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We study the time evolution of two correlated electrons of opposite spin in an anharmonic lattice chain. The
electrons are described quantum mechanically by the Hubbard model while the lattice is treated classically. The
lattice units are coupled via Morse-Toda potentials. Interaction between the lattice and the electrons arises due
to the dependence of the electron transfer-matrix element on the distance between neighboring lattice units.
Localized configurations comprising a paired electron and a pair of lattice deformation solitons are constructed
such that an associated energy functional is minimized. We investigate long-lived, stable pairing features. It is
demonstrated that traveling pairs of lattice solitons serve as carriers for the paired electrons realizing coherent
transport of the two correlated electrons. We also observe dynamical narrowing of the states, that is, starting
from an initial double-peak profile of the electron probability distribution, a single-peak profile is adopted
going along with enhancement of localization of the paired electrons. Interestingly, a parameter regime is
identified for which supersonic transport of paired electrons is achieved.
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I. INTRODUCTION

Since the pioneering work of Landau and Pekar, it has
been established that when an electron in a lattice interacts
locally with the phonons it can become self-trapped by the
lattice distortion it creates �1,2�. The generated quasiparticle
consisting of the localized electron and its associated local
lattice deformation is called a polaron �an electron sur-
rounded by a phonon cloud�. Fröhlich �large polarons� and
Holstein �small polarons� elaborated significantly on the con-
sequences of the polaron concept �3,4�. Further significant
work was done by several other authors �5�, in particular by
Feynman, who developed the path-integral methodology �6�.
Later this idea of a localized quasiparticle was used by Davy-
dov to propose a model for coherent energy and/or charge
transport in macromolecules �7–12�.

Recently, Cruzeiro-Hansson et al. �13� have considered a
generalized Davydov Hamiltonian augmented with both at-
tractive and repulsive Coulomb interaction between generic
“quasiparticles” �hole or electron� modeling spin-spin inter-
action or Coulomb repulsion and using Hubbard’s local
Hamiltonian �14�. Two kinds of nonlinearity were incorpo-
rated in the dynamics. One nonlinearity comes from the po-
laronic electron-lattice interaction �called extrinsic nonlinear-
ity�. The other kind of nonlinearity, called intrinsic, was
twofold because it considered the 1 /r12 Lennard-Jones �LJ�
repulsive interaction between lattice units and also took the
units as on-site nonlinear oscillators with quartic potential.
The latter offers naturally the possibility of exciting “breath-
ers” along the lattice. Figure 1 shows the LJ potential com-
pared to the Morse and Toda repulsive exponential interac-
tions. The Lennard-Jones potential is closely related to the
Toda and the Morse potential with respect to linear and
�small� nonlinear excitations. The common feature is the fact
that these two-parameter potentials have an asymmetric
minimum with a negative third derivative. By scaling the
two parameters, the frequency of linear oscillations and the
stiffness may be mapped to each other. After adapting the

second and third derivatives, one may expect that the linear
and the �small� nonlinear excitations are closely related. As
shown by �15–17�, interactions with these properties have in
common the existence of supersonic solitonic excitations
with specific properties. We have demonstrated the existence
of such excitations and their influence on the electron dy-
namics in previous work. Cruzeiro-Hansson et al. analyzed
the perturbation of the single polaron state induced by the
presence of a second quasiparticle with opposite spin. Thus
the question studied was the influence of the strength and
sign of the Hubbard �local� interaction on the evolution of
paired quasiparticle states. They also analyzed in detail the
role of the 1 /r12 LJ anharmonicity versus the harmonic ap-
proximation upon the evolution of such paired states. One of
their findings is that within a certain range of parameters, the
states in which the two quasiparticles are paired and coupled
to a discrete breather are energetically more favorable than
those of uncorrelated quasiparticles.

Another study of the role of the Hubbard repulsion in a
Fröhlich/Holstein-Davydov kind of problem worth recalling
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FIG. 1. LJ, Morse, and Toda potentials rescaled around their
minima in such a way that the first three derivatives around the
minimum are the same for all potentials to allow easy comparison
of their repulsive parts.
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is that of Alder et al. �18�. Their interest focused on a two-
dimensional �2D� Hamiltonian with both on-site Coulomb
repulsion and hopping probabilities that depend on dynami-
cally varying separations of neighboring lattice sites. They
obtained an equilibrium phase diagram as a function of den-
sity, electron-electron, and electron-phonon interaction
strength. Alder et al. �18� did not consider anharmonicity
along the lattice and did not incorporate breathers in the dy-
namics, but otherwise their model Hamiltonian was similar
to that used by Cruzeiro-Hansson et al. �13�, albeit in 2D.
Other interesting works worth mentioning in view of what
follows are the studies of mobile polarons in a Holstein-
Hubbard model by Proville and Aubry �19� and Bonca et al.
�20�, and the work on bipolaron phase diagrams for the same
model by Dorignac et al. �21�.

In common with the model studied by Cruzeiro-Hansson
et al. �13�, here the intrinsic anharmonicity of lattice vibra-
tions, albeit using a Morse potential, is considered �Fig. 1�
�or more precisely, an adapted Morse-Toda potential �22��.
This permits considering solitons moving along the nonlinear
lattice. At variance with Cruzeiro-Hansson et al. �13�, on-site
nonlinear dynamics is not explicitly incorporated.

The outline of the paper is as follows. In the next section,
we introduce the Davydov-Hubbard model system used
herein. Localized two-electron soliton solutions are derived
with the help of a variational approach minimizing the en-
ergy of the electron lattice system. Section III is devoted to a
study of the time evolution of the electron soliton com-
pounds focusing on coherent transport of paired electrons.
Finally, we summarize and discuss our results.

II. THE DAVYDOV-HUBBARD SYSTEM

We investigate a one-dimensional periodic lattice chain of
molecules coupled by Morse forces in which two �interact-
ing� excess electrons have been injected. Our model Hamil-
tonian of charge transport in the system consists of the fol-
lowing two parts:

H = Hel + Hlattice. �1�

Hel describes quantum mechanically the electron transport
over the molecules in the context of a tight-binding system,
and Hlattice represents the classical dynamics of longitudinal
vibrations of the molecules, viz. the deformations of the cor-
responding bonds between them. The electronic system is
given by the 1D Hubbard Hamiltonian,

Hel = − �
n,�

�Vnn−1ân�
+ ân−1� + Vnn+1ân�

+ ân+1��

+ U�
n

ân↑
+ ân↑ân↓

+ ân↓. �2�

The index n� �1,N� denotes the site of the nth molecule on
the lattice, and � determines the spin of an electron, which
can be up or down. The standard Fermion operator ân�

+ cre-
ates an electron with spin � at site n, and ân� annihilates the
electron. The symbol Vnn−1 denotes the transfer-matrix ele-
ment �its value is determined by an overlap integral� being
responsible for the nearest-neighbor transport of the electron

along the chain. The second term in Eq. �2� represents the
on-site electron-electron interaction due to Coulomb repul-
sion related with the positive parameter U.

The lattice part of the Hamiltonian, Hlattice, models dy-
namical longitudinal changes of the equilibrium positions of
the molecules yielding alterations of the length of bonds. The
dynamics can appropriately be modeled by Morse potentials.
The Hamiltonian of the Hlattice is given by

Hlattice = �
n
� pn

2

2M
+ D�1 − exp�− B�qn − qn−1���2	 . �3�

The coordinates qn quantify the displacements of the mol-
ecules from their equilibrium positions along the molecular
axis. D is the breakup energy of a bond, B is the range
parameter of the Morse potential �the stiffness�, and M de-
notes the mass of a molecular unit. The Morse potential ex-
hibits an exponential-repulsive part preventing the crossover
of neighboring lattice particles �molecules� for large dis-
placements. Note that, with an expansion of the exponential
functions, one recovers in lowest order the harmonic limit
used in the Davydov model �7–10�. Besides, as shown in Fig.
1, there is not much difference between the Morse exponen-
tial and the 1 /r12 LJ repulsion. As mentioned earlier,
Cruzeiro-Hansson et al. �13� have considered the coupling of
a Hubbard Hamiltonian �describing two correlated electrons
of opposite spin� to dispersive phonons in a classical nonlin-
ear lattice, the latter being of 1 /r12 Lennard-Jones type. Em-
phasis is put on pair formation when a second additional
electron is injected into the state of a single �standing� elec-
tron coupled to the lattice. Interesting effects occur such as
an enhancement of localization when a nonlinear lattice
mode �a breather� couples to the two-electron state in com-
parison with a much weaker electron localization in a har-
monic lattice. Furthermore, the beneficial role of nonlinearity
involved in the lattice for charge transport has been demon-
strated in �23,24�. The lattice dynamics, where the units are
coupled via Morse potentials, possesses properties similar to
that of the Toda chain by suitably rescaling parameters �22�.
In particular, to quite a good approximation, stable solitonic
lattice deformations exist that are utilized as carriers for even
supersonic charge transport as described in �23,24�. In the
current paper, this idea is extended to the case of two corre-
lated electrons being embedded in the nonlinear lattice of
Morse-Toda type.

The interaction between the electronic and the vibrational
degrees of freedom yields modifications of the electronic pa-
rameters Vnn−1 due to the displacements of the molecules
from their equilibrium positions. To be precise, the transfer-
matrix elements Vnn−1 are supposed to depend on the relative
distance between two consecutive molecules on the chain in
the following exponential fashion:

Vnn−1 = V0 exp�− ��qn − qn−1�� . �4�

The quantity � regulates how strong Vnn−1 is influenced by
the relative displacement of lattice units, rn=qn−qn−1, or in
other words, it determines the coupling strength between the
electron and the lattice system. On the other hand, the actual
charge occupation has its �local� impact on the longitudinal
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distortion of the molecular chain. Note that here the expo-
nential form of the electron-lattice interaction accounts for
both small and large displacements of the lattice units, thus
going beyond the range of harmonic interaction considered
in earlier studies.

We pass to a dimensionless representation by introducing
suitable scales. Time is scaled as t̃=�Morset, with �Morse
=
2DB2 /M being the frequency of harmonic oscillations
around the minimum of the Morse potential. The energy of
the system is measured in units of the depth of the Morse
potential, i.e., H→H / �2D�. The dimensionless representa-
tion of the remaining variables and parameters of the system
follows from the relations

q̃n = Bqn, p̃n =
pn


2MD
, Ṽ =

V0

2D
, �5�

�̃ =
�

B
. �6�

In what follows, the tildes are omitted.
The exact two-electron wave function for the electron-

lattice Hamiltonian �2� and �3� is given by the singlet state

���t�� = �
m,n

�mn��pm�,�qm��âm↑
+ ân↓

+ �0� , �7�

where �0� is the vacuum state �containing no electrons� and
�mn denotes the probability amplitude for an electron with
spin up to occupy site m while an electron with spin down is
at site n. The symmetric �mn=�nm probability amplitudes are
normalized �mn��mn�2=1 and depend further on the set of
lattice variables ��pm� , �qm��.

To obtain the equations of motion for the probability am-
plitudes, the wave function �7� is inserted into the
Schrödinger equation for the Hamiltonian �2� and �3�, and
the evolution of the lattice variables is derived from the
Hamiltonian principle related with the classical energy func-
tional E2= 
��H��� yielding the following set:

i
d�mn

dt
= − ��exp�− ��qm+1 − qm���m+1n

+ exp�− ��qm − qm−1���m−1n

+ exp�− ��qn+1 − qn���mn+1

+ exp�− ��qn − qn−1���mn−1� + Ū�mn�mn, �8�

d2qn

dt2 = �1 − exp�− �qn+1 − qn���exp�− �qn+1 − qn��

− �1 − exp�− �qn − qn−1���exp�− �qn − qn−1��

+ �V exp�− ��qn+1 − qn���
m

���
mn+1
* �mn + �

mn
* �mn+1�

+ ��
n+1m
* �nm + �

nm
* �n+1m��

− �V exp�− ��qn − qn−1���
m

���
mn
* �mn−1 + �

mn−1
* �mn�

+ ��
nm
* �n−1m + �

n−1m
* �nm�� . �9�

The adiabaticity parameter �=V / ���Morse�, appearing on the
right-hand side �r.h.s� of Eq. �8�, determines the degree of
time-scale separation between the �fast� electronic and �slow�
acoustic phonon or soliton processes. We further introduce

the notation Ū=U /��Morse and drop the overbar in what
follows. For illustration �unless stated otherwise�, the follow-
ing values are used: �=10, V=0.1, and �=1.75 �24�.

To establish a nonlinear charge-transport mechanism, one
proceeds as in the single quantum particle case �23,24� and
constructs as a first step localized stationary solutions of the
coupled system �8� and �9�, where one uses an adiabatic
approach. To this end one notes that due to the fact that the
lattice motion is slow compared to the electron motion �large
adiabaticity parameter ��, the inertia in Eq. �9� is negligible
so that the adiabatic approximation applies. Solutions of the
stationary Schrödinger equation, associated with standing
electrons, are obtained from Eq. �8� with the substitution
�mn�t�=	mn exp�−i
t� with real-valued amplitudes 	mn and
where 
 is the corresponding spectral parameter. The energy
of the system is then given by

E = �
n

1

2
�1 − exp�− �qn − qn−1���2

− 2V�
m,n

�exp�− ��qm − qm−1��	mn	m−1n

+ exp�− ��qn − qn−1��	mn	mn−1� + U�
m,n

	mn
2 �mn,

�10�

and the stationary equations are derived according to

�E

�qn
= 0,

�

�	mn
�E + 
�

m,n
	mn

2 � = 0. �11�

For the localized electronic solution, one uses a simple trial
function �see also �21��,

�mn
�l� = Al���m�+�n−l� + ��m−l�+�n�� , �12�

where the variational parameter 0���1 gives the width of
the solution, which is supposed to be localized with an inter-
electron distance l. The coefficient Al follows from the nor-
malization condition and is evaluated as

Al =
1


2�s0
2 + sl

2�
, �13�

with

sl =
��l�

1 − �2 ���l� + 1� − ��l� − 1��2� . �14�

The localized two-electron solution is connected with lattice
deformations that are supposed to be of the form of two
superimposed Toda solitons,
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exp�− �qn − qn−1�� = + �1 + sinh2 
 cosh−2�
n��

+ �1 + sinh2 
 cosh−2�
�n − l��� ,

�15�

where 
 is treated as a variational parameter. Note that like-
wise for the electron pair, one assumes also that the distance
between the soliton centers is l. The total variational energy
is then expressed as

� =
1

2�
n
� sinh4 


cosh4�
n�
+

sinh4 


cosh4�
�n − l���
− 2VAl

2�
m,n
��2 +

sinh2 


cosh2�
m�
+

sinh2 


cosh2�
�m − l���
�

����m�+�n−l� + ��m−l�+�n�����m−1�+�n−l� + ��m−1−l�+�n��

+ �1 +
sinh2 


cosh2�
n�
+

sinh2 


cosh2�
�n − l���
�

����m�+�n−l� + ��m−l�+�n�����m�+�n−1−l� + ��m−l�+�n−1��	
+ UAl

2�
m,n

���m�+�n−l� + ��m−l�+�n��2�mn. �16�

For a given set of system parameters � and V, the global
minimum of �, giving the lowest energy configuration, is
searched for in the three-parameter space �
 , l ,��. The prob-
ability for one electron to be in site n with spin up and spin
down, respectively, is determined by

�n↑ = 
��ân↑
+ ân↑��� = �

k

��nk�2, �17�

�n↓ = 
��ân↓
+ ân↓��� = �

k

��kn�2. �18�

Typical electron probability distributions �because of the
symmetry it holds that �n↑=�n↓ and we plot half the electron
density at a site n defined as �n= 1

2�k���kn�2+ ��nk�2� and the
corresponding profile of displacements of the molecules� are
depicted in Fig. 2 for three different values of the repulsive
interaction strength U. The corresponding localized com-
pound comprises an exponentially localized two-electron
state, and the associated pair of kink-shape topological lattice
deformations that are represented as exp�−�qn−qn−1�� are of
a bell shape. The latter are referred to herein as the lattice
solitons. Increasing the repulsive �Coulomb� Hubbard inter-
action has the impact that the interelectron distance �and ac-
cordingly also the distance between the centers of the soli-
tons� gets larger. At the same time the degree of localization
reduces, i.e., broader profiles of lower peak values result.
Notably, the localized solutions are of fairly broad width and
thus are expected to be mobile when kinetic energy of an
appropriate form is added. In more detail, for a low value
U=0.05 the electron probability density is single-peaked
where the peak is shared by two neighboring sites to either
side of which the localized pattern decays. Doubling the
value to U=0.1 causes a split up of �n into a double-peaked
structure of lesser amplitude than in the preceding case. The

interelectron distance amounts to l=8. With a further in-
creased value of U, the two peaks of � get further apart from
each other while the degree of localization is further reduced
�see also below in Fig. 4�. Crucially for U�0.9, the inter-
electron distance l exceeds the width of either of the two
peaks of the electron probability density. Therefore, the two
electrons can no longer be regarded as paired. Those features
of the electron probability are equivalently exhibited by the
soliton patterns, that is, the larger the repulsive interaction
strength U is, the less is the lattice compression reflected in
the width and amplitude of the soliton patterns. For a more
comprehensive representation, Fig. 3 shows the binding en-
ergy Ebinding=�−2E1 �where � is the minimal energy at-
tained in the correlated two-electron lattice system and 2E1 is

10 20 30 40 50 601
0

0.05

0.1

0.15

0.2

0.25

n

ex
p

[−
(q

n
−q

n
−1

)]

U=0.05
U=0.5
U=1

10 20 30 40 50 601
0

0.05

0.1

0.15

0.2

0.25

n

ρ n
U=0.05
U=0.5
U=1

(a)

(b)

FIG. 2. Initial profile of the localized lattice deformation �top
panel� and electron probability distribution �bottom panel� realizing
a minimum of the variational energy for three different values of the
Hubbard parameter U as indicated in the plots. The remaining pa-
rameter values are �=1.75 and V=0.1.

HENNIG et al. PHYSICAL REVIEW E 78, 066606 �2008�

066606-4



the energy of two single localized electron soliton states be-
ing apart as much as possible from each other in the lattice�
as a function of the �Coulomb� Hubbard interaction strength
U. Furthermore, the partial electron energy and lattice energy
as given by the expressions �2� and �3�, respectively, as well
as the electron correlation energy EHubbard, determined by
only the last term in Eq. �2�, are depicted, respectively. In
compliance with the findings reported above with increasing
Hubbard interaction strength �for which the degree of local-
ization is lowered�, the binding energy decreases. Likewise
the electron energy Eel �starting from far below the lower
edge of the energy band of extended states� gets eventually
close to the value of the lower edge of the energy band of
extended states. Correspondingly, the diminishing lattice en-
ergy Elattice upon increasing U goes along with a reduction of
the degree of lattice deformation as noted also above. The
intensity of the electron correlation is manifested in the be-
havior of EHubbard as a function of U, and one notices a rapid
decrease of EHubbard for growing U. In Fig. 4, the interelec-

tron distance as a function of the repulsive �Coulomb�
Hubbard-interaction strength U is shown. From the perspec-
tive of the energy distribution, we mention that at the transi-
tion from correlated to uncorrelated electron states, the en-
ergy saving coming from the interaction of the paired
electron state with the lattice no longer exceeds the energy
contained in the repulsion term and the contribution of the
repulsive energy becomes so dominant that the paired state is
no longer energetically favorable. Remarkably, in Figs. 3 and
4 there occur several intervals of U values for which the
partial energies as well as the interelectron distance exhibit
plateaus.

III. MOVING ELECTRON-PAIR SOLITON COMPOUNDS

Having obtained the lowest energy configuration with the
help of the variational approach in the previous section, now
the dynamical behavior of the localized electrons coupled
with the corresponding lattice deformations is investigated.
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FIG. 3. Binding energy, electron energy, lattice energy, and correlation energy as a function of the repulsive Hubbard interaction strength
U. The remaining parameter values are �=1.75 and V=0.1.
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Motion of the lattice soliton is achieved with the excitation
of the Toda soliton momenta according to

pn = 2 sinh�
�/
„exp�2
�n − 1��/�1 + exp�2
�n − 1���

− exp�2
�n − l��/�1 + exp�2
�n − l���…

+ 2 sinh�
�/
„exp�2
�n − l − 1��/�1 + exp�2
�n − l

− 1��� − exp�2
�n − l��/�1 + exp�2
�n − l���… . �19�

One should bear in mind that while in this way the lattice is
equipped with kinetic energy, the electrons are presented as a
standing state �see above�. Moreover, in the case of vanish-
ing electron lattice interaction strength, �=0, the lattice soli-
tons move form-invariant �apart from negligibly small radia-
tion� with uniform velocity along the lattice resembling the
behavior of the initially exact Toda solitons �25�. For the
system of a single standing electron coupled to the Morse
lattice ���0�, coherent charge transport is mediated by a
soliton carrier as illustrated in �23,24�. The question now is
whether such a soliton-assisted transport mechanism is
achievable in the more complex situation of two correlated
standing electrons in the lattice. We integrated the system �8�
and �9� with N=61 lattice sites using a fourth-order Runge-
Kutta scheme where periodic boundary conditions are im-
posed. We checked the accuracy of our computations by
monitoring the conservation of the norm �mn��mn�t��2=1 as
well as the conservation of the total energy. The spatio-
temporal evolution for a relatively low repulsive interaction
strength, U=0.05, is illustrated in Fig. 5. The lattice defor-
mation solitons travel with uniform but subsonic velocity
along the lattice retaining their localized profile despite the
emission of small-amplitude waves to either side in the be-

ginning. Likewise the localized shape of the electron pair
probability distribution as well as the interelectron distance
of l=1 are maintained throughout the simulation time. Ap-
parently part of the energy contained initially in the lattice
deformation is distributed in the electronic degree of free-
dom with the result that the height of the electron probability
density increases. On the other hand, the reduction of the
lattice deformation energy lowers the velocity of the corre-
sponding solitons. For an increased repulsive interaction
strength, U=0.1, the localized electron pair probability dis-
tribution and the lattice soliton pair consist of two peaks
being a distance of l=8 sites apart from each other. Interest-
ingly, as seen in Fig. 6, in an early stage of the time evolution
the two peaks of the electron probability distribution and the
lattice pair approach each other leading to a drastic increase
of localization in a single peak state in the electron and lat-
tice component, which then travel in unison with apparent

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

U

l

FIG. 4. Interelectron distance attained in the minimum energy
configuration in dependence on the Hubbard parameter U. The re-
maining parameter values are �=1.75 and V=0.1.
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stability along the lattice. Thus, starting from a pronounced
double-peak configuration, the dynamics causes the two
peaks to merge, and subsequently coherent transport of a
strongly single-peaked electron probability distribution
�strongly coupled electron pair� achieved by a traveling lat-
tice soliton carrier occurs.

However, for large repulsive interaction strength U=1, for
which the interpeak distance amounts to a value l=15, virtu-
ally no dynamical changes of the initial localized profiles,
apart from the emission of small portions of linear waves
from them, is observed �see Fig. 7�. Thus, in this case the
Coulomb repulsion is too strong so that profile narrowing of
the localized electron probability distribution cannot take
place.

Finally, we studied also higher interaction strengths be-
tween the electrons and the lattice deformations. Interest-
ingly, it turned out that there result supersonic moving paired
electron lattice soliton compounds as illustrated in Fig. 8 for
interaction strength �=2 and transfer matrix element V
=0.25 for which an interelectron distance l=1 is attained.
The plot clearly exhibits a large-amplitude excitation in the
electron probability density �although its amplitude dimin-
ishes weakly in the course of time� as well as the lattice
amplitudes moving in unison with supersonic velocity leav-
ing behind the phonon waves that have been initially emitted
from them. Clearly, due to decoherence and dissipation, the
lifetime of a bound electron-soliton state is limited. Never-
theless, from the simulations performed in Ref. �23� one in-
fers that the lifetime of bound states between solitons and
electrons can last up to a hundred picoseconds during which

10
20

30
40

50
600

10

20

30

40

50

-0.05

0

0.05

0.1

0.15

0.2

0.25

n
t

Lattice amplitude

10
20

30
40

50
600

10

20

30

40

50

0

0.05

0.1

0.15

0.2

0.25

density

n
t

Electron probability

(a)

(b)

FIG. 6. Spatio-temporal evolution of a lattice soliton �top panel�
and the electron probability distributions �bottom panel�. The pa-
rameter values are �=1.75, V=0.1, and U=0.1.

10
20

30
40

50
600

10

20

30

40

50

-0.02
0

0.02
0.04
0.06
0.08
0.1

0.12
0.14

n
t

Lattice amplitude

10
20

30
40

50
600

10

20

30

40

50

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14

density

n
t

Electron probability

(a)

(b)

FIG. 7. Spatio-temporal evolution of a lattice soliton �top panel�
and the electron probability distributions �bottom panel�. The pa-
rameter values are �=1.75, V=0.1, and U=1.

COMPOUNDS OF PAIRED ELECTRONS AND LATTICE… PHYSICAL REVIEW E 78, 066606 �2008�

066606-7



a distance of �40 Å is traversed on the molecular chain.
This holds true also for the paired states as confirmed by the
simulations presented in the current paper.

IV. CONCLUSIONS

We studied the time evolution of two correlated electrons
of opposite spin moving in a one-dimensional lattice chain
within a mixed quantum-classical approach. While the elec-
tron dynamics is treated quantum mechanically using the
Hubbard Hamiltonian, the units of the classical lattice are
coupled via Morse-Toda potentials. Interaction between the
electrons and the lattice stems from the modulation of the
electronic transfer-matrix element by the relative displace-

ments between two lattice sites. The correlation between the
electrons is due to the repulsive Coulomb interaction and is
accounted for in the on-site Hubbard term �for an alternative
approach, see �26��. Concerning the more realistic case of a
solid-state system involving the Fermi sea, the following re-
mark is in order: In the current paper, only two electrons in a
one-dimensional lattice are considered and a solid-state sys-
tem with a sea of electrons is beyond the scope of the present
study. However, one may say that if the electrons are degen-
erate, then it is expectable that bound states persist to a cer-
tain extent, since the degeneration weakens the Coulomb re-
pulsion.

Attention was paid to a coherent charge-transport mecha-
nism where a pair of lattice solitons is supposed to serve as
the carrier of the two correlated electrons forming a pair that
is represented by a localized probability distribution. Such
localized electron soliton compounds were searched for by
minimizing an associated functional for the potential energy.
It was illustrated that in dependence of the strength of the
repulsive �Coulomb� Hubbard interaction strength, the elec-
tron probability distribution can be either single-peaked or
double-peaked. In the former case, the single peak of the
electron probability distribution is shared symmetrically by
two neighboring sites, while in the latter case the two peaks
get farther away from each other as the repulsive �Coulomb�
Hubbard interaction strength increases. Accordingly, the dis-
tance between the centers of the two charge-carrying lattice
solitons adapts to the interelectron distance. Equipping the
soliton pair with kinetic energy, the motion of the localized
electron soliton compound is initiated. In dependence of the
parameters of the model system, two regimes of coherent
transport were found. For relatively small value of the
transfer-matrix element and moderate coupling strength be-
tween the electrons and the lattice, the charge transport pro-
ceeds with subsonic velocity. Remarkably, increasing the
values of the two aforementioned parameters beyond a re-
spective critical value causes the supersonic transport of
paired electrons. Our results generalize an earlier finding by
Zolotaryuk et al. �17�, who identified a supersonic transport
mode where two soliton peaks can attach to a polaron with a
single electron creating together with it a coupled or dynamic
bound state.

Finally, in comparison with the study by Cruzeiro-
Hansson et al. �13�, one notes that in their treatment of the
lattice evolution, intrinsic nonlinearity occurs in a twofold
way: There is the anharmonic treatment of coupling interac-
tion between the lattice units using the 1 /r12 LJ potential,
and furthermore, quartic on-site potentials are incorporated.
We underline that in our study, the on-site nonlinearity,
which is the source for breather formation in �13�, is absent.
However, the model in �13� and ours have the nonlinear cou-
pling interaction between the lattice sites in common. As
already noted above, the corresponding anharmonic LJ and
Morse potentials share a virtually equal repulsive part and
hence support solitonlike solutions. In addition, the electron
lattice interaction is responsible for another nonlinear effect,
namely trapping of the electron�s� through the resulting po-
laron formation. �We recall that this happens also in the case
of linear coupling interaction between the lattice sites, i.e.,
when soliton solutions of the lattice itself are impossible.�
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Distinct to our present study, Cruzeiro-Hansson et al. �13�
focused their interest on the formation process of a pair of
correlated quasiparticles arising when an additional quasipar-
ticle is injected into the system state of a single quasiparticle
coupled to the nonlinear lattice. The most stable state is then
supposed to be attained for zero kinetic energy. Discussing
the stability of the static minimum energy configurations un-
der the impact of the additional on-site lattice nonlinearity
term, they noticed that the presence of the latter supports the
formation of strong lattice deformation in the form of a
standing breather around the site where the two quasiparti-
cles reside. This turns out to enhance the stability of the
paired quasiparticle state. In contrast, this paper is concen-
trated on the soliton-assisted transport mechanism of corre-
lated electrons. Departing from Cruzeiro-Hansson et al. �13�,
lattice solitons �hence with an amount of initial kinetic en-

ergy� together with the associated �standing� localized paired
electron as initial conditions were used. It is demonstrated
that for vanishing on-site nonlinearity �viz., zero elasticity of
the on-site potential�, but with the presence of nonlinear cou-
pling interaction between the lattice units, the coupled elec-
tron lattice dynamics provides a stable transport mechanism
of paired electrons. Currently we are investigating the issue
of mobility of the localized electron pair lattice soliton com-
pound in the system with on-site lattice potentials.

ACKNOWLEDGMENTS

This research was sponsored in part by the European
Union under Grant No. SPARK-II-FP7-ICT-216227 and by
the Spanish Government under Grant No. MEC-VEVES-
FIS2006-01305.

�1� L. D. Landau, Phys. Z. Sowjetunion 3, 664 �1933�.
�2� S. I. Pekar, Zh. Eksp. Teor. Fiz. 16, 335 �1946�; L. D. Landau

and S. I. Pekar, ibid. 18, 419 �1948�.
�3� H. Fröhlich, Adv. Phys. 3, 325 �1954� �and references therein�.
�4� T. Holstein, Ann. Phys. �N.Y.� 8, 325 �1959�.
�5� See, e.g., Polarons in Ionic Crystals and Polar Semiconduc-

tors, edited by J. T. L. Devreese �North-Holland, Amsterdam,
1972�.

�6� R. P. Feynman, Phys. Rev. 97, 660 �1955�.
�7� A. S. Davydov, J. Theor. Biol. 38, 559 �1973�; A. S. Davydov

and N. I. Kislukha, Sov. Phys. JETP 44, 571 �1973�; A. S.
Davydov, Sov. Phys. Usp. 25, 898 �1982�.

�8� A. S. Davydov, Solitons in Molecular Systems, 2nd ed. �Re-
idel, Dordrecht, 1991�.

�9� Davydov’s Solitons Revisited, edited by P. L. Christiansen and
A. C. Scott �Plenum, New York, 1991�.

�10� A. C. Scott, Phys. Rep. 217, 1 �1992�.
�11� M. G. Velarde, W. Ebeling, and A. P. Chetverikov, Int. J. Bi-

furcation Chaos �to be published�.
�12� M. G. Velarde, Int. J. Comput. Appl. Math. �to be published�.
�13� L. Cruzeiro-Hansson, J. C. Eilbeck, J. L. Marin, and F. M.

Russell, Eur. Phys. J. B 42, 95 �2004�.
�14� The Hubbard Model, A Reprint Volume, edited by A. Montorsi

�World Scientific, New York, 1992�.

�15� T. P. Valkering, J. Phys. A 11, 1885 �1978�.
�16� G. Friesecke and J. A. D. Wattis, Commun. Math. Phys. 161,

391 �1994�.
�17� A. V. Zolotaryuk, K. H. Spatschek, and A. V. Savin, Phys. Rev.

B 54, 266 �1996�.
�18� B. J. Alder, K. J. Runge, and R. T. Scalettar, Phys. Rev. Lett.

79, 3022 �1997�.
�19� L. Proville and S. Aubry, Physica D 113, 307 �1998�; Eur.

Phys. J. B 11, 41 �1999�.
�20� J. Bonca, T. Katrasnik, and S. A. Trugman, Phys. Rev. Lett.

84, 3153 �2000�.
�21� J. Dorignac, J. Zhou, and D. K. Campbell, Physica D 216, 207

�2006�.
�22� A. P. Chetverikov, W. Ebeling, and M. G. Velarde, Eur. Phys.

J. B 51, 87 �2006�.
�23� D. Hennig, C. Neißner, M. G. Velarde, and W. Ebeling, Phys.

Rev. B 73, 024306 �2006�.
�24� D. Hennig, A. Chetverikov, M. G. Velarde, and W. Ebeling,

Phys. Rev. E 76, 046602 �2007�.
�25� M. Toda, Theory of Nonlinear Lattices, 2nd ed. �Springer-

Verlag, Berlin, 1989�.
�26� M. G. Velarde and C. Neissner, Int. J. Bifurcation Chaos Appl.

Sci. Eng. 18, 885 �2008�.

COMPOUNDS OF PAIRED ELECTRONS AND LATTICE… PHYSICAL REVIEW E 78, 066606 �2008�

066606-9


