures are quite similar
to solitonic excitations described by Lomdahl and
Kerr [1985] albeit with life times of at most 2 ps and
stable only up to 10 K. Here we have solitonic exci-
tations living about 10–50 time units correspond-
ing to 1–3 ps. Besides, they survive even at T = 1
which is well above the physiological temperature
(about 300 K which is above T ≈ 0.1 with D �
0.1 eV). This confirms an earlier finding of stable
solectrons up to such temperatures [Hennig et al.,
2006].

We have computed both potential energy, U ,
and kinetic energy, Tkin, and hence the internal
energy E (E = U + Tkin) and the corresponding
specific heat (at constant volume/length) Cv. They
appear plotted in Fig. 2. As the energy unit we use
the oscillation energy mω2

0σ
2 = 2D(Bσ)2 (recall

that for illustration we use Bσ = 1). Accordingly,
the region where the nonlinearity plays a major role
is 0.95 > Cv/kB > 0.75. As we see in Fig. 2, the
corresponding temperatures are in our energy units
between T � 0.1 and T � 1, thus justifying the
pre-eminent role of solitons shown in Fig. 1. We may
bring this to a more physical picture by introducing
the binding strength of the Morse interaction. Then
solitons are to be expected stable in the range TM

sol �
0.2–2.0D or in electron-volts TM

sol � 0.02–0.2 eV.
Thus for biological macromolecules, this estimated
range includes physiological temperatures.
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Fig. 1. Visualization of running excitations on 1D anharmonic lattices. Density ρ′ = ρ
√

2πs refers to valence-like electrons in
lattice atoms (color coding in arbitrary units). N = 200, Bσ = 1, s = 0.35 σ. For two temperatures (given in units of 2D) we
have: Upper set of figures: (i) T = 0.005: Only harmonic lattice vibrations show up with no evidence of soliton-like excitations;
and bottom set of figures: (ii) T = 1: Besides many excitations also a few strong solitons appear running with velocity around
1.3vsound. In both cases on the left figure there is a snapshot of the distribution for a certain time instant and on the right
figure the actual time evolution of the distribution is displayed.

Let us study now the interaction between the
lattice units and the surrounding added free (con-
duction) electrons. In a first semiclassical approach
we assume that all lattice atoms which are near to
each other by 1.5σ or less contribute to the local
potential V (x) acting on each electron

Ve(x) =
∑
n

V0(x − xn), r = |x − xn| < 1.5σ.

(5)

For illustration we take

Ve(x) =

−Ue

∑
n

h

[(x − xn)2 + h2]1/2
, (6)

where Ue is a parameter which fixes the “depth”
of the potential and h another parameter which
estimates its range. For typical 1D systems we

expect that the binding energy is in the range
Ue � 0.05–0.1 eV. The binding energy Ue is a
second (independent) energy unit of the system.
This characteristic energy is in general smaller than
the binding energy between lattice units which in
our model is D. Let us consider Ue � 0.02–0.2D
and h = 0.3σ. The field acting on an electron
in the lattice can be thought as the sum of all
fields created by the neighboring atoms in the range
±1.5σ. The value Ue is taken such that the elec-
trons are only weakly bound to the atoms and
may transit from one side to the other of a lattice
unit. Accordingly the electrons are able to wander
through the lattice eventually creating an electron
current. To place a pair of electrons between two
lattice particles is in general not favorable in ener-
getic terms, since the energy of repulsion e2/ε0r
has to be overcome; ε0 denotes dielectric constant.
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Fig. 2. Specific heat at constant volume/length (Cv, upper
curve) and ratio of potential energy to kinetic energy (U/Tkin,
lower curve) for the 1D lattice with Morse interactions. T is
in dimensionless units. Note that in the low-T range there is
no Debye part (∼ T d, d = 1 here) as we have classical lattice
dynamics only. The flat part corresponds to the Dulong–Petit
law.

However, the electron may attract more than two
lattice particles thus forming a deep potential hole
akin to a polaron state which is a static structure
corresponding to favorable energetic configurations.
Here, we are rather interested in the dynamic phe-
nomena initiated by solitonic excitations in the lat-
tice. However, we have to take into account that
both of these phenomena, the local compression by
a static process (polaron formation) and by a run-
ning compression (soliton excitation) are intimately
connected. The choice h � 0.3σ provides shallow

minima at the location of the lattice atoms with
significantly deep local minima at the location of a
compression.

In a thermal system the lattice units perform
quite complex motions, we may expect therefore
a rather complex structure of the field acting on
the electrons. Let us give now several examples of
the fields created by the atoms. Two snapshots are
presented in Fig. 3. The potential energy has been
given in units of the binding energy Ue. Taking
into account the energy unit 2D(Bσ)2 this means
the scale is given by the ratio η = Ue/2DB2σ2 =
(1/2B2σ2)(Ue/D). For Bσ = 1 the energy scale is
therefore η = Ue/2D.

The potential V (x) is time-dependent and gives
at each time a snapshot of the actual situation.
The potential changes quickly and the distribu-
tion of the electrons tries to follow them as fast as
possible hence electrons are “slaved” accordingly,
thus permitting an adiabatic approximation. We
have a situation similar to that described for free
electron statistics in semiconductor theory [Blake-
more, 1962]. When the electron density n(x) is
sufficiently low, so that the electrons are still non-
degenerated, we may approximate the Fermi statis-
tics by the Boltzmann statistics. The Boltzmann
approach is often a rather good approximation
which connects in a simple way the distribution
with the landscapes of the local potential.
Then, we take

n(x) =
exp[−βVe(x)]∫
dx′ exp[−βVe(x′)]

, (7)
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Fig. 3. Snapshot of the local field potential V (x) acting on electrons in the anharmonic lattice (N = 200, h = 0.3 σ and
Bσ = 1). (Left) At T = 0 we observe one running soliton which was excited by an external perturbation. (Right) At T = 1
we observe many weak and a few very strong solitons. For units see main text.
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with β = 1/kBT . Here x denotes the linear coordi-
nate along the lattice. An example of the estimated
density is shown in Fig. 4 (not normalized and given
in logarithmic scale). The (relatively high) peaks
correspond to the enhanced probability of a soli-
ton to meet and trap an electron. This defines the
solectron, i.e. an electron “surfing” on a soliton for
about 10–50 time units (i.e. a few picoseconds) then
getting off it and eventually finding another soli-
ton once more to surf-on and so on. For T = 0.1
we observe several rather stable running excitations
(diagonal stripes) with velocity around 1.2vsound.
For T = 1 (not shown in the figure) one can
observe many weak and only a few very stable exci-
tations moving with supersonic velocity 1.4vsound.
The probabilities estimated from the Boltzmann
distribution are strongly concentrated at the places
of minima. This means that most of the electrons
are concentrated near solitonic compressions.

Let us use the tight binding approximation
allowing the potential landscape to be nonuniform.
As a consequence, using second-quantization for-
malism we take

He =
∑
n

{En(xn−1, xn, xn+1)c+
n cn

−Vnn−1(xn, xn−1)(c+
n cn−1 + cnc+

n−1)}, (8)

where cn, c+
n are destruction, creation opera-

tors endowed with appropriate anticommutation
relations. In our approximation these are c-
numbers. To lowest order the energy levels En are
all taken equal, i.e. they do not depend on n and
then the first term in (8) can be scaled away. Let

us go a step forward. Assuming that the interaction
depends exponentially on the distance of the ions
[Hopfield, 1974; Gray & Winkler, 2003] we can set

He =
∑
n

{(E0 + δEn)c∗ncn

−V0 exp[−α(qn − qn−1)](c∗ncn−1 + cnc∗n−1)},
(9)

where E0 refers to the unperturbed (uniform) lat-
tice without excitations and δEn is the perturbation
due to the nonlinear lattice excitations (relative
displacements of lattice units). We define xn =
nσ + qn/B. Then the probability to find the electron
at the lattice site or atom located at xn is pn = cnc∗n.

The Hamiltonian (8) leads to the equations of
motion for the quantities cn. The corresponding
equations for the lattice particles become in this
approximation

q̈n = −pn
∂δEn(qn−1, qn, qn+1)

∂qn

+ {1 − exp[−(qn+1 − qn)] exp[−(qn+1 − qn)]}
−{1 − exp[−(qn − qn−1)]} exp[−(qn − qn−1)]

+ αV0{exp[−α(qn − qn−1)](c∗n−1cn + cn−1c
∗
n)

− exp[−α(qn+1 − qn)](c∗ncn+1 + cnc∗n+1)}.
(10)

Solving numerically the Schrödinger equation
in the tight-binding model the occupation num-
bers pn are obtained. This procedure works well at
zero and near zero absolute temperatures. As known

Fig. 4. Probability distribution of an electron in a heated anharmonic lattice in the adiabatic approximation according
to local Boltzmann distribution. (Left) A snapshot of the distribution is given for a certain time instant. (Right) The
actual time evolution of the distribution is displayed. The temperature is T = 0.1. Parameter values: Bσ = 1, h = 0.3σ,
N = 200.
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from quantum molecular dynamics, at higher tem-
peratures the treatment of thermal systems using
the Schrödinger equation leads to difficulties in the
computer simulations. There are several ways to
overcome these difficulties, one follows Pauli’s [1928]
master equation approach and another uses path
integral Monte–Carlo calculations [Filinov et al.,
2004]. We follow here Pauli’s method and proceed
from the Schrödinger equation to a master equation
for the occupation probabilities pn. To first-order
approximation we can write

dpn

dt
=

∑
[Wnn′pn′ − Wn′npn]. (11)

For simplicity we consider only one-step tran-
sitions n′ = n ± 1. The transition probabili-
ties contain two factors, the symmetric transition
probabilities which are proportional to the square
of the interaction potential and an unsymmetri-
cal thermal factor E(n, n′) which is not unique.
Introducing the second-order transition probabil-
ities |V0 exp[−α(qn − qn′)]|2 Eq. (11) takes the
form

dpn

dt
=

2π
�

V 2
0 {exp[−2α(qn+1 − qn)]

× [E(n, n + 1)pn+1 − E(n + 1, n)pn]
+ exp[−2α(qn − qn−1)]
× [E(n, n − 1)pn−1 − E(n − 1, n)pn]}. (12)

The factor (2π/�)V0 is the reciprocal electron relax-
ation time scale (or relaxation rate). The ratio
between the mechanical (lattice) relaxation and the
electron scale is τP (adiabatic parameter) that in
our computations here we set to unity though gen-
erally the electron dynamics is by far the fastest
one. The thermal factor obeys detailed balance
[Lebowitz & Bergmann, 1957]

E(n′, n)
E(n, n′)

=
exp[βE(n)]
exp[βE(n′)]

. (13)

The simplest, and most used way, to satisfy this
condition is the Monte–Carlo procedure which dis-
tinguishes between “uphill” and “downhill” transi-
tions [Binder, 1979]. Here for “downhill” transitions
we take E(n, n′) = 1 for n′ = n ± 1, if En = E′

n or
En < E′

n. In all other cases when the transitions
to states of the neighbors are “uphill”, a Boltz-
mann factor weighs them, E(nn′) = exp[β(En′ −
En)]. The Monte–Carlo procedure guarantees that
in thermal equilibrium the canonical distribution

p0
n = const exp[−βEn] is a solution of the mas-

ter equation. Further, it may be shown that there
exists an (Boltzmann) entropy theorem which guar-
antees the convergence of any initial distribution to
the canonical distribution, with stationary external
conditions [Lebowitz & Bergmann, 1957]. Details
about the thermal factor, can be found elsewhere
[Binder, 1979; Filinov et al., 2004; Böttger &
Bryksin, 1985]. In order to get an equation for the
coordinate which depends only on pn we neglect the
phases in Eq. (10) and set

q̈n = −pn
∂δEn(qn−1, qn, qn+1)

∂qn

+ {1 − exp[−(qn+1 − qn)]} exp[−(qn+1 − qn)]

−{1 − exp[−(qn − qn−1)]} exp[−(qn − qn−1)]

+ 2αV0{exp[−α(qn − qn−1)]
√

pn−1pn

− exp[−α(qn+1 − qn)]
√

pnpn+1}. (14)

Let us discuss now the eigenvalue problem for the
energy states taking into account the influence of
the lattice deformations on the on-site electron
energy levels (9). The simplest assumption is the
Holstein model δEn = χrn, where rn = qn/B is
the shift. In [Kalosakas et al., 1998, 2003] the con-
stant χ is denoted as “electron-phonon coupling
constant” leading for large values of χ to the for-
mation of polarons. Following these authors we take
the coupling constant in the range 0.5 < χ <
2 eV/Angstrom.

In fact, we shall asume that the energy shifts
depend on the deviations qn only in a symmetric
way. A reasonable ansatz is

δEn � χ

2B
[(qn+1 − qn) + (qn − qn−1)] + · · · (15)

To simplify the computer work we have used in most
simulations instead of (15) the local potential V as
calculated above by assuming for the deviations,
δEn = V (x = xn). In other words, we assume that
the shifts are proportional to the (classical) shift
of the potential energy which is due to the lattice
deformations. To a first approximation we have

δEn � Ueσh

B(σ2 + h2)3/2
[(qn+1 − qn) + (qn − qn−1)].

(16)

Taking the typical values of the parameters used
above we arrive at χ � 0.01–0.1 eV/Angstrom
which is a bit below the earlier noted values used
in the literature though not a serious shortcoming
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Fig. 5. Time evolution of the electron probability distribution in a heated anharmonic lattice according to Pauli’s equation
and hence beyond the adiabatic approximation. (Left) The initial (rectangular) distribution as well as the distribution at
a (dimensionless) time instant t = 120 are plotted. (Right) The actual time evolution of the distribution is displayed. The
temperature is T = 1 and the parameter values are: Bσ = 1, h = 0.3 σ, N = 200, Ue = 0.01, α = 1.

here. In such parameter range, polaronic effects are
rather weak.

The results of computer simulations are pre-
sented in Figs. 5 and 6. The differences with ear-
lier reported results [Hennig et al., 2006, 2007]

are due to the addition here of the coupling of
lattice displacements to the on-site energies. On
the other hand, the differences with the results of
the adiabatic approximation presented above are
due to the relaxation of the electronic distribution.

(a) (b)

(c)

Fig. 6. Actual time evolution of the probability distribution of the electrons (according to Pauli’s equation) in a rather “cold”
lattice: (a) T = 0.005, and in a “heated” lattice: (b) T = 0.1 and (c) T = 1. Parameter values: Bσ = 1, h = 0.3 σ, N = 200.
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The relaxation effects increase with increasing τ =
(2π/�)V0; for τ → 0 the simulations for the Pauli
equation correspond to the adiabatic approxima-
tion. The Pauli-like approach goes beyond the adi-
abatic approximation since the lattice dynamics
and the electron dynamics are treated indepen-
dently including their coupling. Indeed, in the mas-
ter equation approach we take into account that the
electrons need time to follow the atomic motions
which leads to certain delay in their response and to
some deviations from the stationary solution. Qual-
itatively, however, solving Eq. (11) simultaneously
with Eq. (10) the picture remains the same as in
Figs. 5 and 6 show.

In Fig. 5 we show the solution of the master
equation for a rectangular initial distribution (con-
stant distribution between 50 and 150). In the left
figure, we see the resulting distribution after time
t = 120 exhibiting a remarkable structure reflecting
the solitonic excitations. In the right figure, appears
the evolution of the distribution in time. The Pauli
equation is solved simultaneously with the lattice
dynamics and then the evolution of the occupation
density i.e. of the components pn(t) is obtained.

In Fig. 6 we show the evolution of an electron
distribution which is initially (at t = 0) peaked at
the center of the lattice with N = 200 atoms. Recall
that the electrons are treated as independent par-
ticles, their Coulomb interaction is neglected. We
considered a few typical cases: (a) The electrons are
disconnected from the lattice (α = 0). The electron
probability density spreads in time following Pauli’s
equation; (b) At higher temperatures T = 0.1 we
observe the beginning of nonlinear regimes and the
formation of low-energetic solitons. The electron
distribution is localized near the few excited soli-
tons which are still rather weak. The solitons form
quite stable solectrons; (c) At a still higher tempera-
ture T = 1 only one rather strong soliton dominates
in the lattice. The electron distribution is localized
near this strong soliton. We observe also that due
to the presence of an oppositely moving soliton the
electron probability density distribution splits into
two parts thus confirming a result earlier found in
a simpler approach [Velarde et al., 2008]. Note that
the effects are even more pronounced due in part
to not so weak but rather strong polaronic effects.
Note also that the values of Ue and α cannot be fixed
a priori since they depend on the physical nature
of the lattice under study.

In summary, we have shown that for sufficiently
high electron density, most of the electrons tend to

form clusters (droplets) around solitonic compres-
sions [Schneider & Stoll, 1975]. The electrons within
the clusters may be degenerated. In 1D-systems the
droplets are always disconnected. Electricity can
be carried only by moving droplets. Therefore, we
cannot expect that a 1D-system goes under the
influence of solitonic compressions to metal-like or
even superconducting-like states. However the situ-
ation may change drastically in 2D- or quasi-2D sys-
tems. Then with increasing density of the solitonic
droplets, percolation becomes possible, a question
to be discussed elsewhere.

We have shown that thermal excitations may
exist at physiological temperatures (about 300 K)
with life times of several picoseconds. Assuming
that the dissipative dynamics of the charged species
is characterized by an effective relaxation time τ , we
can write

v(t) = v(t0) exp
[
− t − t0

τ

]
, (17)

where v denotes the velocity and 1/τ is a “colli-
sion frequency”. These life times determine trans-
port properties like the electrical conductivity, the
self-diffusion coefficient and the mean square dis-
placement. We have estimated the life times from
the wandering landscapes for different temperatures
as shown in Figs. 1, 3–5. Computer simulations
were carried out for T = 0.005, 0.1 and 1. At low
temperatures (T = 0.005) phonons dominate and
potential wells of individual atoms have maxima
and minima of width 0.5. They do not move and
the slopes of the lines are zero. At T = 0.1, when
the solitonic regime is expected to show up the sim-
ulations yield a background mostly red. Solitons are
excited already but the number of solitons is small
and they are relatively low energetic (in the snap-
shot we see 3–4 solitons of a width 2 which can
be identified on the length 30 separated by long
pieces of an almost flat lattice). The soliton veloc-
ity is about 1.1–1.2vsound . Noteworthy is that these
solitons have a long life-time: about 10% of blue soli-
tonic excitations appear with a life time τblue � 5–
40. The minima are not very deep. Then at T = 1,
which is already at the upper border of the soli-
tonic regime (and, say, at the edge of melting in the
system), outside the yellow regions we only see red
areas. The situation is close to the ideal one, the
density of solitons is about 10% again. In one of
the simulations, we observe two less energetic and
two more energetic (narrower and with higher veloc-
ity) solitons. At a later time, we can identify one
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high energetic soliton and three weaker ones, and
so on. The solitons are rather stable with a veloc-
ity in the range 1.2–1.4vsound . For the earlier given
parameter values of biomolecules these velocities
(and supersonic electric current) are in the range of
few Angstroms per picosecond (hence about Km/s).

Acknowledgments

The authors acknowledge fruitful discussions with
E. Brandas, D. Hennig, J. J. Kozak, A. J. Leggett,
F. Sols and G. Tsironis. Correspondence with M. E.
Manley and D. M. Newns is also gratefully acknowl-
edged. This research was in part supported by the
EU under Grant SPARK II-FP7-ICT-216227, and
by the Spanish Ministry of Science under Grant
VEVES-FIS2006-01305.

References

Binder, K. (ed.) [1979] Monte Carlo Methods in Statis-
tical Physics (Springer, Berlin).

Blakemore, J. S. [1962] Semiconductor Statistics (Perg-
amon Press, Oxford); See also [1985] Solid State
Physics (Cambridge University Press, Cambridge).
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